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Abstract—A direct hybrid adaptive control framework for  the set ofn x 1 real column vectors(-)T denote transpose,
nonlinear uncertain hybrid dynamical systems is developed. ()T denote the Moore-Penrose generalized invexsg, (-)
The proposed hybrid adaptive control framework guarantees denote the minimum eigenvalue of a Hermitian matrix,
attraction of the closed-loop system states associated with A/ denote the set of nonnegative integekg, (resp.,P™)
the hybrid plant states in the face of parametric system denote the set af x n nonnegative (resp., positive) definite
uncertainty. A numerical example is provided to demonstrate matrices, and let/,, denote then x n identity matrix.
the efficacy of the proposed approach. Furthermore, we writ¢’’(z) for the Fiéchet derivative ot/

at z anddist(p, M) for the smallest distance from a point
p to any point in the sefM.

I. INTRODUCTION In this paper, we consider controllatite-dependerjt]

i Isive d ical syst f the f
The complexity of modern controlled uncertain nonlinealrmpu sive dynamical systems of the form
fe(x(t)) + Ge(2(t))uc(t), 2(0) = w0,

dynamical systems is often exacerbated by the use of hier- ()

archical abstract decision-making units performing logical 2(t) & 2., (1)
checks that identify system mode operation and specify a )
subcontroller within the feedback control architecture to Az(t) = fa(z(t)) + Ga(z(t))ua(t), z(t) € Z4, (2)

be activated. These multiechelon systems are classified as " . .
hybrid systems (see [1], [2] and the numerous referenca¥heret > 0, z(t) € D C R", D is an open set with
therein) "and involve arinteracting countable collection 0 € D, Az (t) = x(tT)—x(t), uc(t) € U, C R™<, uq(ty) €
of dynamical systems possessing a hierarchical structwg C R™d, ¢, denotes théth instant of time at which(t)
characterized by continuous-time dynamics at the lowerntersectsZ, for a particular trajectory:(t), f.: D — R"
level units and logical decision-making units at the higheris Lipschitz continuous and satisfigs(0) = 0, G : D —
level of the hierarchy. The mathematical description ofgnxme ¢ . z _, R" is continuousGy : Z, — R"*md
many of these systems can be characterized by impulsiye sych ‘thatrank Galz) = mq, © €z, and Z, CD
differential equations [3], [4]. is the resetting setHere, we assume that.(-) and uq(-)

Even though adaptive control algorithms have been exre restricted to the class afimissibleinputs consisting of
tensively developed in the literature for both continuousmeasurable functions such th@t.(t), ua(tx)) € Us x Uq
time and discrete-time systems, hybrid adaptive contr@br all + > 0 andk < Mot £ {k:0<t, <t}, where the
algorithms for hybrid dynamical systems are nonexistengonstrained seitl, x ¢4 is given with (0, 0) € U, x Uy. We
In this paper we develop a direct hybrid adaptive Cor.‘tmgefer to the differential equation (1) as thentinuous-time
framework for nonlinear uncertain impulsive dynamicalyynamicsand we refer to the difference equation (2) as the
given in [4], [5] a hybrid adaptive control framework o1 and A2 established in [4] hold for ally(-) € Uq; that
is developed that guarantees attraction of the closed-logP the resetting set is such that resetting reman

system states associated with the hybrid plant dynamigg,m the resetting set and no trajectory can intersect the
erior of Z,. Hence, as shown in [4], the resetting times

Furthermore, the remainder of the state associated with t
hﬁ/b”d adapﬁlve ccr)]ntrollelr_ galnShISbS_fgiOWn to be bounded. Ig.¢"\vel| defined and distinct. Since the resetting times are
the Cﬁsg V(‘j’ ere t (Ie PO” |nﬁar y Ir'l sysﬁerg IdS represeniGil) defined and distinct and since the solution to (1) exists
In a hybrid normal form the nonlinear hybrid adaptive a4 is unique it follows that the solution of the impulsive

controllers are constructadithout requiring knowledge of dynamical system (1), (2) also exists and is unique over a

the hybrid system dynamics. forward time interval.
~ Next, we provide a key result from_éﬂ, [5] involving an
[I. M ATHEMATICAL PRELIMINARIES invariant set stability theorem for hybrid dynamical systems.

