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Abstract— This paper gives an adaptive robust fuzzy
control design for a class of nonlinear systems represented by
input-output models to follow a reference trajectory in the
presence of uncertainties. Direct approach to this problem
by using fuzzy logic systems (FLS’s) to approximate the
unknown ideal control law (designed when the nonlinear
system is known) is followed, and the semi-global stability is
established based on the Lyapunov analysis. By combining
the advantages of fuzzy logic reasoning, robust control and
adaptive control techniques, the proposed control has the
following features: ability to incorporate in a transparent
way an existing control experience into the controller design,
robustness to a wide rang of uncertainties, reduceda priori
information on the nonlinear system and on-line computa-
tion load required for its implementation, and semi-global
exponential output tracking to the reference signal up to a
ultimately bounded error. The effectiveness of this control
is demonstrated through simulations.

Keywords: Fuzzy direct control, Lyapunov stability, output
tracking, nonlinear systems, uncertainty.

I. INTRODUCTION
Since fuzzy logic systems (FLS’s) [23] introduced into

control designs [12], fuzzy logic controllers have had great
successes in applications [22]. Due to their simplicity in
design and implementation, inherent capability of dealing
with uncertainties in dynamic systems and ability to
incorporate easily expert experiences into the controller
design, fuzzy control has been becoming one of the
favorite choices for control engineers. From a practical
engineering point of view, all available information should
be utilized in the design of a control system. Usually, three
important sources of information are available: numerical
information about the measurements of variables provided
by sensors, linguistic information about how the plant be-
haves or how to control the plant under certain conditions
provided by a human expert, and structural information
about the plant provided by mathematical modelling.
Conventional controls can only make use of numerical and
structural information and have difficulty of incorporating
linguistic information. Fuzzy control may easily incorpo-
rate numerical and linguistic information into its design,
but structural information is largely unexplored, specially
in its early stage of development. As a consequence, a
main drawback of fuzzy control systems designed based
on expert experience is the lack of stability analysis, so
it may not guarantee beforehand the stability and the
performance of the closed-loop system. Also, the lack of
a systematic design method often makes fuzzy controller
design a tedious, time-consuming process, specially for
complex dynamic systems.

In recent years, significant advances towards providing
a systematic design of fuzzy controllers with guaran-
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teed stability have been made by using analytical tools
developed for nonlinear systems (see,e.g. [8] and the
references cited therein), particularly those for robust
control and adaptive control systems [21], [17] . By
exploring structural information of the plant to be con-
trolled, analytical approach to fuzzy control retains the
salient characteristics of fuzzy control, and further can
deal easily with problems that are difficult to handle with
conventional nonlinear control methods, such as unmod-
eled dynamics, non-linearly parameterized systems and
high relative-degree [6], [13], [7], [5]. Within this context,
two common methods are used to design a fuzzy logic
control: indirect and direct. In the former FLS’s are used
to approximate the unknown dynamic systems and then
controllers are synthesized based on this approximation
[21], [20], [17], [10], [19], while in the later controllersare
directly synthesized using FLS’s [21], [2], [17], [9]. Most
of the results in controller designs obtained by means of
FLS’s are shared with those resulted from neural network
control [15], [11], [14], [16], [24], [3], and in general with
those control syntheses based on the so called universal
approximators [18]. But in the class of approximators
which are linear in the parameters, FLS’s are much closer
in spirit to human thinking and natural language. They
provide an effective means of capturing the approximate,
inexact nature of the real world, in particular, when large
amount of uncertainties is present.

