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Abstract = This paper addresss Takagi-Sugeno-Kang
(TSK) fuzzy model identification. An enhanced algorithm
that uses clustering tedniques for the approximation of
nonlinear systems from data is presented. The algorithm
combines the parallel axis version of the Gustafson-Kessl
(GK) algorithm with the Fuzzy C-Regresson Models
(FCRM) in order to maintain the interpretability and
improve the global accuracy of the model. A low sensibility to
noise and automatic detedion of the number of clusters is
achieved by wusing robust datistic and competitive
agglomeration techniques smilar to the techniques developed
in the Robust Competitive Agglomeration (RCA) algorithm.
Finally, two numeric examples conceming to static and
dynamic nonlinear systems are shown to demonstrate the
effedivenessof the proposed algorithm.

. INTRODUCTION

Currently the use of fuzzy modeling techniques has
been increased to approximate norlinea complex systems.
These models have obtained a high performance index
where traditional techniques hardly could get it. Among of
these fuzzy models, the Takagi-Sugeno-Kang (TSK) model
has attraded a grea attention [1][2]. This model consists
of If-Then rules, where the antecalents are fuzzy sets,
whil e the mnsequents are functions dependent on the input
variables. The TSK mode has demonstrated a grea
cgoability and flexibility to generate gproximations of
nonlinea systems from data.

In order to construct TSK models it is necessary to
determine the fuzzy sets (membership functions) of the
premise part and the parameters of the consequents. Based
on the previous knowledge of the system, it could be
assumed the type of the membership functions and an
initial guess of its parameters. In the consequent, given that
functions are usually chosen to be dfine, the least squares
method can be agplied to find the cefficients.
Unfortunately, this approach has the drawback of nat being
able to tune the antecedents, limiting the gproximation
cgoability of the model.

There is a difficulty finding the membership functions
parameters because it isa norlinea optimization. The
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gradient descendent method is typicdly used. This method
has the following drawbacks: (1) The convergence of the
method is sensible to the initial parameters; (2) even
thouch the suitable initial parameters were given, it can
have ahighindex of global prediction but lacking of locd
interpretability. An option to avoid the previous problem is
to derive the cnsequents and antecedents of the modd
from a partition obtained by means of clustering
techniquesin the product space of inputs and outputs [3].

With the purpose of seaching linea tendencies, three
algorithms are traditionally used: the Gustafson-Kessl
(GK) agorithm, methods based on Maximum Likelihoad
Estimation (MLE) algorithm and Fuzzy c-Regresson
Models (FCRM) [4][5][6]. From these techniques, clusters
with rotated axis to the input variables are obtained. This
could generate some arors or ladk of interpretability when
the corresponding TSK models are derived. Another isue
is the presence of noise in data or outliers, with a negative
influence in the partition generated by the dustering
algorithm. Furthermore, in unknown systems it is difficult
to determinate beforehand the gpropriate number of
clusters (rules), which is a requirement for these
techniques.

In this paper an algorithm is proposed, in which clusters
with perallel axis to the inpu variables and linea
regresson submodels are obtained, similar to those used in
FCRM. The faa of having non rotated clusters reduces the
decmposition errors, without loss of interpretability. In
addition, the robust statistics and competitive
agglomeration techniques are applied as those used in the
Robust Competitive Agglomeration (RCA) and RFRA
algorithms [7][8], with the purpose of offering robustness
in presence of noise and to obtain the gpropriate number
of clusters.

The rest of the paper is organized as follows. Sedion Il
describes the dharaderistics of the TSK model; the method
used in order to derive the model from data clustering and
the problems that appea when traditiona techniques are
used. Sedion Il presents the proposed robust
agglomerative dustering algorithm. Sedion IV shows the
use of the approadch in two numerica examples related to
both satic and dyramic norlinea systems. Finaly,
conclusions are given in Sedion V.
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II. TSK MODEL GENERATION BY MEANS OF
FUZZY CLUSTERING

A. TSK Models

The linea TSK models are fuzzy models that consist of
rules with the foll owing structure:

R:If x,isA, ... andx isA Theng=a'x +b ,i=1..c (1)

Where c is the number of rules, x is the input vedor, A,
and g are the multidimensional fuzzy set and the affine
function d the ith rule, respectively. In the same way, a
and hh are the parametric vedor and the scdar
displacament of the ith linear function. The degree of
fulfill ment for theith ruleis given by:

B.(¥)=na, (1) Opa,, (x2) O... DHALp (Xp) 2

Where O represents a T-norm [1][3]. The TSK system
output isinferred as foll ows:

S B (X)(af x +b;)

ZBi ()
1=1
The expresdon (3) shows that the TSK models can pay
the role of function regresors, they can approximate with
certain degreeof accuracgy any functiony = f(x).