Specifically, consider the impulsive dynamical system (1),
In this section we establish definitions, notation, and re2) with hybrid adaptive feedback controlleis.(-) and

view some basic concepts on impulsive dynamical syste .) so that the closed-loop hvbrid systerhas the form
[3]-[5]. Let R denote the set of real numbei®? denote ) ) Py ystegm
This research was supported in part by NSF under Grant ECS-9496249 2(t) = Jic(x(t))’ 2(0) =0, () # Z5, (3)
and AFOSR under Grant F49620-0-01-0095. Az(t) = fa(@), z(t)€ 2z, 4)
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wheret > 0, i(t) € D C R", i(t) denotes the closed- [1l. HYBRID ADAPTIVE CONTROLLERS FOR
loop state involving the system state and the adaptive gains,  NoNLINEAR HYBRID DYNAMICAL SYSTEMS
fe : D — R* and fq : D — R" denote the closed- . . .
loop continuous-time and resetting dynamics, respectively, In this section we consider the problem of character-
with fc(i’e) — 0, wherez, € D~\Zx denotes the closed- 1ZiNg hybrid adaptive controllers for nonlinear uncertain
loop equilibrium point, and: denotes the dimension of the hyt;gij de.\sy:ﬁ\%lne]ﬁi i?npeu(ig\sg”é/’ rYgl?nigg?ssldsetregqhe(l)co?ztgo\l/lﬁt%
closed-loop system state. For the statement of the next res%@‘_ o pu i P iy —)]/Rmd Y ,
the following key assumption is needed. _h » Ue = IR, a’; dh_ .I e
: . ~ Theorem 3.1:Consider the nonlinear uncertain hybri
Assumption 2.1 ('[4], [S]): Let s(t, o), b2 0, denote dynamical systengj given by (1), (2). Assume there exist
1tthe solution of§3),h(4) with mma(lj cond|t|otr)mo € D.[ The)n a matrix K., € R™*5 a continuously differentiable
or everyZ, € D, there exists a dense subggt, C [0, 0o . S on : A
such that0, c0)\ 7z, is (finitely or infinitely) countable and %,?Ct_'?nR‘,/,;scx'mHC% F_)- %nan_sj H%?Pt'ggglf fuﬂgﬁt'ojgﬁp;
for every e >0 andt e 7}9' there e)ﬁ'StS(S(e’mO’t)~> 0 such thatV;(-) is positive definite, radially unbounded,
Sl(Jtch)t|f‘1a<t iflZo —yl| < (e, 2o, 1), y € D, then|[s(t, o) —  V,(0) =0, £,(0) = 0, F.(0) =0, and, for allz € R"\ Z,,
s(t,y €. T
Assumption 2.1 is a generalization of the standard con- 0= V{(x)fes(x) + £; (x)Lc(), @)
tinuous depf?ndenc% propert)ll for dynamiﬁall fstystems Witlthere
continuous flows to dynamical systems with left-continuous N A
flows. Specifically, by lettingZz, = 7z, = [0, 00), where fes(x) = fe(@) + Ge(2)Ge(r) Keg Fe(). (8)
Tz, denotes the closure of the s&,, Assumption 2.1 Furthermore, assume there exist a mafiiy, € R *5d
specializes to the classical continuous dependence of SQi4 continuous function€ly : 2, — R™4%ma and Fy :
lutions of a given dynamical system with respect to the, =~ | R such thate’ ) x'e % Lt fbr
system’s initial conditionst, € D [6]. Since solutions of Zjf ;. ¢ = A o ’
impulsive dynamical systems amet continuous in time and o
arenot continuous functions of the system initial conditions, 0> Vi(z + fas(w)) — Vi(z), 9)
Assumption 2.1 is needed to apply the hybrid invariancs;,here
principle developed in [4], [5] to hybrid adaptive systems. R
Henceforth, we assume that the hybrid adaptive feedback fas(z) & fa(2) + Ga(z)Ga(z)KagFa(z).  (10)
co_ntrollerSuC%- and uq4(-) are such that closed-loop hy- inally, letc > 0, Q. € Pe, Q4 € P™, Y € P*, and
brid system (3), (4) satisfies Assumption 2.1. Necessar‘: (%2 )<C2 Then the h Briddada tive feedback control
and sufficient conditions that guarantee that the nonlinegmax<d : y p
impulsive dynamical syster@i satisfies Assumption 2.1 are .
given in [5]. A sufficient condition that guarantees that the u.(t) = G.(z(t))K(t)Fe(x(t)), z(t) € Z,, (11)
trajectories of the closed-loop nonlinear impulsive dynam- walt) = i )
>