Although analytical methods give systematic designs
of fuzzy controls with proved closed-loop stability, many
results reported in the literature suffer from at least one
of the following drawbacks: (1) lack of robustness to
unmodeled dynamics and/or external perturbations due to
only asymptotic convergence of the tracking error to a
residual set of the origin is achieved, (2) requirement of
the knowledge on the nonlinear systems, which may result
difficult to obtain in practice, for controller implementa-
tion, (3) requirement of the bound on the norm of the
optimal parameter vector of the universal approximator,
or a compact set to which the optimal parameter vector
of the universal approximator belongs, (4) heavy on-line
computation burden due to updating the parameters of
the universal approximator. These drawbacks create once
again a gap between the control theory development and
control engineering practice, because design methods that
result in a high complexity, lack of robustness, or based
on a priori information hard to obtain are rarely utilized
in practice.

As an attempt to reduce this gap, this paper gives an
adaptive robust fuzzy control design for a class of nonlin-
ear systems represented by input-output models to follow
a reference trajectory in the presence of uncertainties.
Direct approach to this problem by using FLS’s to approx-
imate the unknown ideal control law is followed, and the
semi-global stability is established based on the Lyapunov



analysis. By combining the advantages of fuzzy logic
reasoning, robust control and adaptive control techniques,
the proposed control has the following features: ability
to incorporate in a transparent way an existing control
experience into the controller design, robustness to a wide
rang of uncertainties, reduceda priori information on the
nonlinear system and on-line computation load required
for its implementation, and semi-global exponential output
tracking to the reference signal up to a ultimately bounded
error. The effectiveness of this control is demonstrated
through simulations.

The rest of the paper is organized as follows: after the
problem statement and control design for known plant
given in Section 2, functional approximation using FLS’s
is briefly described in Section 3, which will be used in the
control design in Section 4. In this Section, control design
with state feedback is considered first. Next, the high-
gain observer [7] is used to design an output feedback
control. Section 5 gives a numerical example to illustrate
the proposed control. Section 6 concludes the paper with
some remarks.

II. PROBLEM STATEMENT AND CONTROL
DESIGN FOR KNOWN NONLINEAR SYSTEMS

We consider in this paper the class of single-input-
single-output nonlinear systems in the following form

ẋ = F (x) + g(x)u,

y = h(x), (1)

wherex
△
= [x1 x2 ... xn]T ∈ IRn is the state vector of

the system,u, y ∈ IR is the control input and measured
output, respectively,F, g : IRn → IRn andh : IRn → IR are
unknown smooth functions ofx. In the design of the fuzzy
controller, we assume the plant (1) to have the well defined
relative ordern. Therefore, through transformationy =

T (x)
△
= [y y(1) ...y(n−1)]T , T : IRn → IRn, being a

diffeomorphism, (1) is expressed as

ẏ = Aoy + Bo[f(x) + b(x)u], (2)

with

f(x) = Ln
F h(x), b(x) = LgL

n−1
F h(x) 6= 0, ∀x ∈ IRn,

(3)
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Assumption 1: 0 < b0 ≤ b(T−1(y)) ≤ b1q(‖ y ‖),
∀y ∈ IRn , whereb0 and b1 are unknown constants, and
q(‖ y ‖) = 1+ ‖ y ‖ +...+ ‖ y ‖p with p ≥ 0 a known
integer. Throughout the paper‖ . ‖ denotes the Euclidean
norm.

Let yr be a given reference signal. We assume that
yr and its derivatives up to ordern to be bounded,
and y

(n)
r to be piecewise continuous. The problem we

consider in this paper is to design an output feedback
control law for (1) to ensure the plant outputy and its
derivatives up to ordern−1 to track the referenceyr and
its corresponding derivatives within a ultimately bounded

error, while maintaining all the signals bounded. Also the
ultimate error bound should be made arbitrarily small by
choosing appropriately controller parameters.

Let yr

△
= [yr y

(1)
r ... y

(n−1)
r ]T ∈ IRn be the reference

signal vector and the tracking error bee
△
= y − yr. Its

dynamics are obtained from (2) as

ė = Aoe + Bo[f(x) + b(x)u − y(n)
r ]. (5)

It is easy to see that if the control law is chosen as

u =
1

b(x)
[Ke − f(x) + y(n)

r ]
△
= u∗(x, e, y(n)

r ), (6)

whereK ∈ IR1×n is such that the matrix

Ac
△
= Ao + BoK, (7)

is Hurwitz, i.e. all its eigenvalues have the negative real
parts, then the tracking errore(t) = exp(Act)e(0) → 0
exponentially.