B. Existing Algorithms

The parameters obtained in the GK and MLE algorithms
are the fuzzy covariance matrix and fuzzy mean, which
indicae the diredion and the midpdnt of ead cluster
respedively. From the geometric interpretation o the
eigenvedors of the covariance matrix and the fuzzy mean,
hyperplane ejuations can be formed, obtaining the
consequents parameters correspondng to ead cluster. This
estimation is equivalent to use Total Least Square (TLS)
[3]. The FCRM agorithm seeks to generate the functional
prototypes that ads like alocal regressor and whose linear
combination performs like a global regressor. In order to
find the parameters it is possble to chocse linea
subfunctions so that the dgorithm identifies hyperplanar
clusters, where the parameters of ead submodel are
obtained dreadly from the dgorithm. In this case the
membership functions play the role of the label of the data.
These labels determine with which ore of the regresson
submodels is more related. This algorithm has been put
forward by Hathaway and Bezdek [3][ 6].

The partitions obtained in the dgorithms are equivalent
to the membership functions of multivariate, which
generaly are difficult to interpret. With the purpose of
obtaining urivariate membership functions the multivariate
membership functions are projeded over eat one of the
inpu variables [9]. This projedion can present two types
of errors. (1) by decompostion, becaise the obtained
clusters have a cetain degreeof rotation with regard to the
inpu variables. (2) by approach, becaise the data obtained
are projeded points, which must be approximated by

parametric functions. The decomposition error can he
reduced by using the projedion with eigenvedors.
However, it deteriorates the transparency and
interpretability of the model, since eab variable would be
expressd as alinea combination o thered variables.

In order to reduce this problem withou deteriorating the
interpretability, a modificaion o the parallel axis version
of the dgorithm MLE has been applied [10]. This
algorithm produces clusters of hyperelli psoidal shape, but
withou rotation with regard to the axis of the input
variables. In addition, the parameters of the cnsequents
are estimated through weighted leest square method (WLYS)
in ead iteration. The drawback of this algorithm is based
on the exporential nature of its distance it needs to have
suitable inpu parameters to converge in an opimal
solution.

Ancther problem presented is when data experimentally
obtained are naisy; this leads to non opimum partitions,
when traditional clustering agorithms are used.
Furthermore, in these tedhniques it is necessary to
determine previousdly the number of clusters; this can be a
hard task in complex systems without previous knowledge.
Having in mind the problems and drawbacks cited abowe,
we propose an agorithm, in which clusters with parall el
axis to the input variables and linea regresson submodels
are obtained. This is acaomplished by mixing the parallel
axis verson d the GK clustering algorithm with the
FCRM agorithm; with the purpose of reducing the
sensitivity problems at the initidizaion. Once the
algorithm is obtained the robust statistics and competitive
agglomeration techniques are gplied to have the caability
to rgjed noisy data and appropriate number of clusters
detedion.

Il . PROPOSED ALGORITHM

The origina objedive functional for the GK algorithm is
the following:

¢ N
J(Z;U:VvA):ZZ(Uik)m(Zk'Vi )AL (Z¢-vi) Q)

i=1 k=1
The following restrictions hold

Y mi=1 1<ks<N ®)
i=1
and

|A =1 n; >0 Vi (6)