x(t)) K. ¢
ical system (3), (4) satisfy Assumption 2.1 are Lipschitz (z(t)Ka(t) Fa(2(t), =(t) € 24, (12)
continuity of f.(-) and the existence of a continuouslywhere K.(t) € R™<*% ¢t > 0, and K4(t) € R™a*s4,
differentiable functiont : D — R such that the resetting ¢ = 0, with update laws
set is given byZ; = {# € D : X(z) = 0}, where K.(t)
X&) # 0, & € Zz, and X'(%)fe(2) # 0, Z € Z;. The

last condition above ensures that the solution of the closed- = —3Q@cGe (@(1)GE (w(6) V™ (x(t) FF (x(1))Y,
loop hybrid system is not tangent to the resetting Bgt K. (0) = Koo, x(t) & Z,, (13)
for all initial conditionszy € D. For further discussion on A ¢ 1) =0, z(t)€ 2, (14)
Assumption 2.1 see [4], [5]. € ’ “”

The following theorem proven in [4], [5] is needed to Ka(t) =0, Kd(O)I: Hao, xEt_)lgé Za) ; (19)
develop the main results of this paper. AKy(t) = _WQde (x(t)GL(x(t))

Theorem 2.1 ( [4], [S]): Consider the nonlinear impul- . B . T N
sive dynamical systerg given by (3), (4), assum®. C D [Az(t) = fas(@@)IF (2(1)), 2(t) € 2, (16)
is a compact positively invariant set with respect to (3), (4)whereAKC(t) 2 K (tH)—Ko(t) andAK4(t) £ Kq(t+)—
and assume that there exists a continuously differentiabje, (¢), guarantees that the solutiam:(t), K.(t), Kq(t)),
functionV : D. — R such that t > 0, of the closed-loop hybrid system given by (1;, (2),
(11)-(16) satisfied.(z(t)) — 0 ast — 0 for all zo € R™.
If, in addition, ¢X (z)l.(z) > 0, z € R"\Z,, = # 0, then
~ z(t) — 0 ast — oo for all zy € R™.
0, 2€Dc, ¢ Za, ®) Proof. First, defineKq(t) £ Ka(t) — Kag and(t) £
V(Z), T€D., T€Zz (6) Gu(x(t))Ga(x(t))Kq(t)Fa(x(t)). Note that withue(t), t >
0, anduq(tx), k € N, given by (11) and (12), respectively,
igfollows that the closed-loop hybrid system (1), (2) is given
y
z(t)

INIA

LetR 2 {7 €D, : & ¢ 23 V'(@)fe(®) =0} U{T €
D.: € 2z V(T + fa(z)) = V(Z)} and let M denote 7
the largest invariant set contained R If 7o € D, then z(0) = ‘T?’ o(t) & Za, a7
#(t) — M ast — oo. Finally, if D =R" and V(&) — oo  Az(?) fa(@()) + Ga(x(t))Ga(x(t)

as||z|| — oo, thenz(t) — M ast — oo for all 5 € R". x(t

Fel(t)) + Ge(a(t)Ge(w(t) Ko(t) Fe(x(1)),
(t

JKa(t)Fa(x(t)),
) € Z,, (18)
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or, equivalently, using (8) and (10), Vk.(Kq) along the closed-loop system trajectories at the
resetting times;, k € N, is given by

B(t) = fes(z(t) + Ge(a(t)Ge((t)) (Ke(t) — Keg) AVie, (2(t). Ka(tr))
Aclt) = fdf s o e e — ) 2 Vi a6, ) ~ Vi (o0, K1)
Fa(x(?)) :tr<f(d(t’f)_ TG R Gy Qaka(te) Fa(a(ty)
= fds( (t) +w(t), =z(t) € Zs. (20) v T B
Furthermore, note that adding and subtractiiig, to and Fil (tk))) @ (Kd(tk) C+F(1T(x(tk))Fd($(tk)>Qd
from (16) and using (20) it follows that 'Rd(tk)Fd(ﬂf(tk))Fg(ﬂi(tk))) _ trk}(tk)lekd(tk)
Kq(tt) = Ka(t) 1 - . = tr K (te)Qq ' Ka(ty) — AFTESREE) KT (t)
_m?d @ ((H)Galar)) Ka(ty) Fa(a(te)) Fy (2(t ))} T FT (2t )1)F @(tr)?
[Ga(x(t)Ga(x(t) Ka(t)Fa(a(t)|Fd (x(t)) k) Fa((te

% 1 o tr F, ti))FT t Kyt
= Kal) - Grrammee Qakat) Fa(z (1) -Fd(détk();;«”)d d E ();)) (tk)QaKaltr)