We will refer to the control law (6) as the ideal control.
In the y-coordinate, this control law can be expressed as

u∗ = u∗(y,yR) whereyR
△
= [yr y

(1)
r ... y

(n−1)
r y

(n)
r ]T ∈

IRn+1. Although can not be implemented because the
unknown functionsF (x), g(x) and h(x) and therefore
unknown f(x) and b(x), it is a continuous function of
y and yR. So it can be approximated to any degree of
accuracy in a compact set inIRn × IRn+1 by a universal
approximator. In the following, FLS’s will be used for this
purpose.

III. FUNCTIONAL APPROXIMATION USING
FLS’S

Consider anni-inputs, single-output fuzzy logic system
[21] with the product-inference rule, singleton fuzzifier,
center average defuzzifier, and Gaussian membership
function given bynr fuzzy if-then rules

Rr : if x1 is Ar
1(x1) and ... and xni

is Ar
ni

(xni
)

then u = br, (8)

where Rr denotes therth rule, 1 ≤ r ≤ nr, x =
[x1 ... xni

]T ∈ X ⊂ IRni and u ∈ IR are the input and
the output of the fuzzy logic system, respectively, with
X a compact set.br is the fuzzy singleton for the output
in the rth rule, andAr

1(x1) ... Ar
ni

(xni
) are fuzzy sets

characterized by Gaussian membership functions

µAr
j
(xj) = exp

{

−(
xj − cr

j

σr
j

)2

}

, (9)

wherecr
j is the center andσr

j the width of the Gaussian
membership function. The output of the FLS is given by

u =

nr
∑

r=1

wr(x)br, (10)

wr(x) =

∏ni

j=1 µAr
j
(xj)

∑nr

j=1

∏ni

i=1 µAj

i

(xi)
, r = 1, ..., nr.(11)

If the membership functions (i.e., cr
j , σr

j ) are fixed, the
normalized firing strength (activation degree) of therth
rule wr is a function of onlyx. Therefore, the output of



an FLS allows a linear parameterization in its consequence
parametersbr:

u(x) = [b1 b2 ... bnr ][w1 w2 ... wnr ]T
△
= BW (x). (12)

In the rest of the paper,B ∈ IR1×nr will be referred to
as theparameter vector of FLS’s, andW : X → IRnr the
fuzzy basis functions. The fuzzy rule set (8) is said to be
complete, if for any x ∈ X, there is at least one fuzzy
rule fired, i.e.,

∑nr

j=1

∏ni

i=1 µAj

i

(xi) > 0. It is well known
that FLS’s (12) are universal approximator in the sense
that given any real continuous functionf : IRni → IR in a
compact setX ⊂ IRni and anyk > 0 there exists an FLS
(12) such that [21]

sup
x∈X

|u(x) − f(x)| < k. (13)

In light of this result, the functionf(x) can be expressed
as

f(x) = B∗W (x) + ∆f(x), ∀x ∈ X ⊂ IRni , (14)

where∆f(x) is calledapproximation error satisfying

sup
x∈X

|∆f(x)| < k, (15)

andB∗ is theoptimal parameter vector

B∗ △
= arg min

B∈IR1×ni

{

sup
x∈X

|BW (x) − f(x)|

}

. (16)

In practice, the optimal parameter vector may be not
unique or known. Several methods based on the gradient
of an error function are available to estimate it (see,e.
g. [21]). Also, when some part of an FLS (number of
rulesnr, membership functionsµAr

j
(xj), or consequence

parametersbr ) is fixed, the approximation error boundk
is unknown.