Where ¢ is the number of clusters, N is the number of
datapoints, z_isavedor that contains the kth taken data, v,
is a prototype vedor as sgned as the ith cluster center,
which has the same dimension as z,. Ai_is a symmetricd
matrix correspondng to ith cluster, p, is the membership
function of the kth data to the ith cluster, m influences the
fuzziness of the dusters and m), is the hypervolume of the
ith cluster [4]. Being A, symmetricd, the functional given
by (4) describes rotated clusters of hyperelli psoidal shape.
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Therefore, if clusters with principal axis parallel to the data
axis are desired, the matrix Ai_must be adiagonal matrix,

c N
JZUV,A) = ZZ(Mik)m (zi-vi) AL (z¢-vi) (D)
i=1 k=1
Subjed to (5) and (6). Being Ai, a diagoral matrix, the
functional described bythe eguation (7) can be rewritten as
follows:

c N
IZUV,A) =YY ()™ di =

i=1 k=1
= I_(Xk Vi)' Ay (X -Vix ) +0i (Y _V'y)zl

Where z, = [xk y]", and vedor x, and y, are theinput and
output components of the kth data respedively; similarly,
v=[v,’, v,]", where vedor v, and constant v, contain the
inpu and output comporents of the ceter of the ith
cluster; Aix, is a diagoral matrix, where eat element
corresponds to ead input variable of the matrix Ai,and o,
corresponds to the component related with the output

variable of Aid.
A, O
id |: Od Gi:|

Taking the functional given in (8) as a reference where
clusters with parall el axis with regard to the input variables
are produced, the term related to the output is modified
with the purpose of producing linea submodels as foll ows:

JZ;U,V,A,0) =

c N
:ZZUikm[(Xk Vi) T A (X = Vix ) +0; (yk_f(xk'ei))z]

il kel
)

Where f(x,,0) = 3'x, +b, represents eat one of the ith
linea submodels. Also, in the same way that in GK
algorithm there exists an extra restriction related to the
hypervolume of ead cluster:

|Aigloi=ni M >0 Vi (10

This condtions avoids the trivial solutionA,_,= 0, ¢,= 0.
In (9) it is possible to ndice that the term related to the
output variable is pradicdly equal to the functiona
proposed in the FCRM algorithm, except for the o,
coefficient:

c N
IKUR) =YY ()" - fixe 0017 (1)

i=1 k=1

Obvioudly the functional in (9) must be also subjed to
the restriction (5). In order to minimize (9) subjed to (5)
and (10), Lagrange multipliers are gplied. Combining the
developments dore in [4] and [6] the following equations
are obtained:

N
Z(Mlk )" X

Vix - N (12)
Y ih"
k=1
Z(Wk) (Xk le)(xk le)
Flg = diag KL . (13)
Y ichH"
k=1
@H"™ o - 0
o= © (wH™ 0 (14)
0 0 (@)
XI 1 Y1
T
Xo=| 21|, y=|"? 19
Xy 1 YN
0; = (Xs @ X)Xy (16)
Z(u D™ Wi~ (4, 00)
fl k=1 = (17)
Y i
k=1
Yn 4
A:xd - [‘1. |y I:|xd ] (F|xd (18)
yn o,
0: = [nifily Filxd ] (fily) ! (19
A2 = Xy - Vi )T Abg (xy - Vi ) + 0k, = (x,,00)% (20)
i = - (21)

L 2/(m-1)
.
Y @i /dio)
=1

Where | indicaes the iteration rumber and n indicates
the dimension o the input-output product space

Robust and Competitive Agglomeration Formulation

In red applications, training data sets usually contain
nose axd ouliers which cen seriously affed the
performance of the clustering algorithm. In addition there
exist the problem of determine the gpropriate number of
clusters. Considering this problems Krishnapuram and

1784



Frigui have used robust statistics and competitive
agglomeration techniques to generate the RCA algorithm
[7]. Chiang, Su and Chen applied the RCA algorithm on
the FCRM algorithm; this technique is cdled RFRA [8].
On the basis of the previous explanation, the robust and
agglomeration competitive formulations are developed for
the proposed algorithm

c N [ N 2
Jr(Z;B,U) ZZZ(Mik)mPi (dﬁ) 'O‘Z|:Zwikuik1 (22)