T

d

tr K (t)Qy ' Kalt
FL(z(t), x(t) € Z,. ey _° 1§ . d (t1)Q7  Kalty)

e aa Fa @)K () (2L, — Qa)
To show convergence of the plant states for the closed-- TEa (et Fa(et)
loop hybrid system (13)—(15) and (19)—(21) consider thefa(tx)Fa(z(tr))
Lyapunov-like function <0, keWN, (25)

V(z,Ko,Kqa) = Vi(x) C+FY (2) Fa(x)
x x

-1 -1 T
+ir Qe (Ke — ch)Y (Ke — Keg) a > 0, since by assumﬁ/tmrj\max(Qd) < 2. Hence,
+tr(Kq — Kq— Kge). 22 Vi K(ty)), k € , is a nonincreasing and
(Ka dg) Qd (Ka az) 22) boﬁr(1d(ed)fun5:t|321 oft. Thus, it follows from the r%ono—
Note thatV' (0, K., K4z) = 0 and, sinceV(-), Q., Q4, tone convergence theorem (see Theorem 8.6 of [8]) that
and Y are positive definiteV (z, K., Kq) > 0 for all ~ limp .o Vk,(x(tx), Ka(tr)) exists which implies that
(7, K¢, Kq) # (0, Keq, Kag). In addition, va Ko, K1) AVi, (x(ty), Ka(tr)) — 0ask — oo. Now, it follows
is radially unbounded. Now using (7), (13), and (15), ifrom (25) thatkKq(tx)Fa(z(t)) — 0 ask — oo and hence
follows that the time derivative oV (z, K., Kq) along «(t;,) — 0 ask — oo. Next, to show thatz(t) — 0 as
the closed-loop system trajectories over the time interval—, oo, note that, sincei(t;) — 0 ask — oo, there exists

where in (25) we usedM < 1 and 2],

t € (tk,trt1], k €N, is given by k* > 0 such that for allk > k*,
V(@(t), Ke(t), Ka(t)) 0> Va(a(ty) + fas(a(ti)) + B(t5)) — Va(z(ti))  (26)
= V](z(t)) |:fcs( () + Go(z(t)Ge(z(t)) (Ke(t) — Keg) hOI%S ﬁnd hence there exi&, ¢ Z, and kq C R™Maxsa
such that
Fo(z(t))| + 2tr Keg)Y 'K (t . .
@(0)] + 27QKL() ~ KoV RE() 0 > Vila+ fu(@) + Galw)Ca(@)RaFa(@)) — Ve(a),
=~ (@(t)Le(=(1)) (¢, Kq) € 2, x Kq C Z, x R™¥50(27)
, .
o (Kelt) = Keg) (o) @O)Ge@O)Gele )] ang gist(a(n) 2) - 0 as & — oo and
_ _ 4 A dist(Kq4(t),Kqa) — 0 ask — oo. Hence, it follows
tr{(KC(t) Keg) Fel(@(1)V (I(t))GC(I(t))G“(x(t))} that the difference o¥/(z, K., K4) along the closed-loop
= (T (x(t))le(x(t)) system trajectories at the resetting timgs & > k*, is
<0, tp<t<tpgl (23) 9venby
AV(I(tk),KC(tk),Kd(tk))

Now, suppose there existg,.x > 0 such thatk < &y .; 5 V(). K (), Kyt
that is, the closed-loop system trajectaryt), ¢ > 0, - (2 (ty), Ke(ty), Ka(ty))
|nteLsects the Lesetltlng deﬁm ahfll’[ljlted number of times. —Vi(x(tr), Kc(tr), Ka(tr))
In this case, the closed-loop hybrid system possesses a _ 1, -
continuous flow for allt > #,  and hence it follows Vo@(t) + fas(@(te)) +0(tk)) = Va(@(te))
from Theorem 2 of [7] that/.(z(t)) — 0 ast — oc. +AViy (x(tr), Ka(tr))
If, in addition, T (z)l.(z) > 0, z € R™\Z,, x # 0, < 0, k>k" (28)

thenz(t) — 0 ast — oo for all zy € R™. Alternatively,
suppose a trajectory(t), t > 0, intersects the resetting set
Z, Infinitely many times. In this case, consider the partia

Next, fort > t;«, define the translated closed-loop hybrid
Spystem

Hyapunovelie function Hr) = Ju((7)) + Gela(r) Cel(r)) Kelr) Fei(7),
Vicy (Ka) = tr(Ka — Kag) Q7" (Ka — Kag)-  (24) 2(0) = a(tf.), &(1) ¢ Za, (29)