IV. CONTROL DESIGN

In this section, we design a control for the plant (1) by
approximating the ideal control law (6) by means of an
FLS. We use the robust control technique [1] to design
a signal to compensate for the parameter uncertainty
arising from the unknown optimal weight matrixB∗, and
the error arising from approximating the unknown ideal
control law. Firstly, the control design with state feedback
is considered. Next, the high-gain observer [7] is used to
design an output feedback control.

A. Control law

Given yR = [yr y
(1)
r ... y

(n−1)
r y

(n)
r ]T , the reference

and its derivatives up to the ordern, we first choose the
fuzzy setsAr

j(y
(j)
r ) for 0 ≤ j ≤ n, and the corresponding

membership functionsµAr
j
(y

(j)
r ) as in (9). Accordingly,

the fuzzy sets and the membership functions fory may
chosen asAr

j(.), i.e., Ar
n+j+1(y

(j)) = Ar
j(y

(j)
r ), 0 ≤ j ≤

n − 1.
We propose the control law for the plant (1) as follows:

u = u0 + uc, (17)

where u0 is the nominal control representing the best
available experiences on how to control the plant given
by nr fuzzy rules,r = 1, 2, ..., nr:

Rr : if yr is Ar
0(yr) andy

(1)
r is Ar

1(y
(1)
r ) and ... and

y
(n)
r is Ar

n(y
(n)
r ) andy is Ar

n+1(y) and ... and
y(n−1) is Ar

2n(y(n−1)) thenu = br
0.

(18)
The fuzzy rule set (18) is assumed to be complete.

In occasions, an available control experience may give a
fuzzy rule set that is not complete. In this case, a complete
fuzzy rule set can be obtained by fulfilling the fuzzy
space with fuzzy sets whose membership functions have
consequence part set to zero.

This fuzzy rule set gives the fuzzy basis function
W (y,yR) as in (11) withni = 2n + 1 and the nominal
parameter vectorB0 = [b1

0 b2
0 ... bnr

0 ]. These in turn give
the nominal control as

u0 = B0W (y,yR). (19)

The componentuc is designed to compensate for the
uncertainties resulting from the error between the nominal
parameter and the optimal parameter as well as the
approximation error

uc = −δ̂2 q2(‖ y ‖)pT
ne

δ̂q(‖ y ‖) | pT
ne | +ǫ

, (20)

˙̂
δ = −σδ̂ + γ | pT

ne | q(‖ y ‖), δ̂(0) > 0, (21)

whereǫ > 0, σ andγ > 0 are design parameters,δ̂(t) is
the estimate ofδ (defined below (26)) at the instantt ≥ 0,
andpn ∈ IRn is the last column of the matrixP ∈ IRn×n

resulted from

AT
c P + PAc = −Q, (22)

for a given0 < Q ∈ IRn×n, whereAc is defined in (7).

B. Stability analysis

From the results in Section 2, the ideal control law (6)
may be approximated by an FLS with the optimal param-
eter vectorB∗ and the fuzzy basis functionW (y,yR)
resulting an approximation error∆u(y,yR)

u∗ = B∗W (y,yR) + ∆u(y,yR). (23)

It follows from Assumption 1 that the parameter error

vector B̃
△
= B0 − B∗ and the approximation error

∆u(y,yR) satisfy

| b(x)[B̃W (y,yR) − ∆u(y,yR)] | (24)

≤ b1q(‖ y ‖)[‖ B̃ ‖‖ W (y,yR) ‖ + | ∆u |],

≤ b1q(‖ y ‖)[‖ B̃ ‖ + | ∆u |],

≤ b0δq(‖ y ‖), (25)

∀y ∈ Y ⊂ IRn and yR ∈ YR ⊂ IRn+1 , where

δ =
b1

b0
ρ, (26)

for some constantρ ≥‖ B̃ ‖ + | ∆u |, YR is a compact
set containing the reference signal and its derivatives up



to ordern, andY a compact set whose definition will be
clear from the subsequent analysis.