i=1 k=1 i=1[ k=1

With di? described by (20) and subjed to the restrictions

(5) and (10). In (22) p, is the robust loss function
aswciated to the ith cluster, w,=dp;(d])/od? is the
weight function that represents the typicdity of the x, data
with resped to the ith cluster. The second term is the
negative of the sum of the square of the dusters
cadinalities and it is minimized when cardinadity of a
cluster is n and the rest of the clusters are empty. The loss
function in the first term reduces the noise dfeds and the
weight function discards the noisy data when it cdculates
the cadindity in the second ore. Once a is corredly
chosen, the functional J can be used to find compad
clusters, while the data is partitioned into a minimum
number of clusters. Initially o must be small to allow the
formation of small clusters. Next, o« must be increased
gradually to foment the agglomeration process When the
optimum number of clusters is found ¢ must be reduced
with the purpose of stopping the ayglomeration process
and dlow the dgorithm to converge. An appropriate
choiceof o isexplained in [7]. The related expressons are

asfollows:
c N
Y'Y i) (@)
a (K) =2 (k)=

§ o]

i=1[ k=1

(23

x(k):{}\oek&kﬁ if k>0
0 if k=0

In this case A and a are functions of the number of
iterations to fulfill the behavior described previously. To
minimize (22) with regard to eah o the duster
parameters, u, isfixed, obtaining the following expresson:

N od?
Zwik“irIT(] a—”
k=1 Bi

Where B, denctes the parameters of the ith cluster. As a
result of (24), similar equations to (12)-(17) are obtained,

with the ones difference that the termpf, which is

(24)

replaced by pj'w;, and(18)-(21) stay the same.

Based onthe developed processin [7], the p;, value can
be expressed asfollows:

2 —_ .
Uy = 1/pi (dik +0‘(Ni Nt)zu”FER+u£|as (25)

k C 2
pi (d;
Y i) T

1=1

Where Ni= Y wip iscaled the robust cardinality
of the ith

T r .
N‘=Z|=1NI/P|(dﬁ)/zlzlllpu(di) is denoted the

weighted average of cardindlities. If the robust cardinality
it is lessthan a pre-spedfied threshold, the corresponding
cluster is discarded. Severa functions of loss and weight
exist; in this case it will be taken the same functions used
in [7], which are adaptations of the Tukey's biweight
functions, given by:

cluster and

d2
1_7
212
wi(@?y— |- ras)f 5T, +as
A 2q2s? 6
0
(26)
d6
dz_ﬁ if d?<[0T;]
3
by (c) = ["2‘2;2;33)] #2051, T oS
M+Ki it d®>[T,+qSs]
Where

<j<c 6

ensures that any naisy data will have the same weight
functionin al clusters. In (26) Ti and Si dencte the median
(Med) and median of absolute deviations (MAD)
respedively, which are used to namalize the distances.
The constant g isatuning parameter, which must start with
a large vaue and is deaeased with time run. This
parameter is chosen as a function o the number of
iterations and can be cdculated by.

5T +qS, :
Ki:max{ itd J}—ST';QS' fori=1,..,c

Ay = Max(Gnin, Ak—1 —AQ) dg =12,0mip =4 andAq=1 (27)

IV.APPLICATIONS

In this sdion, two examples of fuzzy modeling
concerning to static and dynamic norlinea systems are
shown to demonstrate the dfediveness of the proposed
algorithm.
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In thefirst one, athreedimensional function z=f(x,y) that
corresponds to static norlinea behavior is modeled,
defined by:

2=100(y-x)> - (1-y)?+& (xy)e FLIF (28

Where e~N (0, 1) is an added ndse distributed normally
with mean 0 and standard deviation d 1. For this example
441 training points were taken. The dgorithm was run
initially with 10 clusters and the threshold to discad
clusters was established equal to 10 Five dusters were
obtained. A comparison between the dusters obtained
through the propased and GK algorithm is depicted in the
Fig.1. The original and the obtained model are depicted in
the Fig.2. For comparison pupaoses, the GK and MLE
algorithm are implemented by applying the orthogona
projedion method in order to get univariate membership
functions.

(b)

Fig.1. Projection over theinput variables of clusters. (a) Generated hy the
proposed agorithm. (b) Generated by the GK agorithm.

Fig.2. Comparison between the original model (black) and the obtained
model through the proposed algorithm (gray).

The performance index RMSE:J/N,/ZT:l(yj—ifj)Z

(Roat Mean Square Error) was used to evauate the
models. The results are registered in Table .