Note that since), is positive definiteVy, (Kq) > 0, Kqg € A#(7) = fa(2(7)) + Ga(2 7))Ga(@ (1)) Ka(r)Fa(i(7)),

R™Maxsd Ky # Kgae. Now, using (21), the difference of (1) € Z,, (30)
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2
FE@(r)Y, Ke(0) = Ketf), (1) ¢ Ze0 GD [ Ag ] 5 [ Opmor
AK (1) =0, &(1)€ Z,, (32) A = [Omm}’ Jeul )_[ feu(®) } (38)
Ka(r) =0, Ki(0) = Ka(t{.), @(r)¢ Z,, (33 Ay = { OAdO ] , fau(@) = { 0<"};"de>)x1 } , (39)
AKa(7) = —rrramy ey @ala @(0)G (7)) e '
80(r) — fauGENFT @), 3() € 2, (34) Aeg € RE IO and Aag o R e fnown

matrices of zeros and ones capturing a multivariable control-
. . . lable canonical form representation [1¢},, : R™ — R™-
T) £ z(t — tp), Ko(7) = and fyqu : R™ — R™< are unknown functions7, : R” —
K(t — tge ), and Kd( ) é Kq(t — tg~). Furthermore, R™<*™<, andGgs : R" — R™d*™d, then we can always
defineR. & {(33 K Kd) € R™ x RMeXsc y RMdXSd . CQﬂStrUCt fUnCtlonSFC : R* — R% and Fy : Rn — RS54,
¢ b n with F.(0) = 0, such that the zero solution(t) = 0
z ¢era V(z, Ifchd) = 0} = {f(f{v KC’AKd) € R to (8) and (10) is globally asymptotically stableithout
Rmexse s RMaxsa g & Z, Lo (2)l(2) = 0} and requiring knowledge of the hybrid system dynamics. To
Ra = {(2, KC,Kd) € IR” x RMeXse » RMaxsa . 3 ¢ see this assume thdt,(z) and fq,(z) are unknown and
Z,, AV (2, Ko, Kq) = 0}. Now, let M denote the largest are parameterized af.(z) = Ocfen(r) and fau(z) =
invariant set contained iR £ R.URq4 and note that since v(?/ﬁr{d;(x()d)Whgreaﬁa o Rg R R :rTg gdﬂez ]1]§md :IdR;re
o cn =Y, c eme d
w(ty) — 0 ask — oo it follows that for (z, Ke, Ka) € matrices of uncertain constant parameters.
M (2, x RmeXse x Kg), Ga(2)Ga(2)KqFa(#) = 0, . .
KA F (&) = 0, and Vi(@ + fu.(#)) — Va(2) = 0. How- Next, to apply Theorem 3.1 to the uncertain nonlinear
d-'d ) s ds s hybrid system (1) and (2) withf.(x), fa(x), Ge(z), and

ever, since (27) holds for alb € Z,, M = R, U O ; T % 8e
and hence _it follpws from Theorem 2.1 that the squGd( )glven by (36) and (37), ek, € R™<** andKq, €

fion (i(r), Ke(7), Ka(7)), T > 0, to (29)(34) satisfies ]5 a%%4, wheres, = q. + r. andsq = gq + ra, be given

Le(i(1)) = 0 ast — oo and hencelo(z(t)) — 0 as PY

t — oo. Furthermore, if(Y(z)l.(z) > 0, z € R" \Zx, _ _ _ _

x #0, thenz(t) — 0 ast — oo for all 2y € R™. Keg = [Oen=0c; Pen],  Kag = [Odn—0a, an], (40)
Remark 3.1:Note that in the case whefg (z)(.(z) > 0, whereO., € R™<*%, Oy, € R"™4*%, &, € R™*", and

z € R"\Z,, z # 0, the conditions in Theorem 3.1 imply an € R™4%7 are known matrices, and let

that z(t) — 0 ast — oo and hence it follows from

(13) that (2(t), K. (t), Ka(t)) — M 2 {(x, K, Ka) € Fulz) = [ fen(2) ] Fy() = [ fan(@) ] (41)

R” x R™MeXse x RMaxsa . g = (, K, = 0} ast — oo. fen() Jan ()

Furthermore, ifx(¢), ¢ > 0, intersectsZ,, infinitely many ) .

times, then(x(t),Kc(t)’Kd(t)) — M 2 {(1‘7KC,Kd) = where fen : R* — R and fan : R® — R4, Satisfying