Rewrite the control law (17) as

u = u∗ +
{

uc + B̃W (y,yR) − ∆u(y,yR)
}

, (27)

therefore, the error dynamics in terms of the parameter
uncertainty and approximation error are obtained by sub-
stituting (27) and (6) into (5)

ė = Ace + Bob(x)
{

uc + B̃W (y,yR) − ∆u(y,yR)
}

.

(28)
Let P = PT > 0 be the solution of the Lyapunov

equation (22). Consider the following Lyapunov function
candidate

V =
1

2
e

T Pe +
b0

2γ
δ̃2. (29)

where δ̃
△
= δ̂ − δ. Taking the time derivative ofV , it

follows from (22) and (28) that

V̇ =
1

2
e

T (AT
c P + PAc)e (30)

+e
T PBob(x)

{

uc + B̃W (y,yR) − ∆u
}

+
b0

γ
δ̃
˙̃
δ

= −
1

2
e

T Qe + pT
neb(x)

{

uc + B̃W (y,yR) − ∆u
}

+
b0

γ
δ̃
˙̃
δ.

In the next, we will bound the last two right-hand terms
of (30) by using the compensation componentuc in (20)

pT
neb(x)

{

uc + B̃W (y,yR) − ∆u
}

+
b0

γ
δ̃
˙̃
δ

≤ pT
neb(x)uc+ | pT

ne || b(x)[B̃W (y,yR) − ∆u] |

+
b0

γ
δ̃
˙̃
δ

≤ pT
neb(x)uc + b0δ | pT

ne | q(‖ y ‖) +
b0

γ
δ̃
˙̃
δ

≤ b0p
T
neuc + b0δ | pT

ne | q(‖ y ‖) +
b0

γ
δ̃
˙̃
δ

= b0

{

pT
neuc + δ̂ | pT

ne | q(‖ y ‖)
}

+
b0

γ
δ̃
{

˙̃
δ − γ | pT

ne | q(‖ y ‖)
}

≤ ǫb0 −
b0σ

γ
δ̃2 +

b0σ

γ
δ2. (31)

The second inequality follows from (25), the third inequal-
ity is because0 < b0 ≤ b(x) and pT

neuc ≤ 0, the last
inequality is because thatpT

neuc + δ̂ | pT
ne | q(‖ y ‖) ≤ ǫ

and−δ̃δ̂ ≤ −δ̃2 + δ2, sinceδ̂(t) ≥ 0,∀t ≥ 0 .
It follows from (30)-(31) that

V̇ ≤ −2αV + ǫe, ∀t ≥ 0, (32)

whereα
△
= min

{

λmax(P )
λmin(Q) , σ

}

, andǫe
△
= b0(ǫ + σ

γ δ2).

Let rE
△
= max

{

λmax(P )
λmin(P ) ‖ e(0) ‖2 + b0δ̃2(0)

λmin(P )γ , ǫe

λmin(P )α

}

,

E
△
=

{

e ∈ IRn |‖ e ‖≤ r
1/2
E

}

⊂ IRn a compact set, and

Y ⊂ IRn the corresponding compact set for a given
Yr ⊂ IRn. Then E is invariant, i.e., for any initial
condition e(0) ∈ E ⇒ e(t) ∈ E, ∀t ≥ 0. Therefore,
y(t) ∈ Y , ∀t ≥ 0.

A ultimate error bound is given by ǫe

λmin(P )α , which can
be made arbitrarily small by properly choosing the design
parameters.