TABLE |. PERFORMANCE INDEX COMPARISON

MLE GK
23.0247 24.5280

Algorithm
RMSE

Proposed
16.9507

In the second example a nonlinea dynamic system is
considered, which is described by:

y(k+1)=0.8y(k)+ v(k)+¢c(k) where
max(-1.5u), u<-04
V= 0, -04<u <02 (29
min (u,0.5), u=0.2.

Where u is the inpu signal. In order to evaluate the
model behavior in the presence of diff erent levels of noise,
a Gausdan dstributed ndse with mean zero and three
different values of standard deviation was added, € (k) ~N
(0,), with «=0.05, «=0.1, and +, =0.3. Initialy a training
signal uniformly distributed was applied in [-0.4, 0.4] with
400 sample data. For the gproximation process a first
order NARX model was slected, so that y(k+1) output isa
function of the previous output y(k) and the u(k) inpu, this
means y(k+1)=f (y(k),u(k)).

The input and output data were submitted to the
clustering process using the proposed algorithm. Initially
10 clusters were considered and adiscard limit of 5, finally
4 clusters were obtained. In order to ill ustrate the dgorithm
behavior in presence of noise, a cae where the noise has a
greder standard deviation was considered. The
corresponding membership functions for the input and
output are shown in Fig.3.

15 a1 05 05 1 15

(b)
Fig.3. Obtained membership functions: (a) Corresponding to the system
input u. (b) Corresponding to the system output y

A comparison letween the red mode and the
approximate model outputs due to the training signal is
illustrated in Fig. 4(a). To vaidate the model a sinusoidal
signa u(k) = 0.35sin(2k/25)was applied. In the Fig. 4(b)
the output of the TSK model, in presence of the validation
signal is compared with the output of the red system. In
both cases, the gproximate model using the proposed
algorithm gives a dose output to the red model.
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Fig. 4. Outputs dueto (a) Training signal, (— ) Original model without
presence of noise, (- - -) TSK model from the proposed agorithm and
(b) Validation signal, (— ) Original model without presence of noise,

(- - -) TSK model output from the GK algorithm.

To evaluation purposes, the GK and MLE agorithms
were run ower the same training signal and to the obtained
models which the validation signal was applied. Over the
obtained ouputs, the RMSE criteria were gplied; the
results are shown in Table Il for several noise levels, in the
training and validation signals respedively.

TABLE Il. COMPARISON OF THE RMSE
PERFORMANCE INDEX FOR THE TRAINING AND
VALIDATION SIGNALS

RM SE Performance I ndex
o Training Signal Validation Signal
Proposed | GK MLE | Proposed | GK MLE
Algorithm Algorithm
0.05 0.0691 0.049 | 0144 0.0908 0.042 | 0.083
0.1 0.0979 0.084 | 0.141 0.1856 0.338 | 0.176
0.3 0.1686 1.446 | 2.328 0.1067 1491 | 1.687

V. CONCLUSIONS

The developed algorithm reduces the decomposition
error in the membership functions projeded, due to the fact
that clusters are pardlel to the ais, without deterioration
of the model interpretability. Unlike of the obtained
membership functions with GK or MLE agorithms, in
which the projedion error is greaer due to the generation
of rotated clusters. If is desired to reduce this error, the
variables from the obtained model must be expressed like a
linea combinations of the real input variables, which lead
to vanish the interpretabili ty.

Furthermore, submodels that describe well enough the
general model are obtained, in comparison with generated
models with other algorithms, as it is proved by the RMSE
index. In situations where the data extradion from the
system can cover a grea amount of operation ranges, the
proposed algorithm can becme in a good modeling option
of nonlinea dynamic systems. It was not necessary to
indicae the number of clusters required, since the
agorithm finds them by itself, when the agglomeration
techniques are goplied.

In order to choose the threshold, one must consider
caefully the limits, if this is too high with regard to the
number of clusters, the dgorithm will end discarding all
clusters. On the other hand, with a very small number the
agglomeration process would not be caried out. Finally
through the showed examples it was illustrated that the
agorithm is able to deted and to reduce the effed of
outliers in the training data thanks to the robust statistics

applied.
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