R™ x RMcXse x RMdXsd : p = 0, K, = 0, Kq(tT) = fen(0) = 0, are arbitrary functions. In this case, it follows
Kq4(t)} ast — oc. that, with Go(z) = G (z) andGa(z) = Gl (z),

Remark 3.2:In the case whereq(t) = 0, Condition (9) R
can be replaced by fes(x) = fe(z) + Ge(2)Ge() Keg Fe()

3 O(nfmc)xl
0> Vil + fale)) - Vi(a). (35) - Aa+[aﬁﬁﬂ+@mm@)} (42)

Furthermore, takingFy(z) = 0, z € Z,, and K4(t) = and X
0, (26) holds for all ¥ € A. In this case, since fas(x) = fa(z)+ Ga(z)Ga(x)KagFa(z)
V(x(t), K.(t), Ka(t)) is nonincreasing for allt > 0, 0
V(x, K., Kq) is a Lyapunov function and hence the closed- - (Ad —I)z+ { (n—ma)x1 ] (43)
loop hybrid 'system (13)—(15) and (19)—(21) is Lyapunov ’ Odn fan(z) + Pan fan(z)

stable andz(t) — 0 ast — oo. For further details see [9].

It is important to note that the hybrid adaptive control Now, since®., € R™<X% Q4, € R™iXd o, €
law (11)-(16) doeshot require explicit knowledge of the R™<*"<, and®y, € R™*" are arbitrary constant matrices
ga|n matrlceSKCg and Kdg: even though Theorem 3.1 and fcn R — R" and fdn R — R"™ are arb|trary
rgquwes the existence df.,, K4z, Fe(z), Fa(x), G. (x), functlon_s we can always construﬁcg, Kqag, Fe(x), and
Ga(z), andV,(z) such that (7) and (9) hold. Furthermore,fa(x) without knowledge off.(x) and f4(x) such that (7)
no specific structure on the nonlinear dynamjeér) and ‘and (9) are satisfied. In particular, choosi®g, feu(z) +
fa(z) is required to apply Theorem 3.1. However, if (1) and@cnfcn( ;) = A,z and Odnfan(z) + B fan(z) = Agz,
(2) are such that where A, € R™*n and A, € R™axn it follows that

(42) and (43) have the fornfi.s(z) = A.z and fdb( ) =

folz) = A + feu(z), Gelz) = [O(”Gm&x)m‘:} , (36) (Aq — I,)z, respectively, whereA,. [AOT,AT} and

0 n—m m,
fale) = (Aa = 1)a + ). Gata) = |"gmm] riable o .
as(® cal form. Hence, we can choost and A4 such that4. is
(37) Hurwitz and A4 is Schur. Now, it follows from standard
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converse Lyapunov theory that there exists a positivdunction V, : R — R, and continuous functions/. :

definite matrix P satisfying the Lyapunov equation R™ — R™eXMe [ R™ — R%, and ¢, : R — RPe
T such thatV;(-) is positive definite, radially unbounded,
0=A; P+ PAc+ Re, (44)  V,(0) =0, £.(0) =0, F.(0) = 0, and, for allz € R™\ Z,,

(7) holds with f.s(x) given by (8). Furthermore, assume
that there exist a matrif(q, € R™¢**@ and continuous
0=AYPAy — P+ Ry, (45) functionsGy : 2, — R™a*™4 and Fy : Z, — R® such
: " - . that G4(z), € Z,, is invertible and, for alke € Z,, (9)
where Ry is positive definite, then (9) holds with,(x) =  holds with fas(z) given by (10). Finally, letc > 0 and

2T Pz. Hence, the hybrid adaptive feedback controller (11y" ¢ Ps-, Then the hybrid adaptive feedback control law
and (12) with update laws (13), or, equivalently,

Ko(t) = —Q.GT (x(1))GE (x(t)) Pr(t) F (2(1))Y. (46)  uc(t) = Go (w(t) Ke(t) Fe((t),  a(t) & 2., (49)

and (14)—(16) guarantees global attraction of toelinear  ua(t) = &~ Gy, (x(t)) Ka(k)Fa(z(t)), x(t) € Z4, (50)

hybrid uncertain dynamical system (1) and (2) whérer),

fa(x), Ge(z), andGg4(x) are given by (36) and (37). Note mXse mxsq

thé(lt )sincé I%C and R(d )are arbitrary, (44) and (45) can Wf;efe/fgc(\fv)itﬁ GR date Itavzvso' Kq(t) R »t20, and

be cast as a linear matrix inequality feasibility problenf' = /< P

involving P > 0, AT P+ PA. <0, andA} PA; — P < 0.