C. Output feedback
We now use the high-gain observer (HGO) [7], [8] to

estimate the statey. It is shown in [8] (pg. 622) that
the design of such HGO satisfies the separation principle,
provided that the state feedback control guarantees the
semi-global boundedness ofy and the observer gains are
high enough. The HGO is given by

˙̂ei = êi+1 +
αi

ǫi
ob

(e1 − ê1), 1 ≤ i ≤ n − 1,

˙̂en =
αn

ǫn
ob

(e1 − ê1), (33)

where0 < ǫob << 1 is a design parameter, andαi > 0
are chosen such that the roots ofsn + α1s

n−1 + ... +
αn−1s + αn have negative real parts. The estimate ofy

is therefore

ŷ(i−1) = êi + y(i−1)
r , 1 ≤ i ≤ n. (34)

The controller is implemented by substitutingy and
e in (17)-(21) by their estimates. The control is saturated
outside a compact region of interest to prevent the peaking
introduced by the HGO [8],i.e.,

u = Ssat

(

u0 + uc

S

)

, (35)

wheresat(·) is the saturation function andS the saturation
limit, chosen to cover the region of interest. The overall
stability is ensured by the semi-global stability provided
by the state feedback and the separation principle [8].

D. Design Procedure and Discussions
1) Design Procedure: Summarizing the control design

gives the following design procedure: Given a nonlinear
system in (1), verify Assumption 1 for an integerp ≥ 0.

For state feedback control:
Step 1. Design the membership functions according to

a given reference signal and its derivatives up to the order
n.

Step 2. Get the fuzzy basis functionsW (y,yR) as in
(11) with ni = 2n + 1.

Step 3. If there is a previous control experience as in
(18), incorporate it intou0 through B0. Otherwise set
B0 = 0.

Step 4. Implement the compensation component and
the uncertainty bound estimator (20 )-(21). ChooseK =
[k1 k2 ... kn] such that the eigenvalues of the matrixAc in
(7) have negative real parts, and a matrixQ > 0, solve the

equationAT
c P +PAc = −Q with Ac

△
= Ao +BoK to get

the last column ofP , pn. Choose the positive constants
ǫ, σ, γ such that the ultimate bound on the tracking error
is acceptable.

For output feedback control:
Step 5. Implement the HGO (33). Choose the positive

constantsǫob << 1, and αi > 0 such that the roots of



sn +α1s
n−1 + ...+αn−1s+αn have negative real parts.

Choose the saturation limitS > 0 to cover the region of
interest.

2) Discussions: Remark 4.1: The only a priori infor-
mation on the unknown plant (1) required for the con-
troller implementation is a upper orderp of the bounding
polynomialq(‖ y ‖) in Assumption 1. The incorporation
of a control experience is optional. If it is incorporated,
lees control effort will be needed from the compensation
component in the control signal, giving a smoother control
signal. This is true specially in the transient period. A
control experience may be obtained from a human expert
as discussed previously, or from an existing controller by
collecting its input-output data and then training a fuzzy
controller to get the nominal vectorB0 by means of off-
line training methods,e. g., Anfis [4].

Remark 4.2: Compared to the adaptive control with a
universal approximator (fuzzy logic systems or neural
networks, seee.g., [15], [21], [2], [22], [11], [14], [20],
[17], [16], [24], [9] and [3]), the robust adaptive approach
followed here alleviates the need of off-line training of the
universal approximator, the knowledge of a compact set
to which the optimal parameter vector of the universal
approximator belongs, the bound on the norm of the
optimal parameter of the universal approximator, or the
knowledge on the nonlinear systems, such as a known
upper bound on the unknown functionF (x) andg(x) for
controller implementation. Also the on-line computation
load of updating the universal approximator parameter
vector (whose dimension may exceeds sometimes over
hundred) is reduced to estimating only the uncertainty
bound. More importantly, semi-global exponential track-
ing up to a ultimately bounded error is achieved, which
will provide robustness to unmodeled dynamics and/or
external perturbations.

V. A NUMERICAL EXAMPLE

In this section, we will illustrate the proposed control
by a numerical example, carried out in Matlab/Simulink.
In the simulation we use the model of a physical system,
namely inverted pendulum used in many similar works (e.
g., [20], [9]), to show how to design the proposed control.