Finally, as mentioned above, it is important to note that it g (1) = —BIV/T(x(t))Fr (x(1))Y.

is not necessary to utilize a feedback linearizing function 0 K ' z 51

F.(xz) and Fy(z) to produce a linearf.s(z) and fas(z). (0) = Keo, x(t) ¢ Za, (51)

However, as shown above, when the hybrid system is idAK.(t) = 0, z(t) € Z,, (52)
(

where R, is positive definite. If, in additionP satisfies

a hybrid normal formgiven by (36), (37), the feedback _ _
linearizing functionsF,(z) and F4(x) provide considerable Kq(t) = 0, Ka(0)=Kao, z(t)¢ 2, (53)
simplification in constructing/;(z) necessary in computing AK4(t) = —WBJO [Ax(t) — fas(x(t))]

the hybrid update law (13).
Note that by choosin®,, = ®4, = 0 considerable
simplification occurs in the update law (16). Specifically, in

this case it follows that guarantees that the solutiofx:(t), K.(t), K4(t)) of the
9)—(54) sat-

(
Fy (x(t), x(t) € Z,, (54)

, A closed-loop hybrid system given by (1), (Z)T,
Gl(2) fas(@) = [ Opx(nom), Gai (@) ] [ 0 0 ] x isfiesl.(z(t)) — 0 ast — oc. If, in addition, ¢; (z)¢.(x) >
mxn 0, z € R"\Z,, = # 0, thenz(t) — 0 ast — oo for all
-0, (47)  zp € R™.

and hence the update law (16) can be simplified as Proof. The result is a direct consequence of Theo-
) - : rem 3.1. First, letGe(z) = G '(z) and Ga(z) =
AKq(t) = WQdGE (x(t)G(x(t)) a~1Gy ) (z) S0 that Ge(2)Gen(2) = [Omx(n—m), Bed)T
Ax(t)FE(x(t)), x(t) S Zz (48) and Gd(I)GdH(I) = [Omx(n—mﬁaileu]Ti and |et

ch = Bc_ul [ecn - @Ca (I)CH] and Kdg = _ééBd_u1 [@dr} L
Next, we consider the case whefg(x), fa(z), Ge(x), ©a, Pan]. Next, sinceQ. and Qq are arbitrary positive-

and Gq(x) are uncertain. Specifically, we assume thagefinite matrices with\nax(Qa) < 2, Qc in (13) andQq in

G.(z) and G4(x) are such thatG.(z) and Gy(z) are (16) can be replaced by.|B.,|~" anda™"|Bqu| ™", respec-

1

unknown and are parameterized @s;(z) = B..Gcu(x)  tively, wheregq, is a positive constantB.,| = (B2,)2, and
and Gas(z) = BquGan(z), WhereGe, : R — R™<X™ g, | — (B2 )3 where(-)? denotes the (unique) positive-
and Gq, : R" — R™*™a agre known and satisfy definite square root. Now, sindg., and By, are symmetric
detGen(z) # 0, x € R"\Z,, detGan(r) # 0, = € and sign definite it follows from the Schur decomposition
Z;, and B, € R™<*™e and Bqy, € R™*™4, with  that B, = U.Dp_, UL and Bq, = UaDg, UT, whereU,
det Bey # 0 and det Bq, # 0, are unknown symmetric and(, are orthogonal and)s_, andDp,, are real diagonal.
sign-definite matrices but a bound for the maximum Hence, B |—1GT(:C)GT(z) _ 0 Z..] =B T
singular value ofBy, is known and the sign definite- e e S MeX (n=me)> Sme) = 20
ness of B., and By, are known. For the statement ofand & '|Bqu| "G ()G () = [Omyx(n—ma)> Imal =
the next result defineBey £ [0 x(n—m.) Imr}T for Bag. WhereZ,, = I, for By, > 0, I, = —I,, for
N ¢ ° i Bew <0, 7, = Iy, for Bqy > 0, andZ,,, = I,

Bew > 0. Beg £ [Oex(nme)s ~Ime] 107 Beow < 0. for' By, "< 0.'Now, (13) ‘and (16) imply (51J and (54),
Bqo = [omdx(n_md), [md] for Bq, > 0, and By, £  respectively. O

O (nem)y —Im T for Bau < 0.
[ ax( a) d]

Corollary 3.1: Consider the nonlinear uncertain hybrid
dynamical systeng given by (1) and (2) withf.(z), fa(x),
Ge(z), and Gq(z) given by (36), (37), andG.(z) =
B.wGen(z) and Gas(z) = BauGan(x), Where B, €
R™e*me and Bq, € R™*™d are unknown symmetric  In this section we present a numerical example to demon-
matrices and the sign definiteness Bf, and By, are strate the utility of the proposed hybrid adaptive control
known andoyax(Bau) < o, a > 0. Assume there exist framework for "hybrid adaptive stabilization. Specifically,
a matrix K., € R™<**, a continuously differentiable consider the nonlinear uncertain controlled hybrid system
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IV. ILLUSTRATIVE NUMERICAL EXAMPLE



- Resetting set

- Resetting set

Initial point

given by (1), (2) withn =2, = = [z, 2] ", .
i) - 0 2
fc(.lf) |: By — M(JU% - Q)LEQ :| ) Gc(x) - |: be :| ) N;
—T1 + X2 N
falz) = [ —xy —a17} — ag 1<T—g;c§ ~ 4373 ] 7 :
Ga(z) = [0,bd]", ’

where i, o, 8, a1, a2, a3, b, bg € R are unknown. Further-
more, we assume that the resetting 8gtis given by

Fig. 1.

Phase portraits of uncontrolled and controlled hybrid system

Z,={xeR?: X(x) =0, x5 > 0}, (55)

where ¥ : R? — R is a continuously differentiable =
function given by X' (x) = z;. It can be easily verified -

that the resetting seg, satisfies Assumptions Al and ™
A2 given in [4]. Furthermore, X'(z) # 0,z € Z,,

B 10 15 20 25 30 0 5 10 15 20 25 30
time

and for the closed-loop hybrid system corresponding t
the continuous-time dynamics given by (1) and (11)3]
X' ()t = o # 0,z € Z,, and hence the closed-loop -

4 111

hybrid system satisfies Assumption 2.1. Here, we assun =
that f.(x) and f4(z) are unknown and can be parameterized

5 10 15 20 25 30 o 5 10 15 20 E3 30
time time

as fe(z) = [x2, 0121 + Ocoxo + Gcsx%xg]T anded(x) =

3
L—l’l + Zo, —To + 0d1x% + 9(121:7_7;3 + 0d3x§] , where
1, Oc2, Oc3, Oa1, O42, and 43 are unknown constants.
Furthermore, we assume thagn b. andsign bq are known
and |bg| < 2. Next, letG.(z) = 1, Ga(z) = 1, Fe(z) =
T

T 3
2 2
[#1, 20, 23w2], Fa(z) = {xuﬁ,x%,xum} 7
1
ch = be [ecnl - 9c17 0CH2 - 9c2, _9c3] ) and
1
Kag = 4:[-0a1, —baz, —bas, Gan, s ban,], Where 6y,

01y, Gdn,, Pan, are arbitrary scalars, so that

0 1
fcs(x) = fc(w)"_ |: bc :| a
: [ 90111 - eclaecnz - 3027 _003 ] Fc(l')
_ { 9211 9C1n2 ] . (56)
and
ot fule) = o+ fu) | ]
[ =01, =0z, —0as; ddn, » Gdn, | Falx)
= [ bom o } o ®7)

Now, with the proper choice k..., , Ocn,, Pdn,, 8NAPn,, it

follows from Corollary 3.1 that the hybrid adaptive feedback [5]

controller (49) and (50) guarantees thdt) — 0 ast —
oo. Specifically, here we choosg,

®q

WitIH

—_

Vi(x) = 2" Pa, P:{ H Ec(x):[i Hm

With py=2,a=1,5=1,a; = -5, as = -2, ag = 3,
y=1,b.=3,bq =14, & =1,Y = 0.113, and initial
conditionsz(0) = [1,1]T, K.(0) = [0,0,0], and K4(0)

= — 1 9Cn2 = 4
= —0.1, ¢an, = —0.1, so that (17) and (9) are satisfied [6]

Fig. 2. State trajectories versus tinfég. 3. Control signals versus time

V. CONCLUSION

A direct hybrid adaptive nonlinear control framework for
hybrid nonlinear uncertain systems was developed. Using
the the hybrid invariance principle given in [4], [5] the
proposed framework was shown to guarantee attraction of
the closed-loop system states associated with the hybrid
plant dynamics. Furthermore, in the case where the nonlin-
ear hybrid system is represented in a hybrid normal form,
the nonlinear hybrid adaptive controllers were constructed
without knowledge of the system dynamics. Finally, a
numerical example was presented to show the utility of the
proposed hybrid adaptive stabilization scheme.
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