In the simulation, the plant dynamics are of the form

x(2) = F (x, ẋ) + g(x)u,

y = x, (36)

and the reference signalyr is generated as the output of
a low-pass filter

yr =
1000

(s + 10)3
(

π

30
sin t). (37)

The reference signal and its derivatives up to order2 are
shown in Fig. 1. The parameters used in the controller
are K = [−2 − 3]. The control component (20) - (21)
are implemented with design parametersǫ = 0.1, σ = 10
andγ = 10000, and the initial conditionŝδ(0) = 10. The
bounding polynomial in Assumption 1 isq(‖ y ‖) = 1.
The matrix in the Lyapunov function isQ = diag[1 1],
giving as the last column of the resulted solutionpT

n =
[0.25 0.25].

The parameters used in the HGO (33) areǫob = 10−5,
S = 100, α1 = 2, α2 = 1, and the initial conditions for
the observer (33) weree(0) = [0 0]T .

Two Gaussian membership functions for each variables
(yr, ẏr, ÿr, y, ẏ) are used resulting innr = 32 fuzzy
rules. The center and the width of these membership
functions are chosen according to the reference signal and
its derivatives up to the ordern = 2 to cover a compact
set of interests.

The dynamic equation of an inverted pendulum is (36)
with

F (x, ẋ) = [ẋ
g(mc + m) sin x − mlẋ2 cos x sin x

l[ 43 (mc + m) − m cos2 x]
]T

(38)
g(x) = [0

cos x

l[ 43 (mc + m) − m cos2 x]
]T , (39)

which is already in the form of (2). The parameters’ mean-
ing and their values (in SI units) used in the simulation
are: m = 0.1 the mass of the pendulum,mc = 1 the
mass of the car,l = 0.5 the length of the pendulum,
g = 9.8 the gravity acceleration. The initial condition for
the pendulum isx(0) = [− π

60 , 0]T . All the conditions for
the simulation are the same as in [20].

For this example, an intuitive control based on the
experience is

if yr is N(yr) andy is N(y) thenu = PS

if yr is P (yr) andy is N(y) thenu = PL

if yr is N(yr) andy is P (y) thenu = NL

if yr is P (yr) andy is P (y) thenu = NS

where N and P mean fuzzy set Negative and Positive,
characterized by a Gaussian membership function (9) with
(center, width) = (− π

30 , π
60 ) and ( π

30 , π
60 ), respectively,

and fuzzy singletonNS, PS, NL, PL stand for Negative-
Small, Positive-Small, Negative-Large and Positive-Large,
with valuesPS = − NS = 0.5, PL = −NL = 5,
respectively. Representing this control experience into the
form (18) gives therth rule (super-index1 ≤ r ≤ nr = 32
)

Rr : if yr is Ar
0(yr) and ẏr is Ar

1(ẏr)

and ÿr is Ar
2(ÿr) andy is Ar

3(y) and ẏ is Ar
4(ẏ)

thenu = br
0,

where each fuzzy setAr
j is either N or P . The corre-

sponding singletonbr
0 is assigned a value in{NS, PS,

NL, PL} according to which fuzzy setsyr andy belong
to. With the fuzzy basis function given by this fuzzy rule
set, the control (17) with (20) and (21) is applied, the
results are shown in Fig.2.

VI. CONCLUSIONS

A direct robust fuzzy control has been studied for the
control of a class of non-linear systems represented by
input-output models to track a reference signal. Semi-
global exponential tracking to the reference signal up
to a ultimate error was achieved, and the ultimate error
can be made small by properly choosing some controller
parameters.

By combine the advantages of the fuzzy logic reason-
ing, robust control as well as adaptive control techniques,



the proposed control design is capable of using available
information – numerical, linguistic and structural to give
a simple controller, yet robust to a wide rang of uncer-
tainties. Numerical simulations are included to illustrate
the proposed control scheme.
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Fig. 1. The reference signal and its derivatives.
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Fig. 2. Output feedback control of the inverted pendulum.
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