
Robust Agglomerative Clustering Algor ithm for  
Fuzzy Modeling Purposes 

 
Victor H. Grisales1,2*, José J. Soriano1, Sergio Barato1, Diana M. Gonzalez1 

1 Laboratorio de Automática, Microelectrónica 
e Inteligencia Computacional - LAMIC 

2 Groupe DIagnostic, Supervision et 
COnduite qualitatifs - DISCO 

Universidad Distrital FJDC Laboratoire d’Analyse et d’Architecture des Systèmes LAAS-CNRS 
Cra. 8 No. 40-62 P7, Bogotá, Colombia 7 Av. du Colonel Roche, 31077 Toulouse, France 

vhgrisales@ieee.org, josoriano@udistrital.edu.co 

sbarato,dmgonzalez {@ieee.udistrital.edu.co} 
 
 

    Abstract −− This paper addresses Takagi-Sugeno-Kang 
(TSK) fuzzy model identification. An enhanced algor ithm 
that uses clustering techniques for the approximation of 
nonlinear systems from data is presented. The algor ithm 
combines the parallel axis version of the Gustafson-Kessel 
(GK) algor ithm with the Fuzzy C-Regression Models 
(FCRM) in order to maintain the interpretabili ty and 
improve the global accuracy of the model. A low sensibili ty to 
noise and automatic detection of the number of clusters is 
achieved by using robust statistic and competitive 
agglomeration techniques similar to the techniques developed 
in the Robust Competitive Agglomeration (RCA) algor ithm. 
Finally, two numeric examples concerning to static and 
dynamic nonlinear systems are shown to demonstrate the 
effectiveness of the proposed algor ithm. 
 

I . INTRODUCTION 

Currently the use of fuzzy modeling techniques has 
been increased to approximate nonlinear complex systems. 
These models have obtained a high performance index 
where traditional techniques hardly could get it. Among of 
these fuzzy models, the Takagi-Sugeno-Kang (TSK) model 
has attracted a great attention [1][2]. This model consists 
of If -Then rules, where the antecedents are fuzzy sets, 
while the consequents are functions dependent on the input 
variables. The TSK model has demonstrated a great 
capabilit y and flexibilit y to generate approximations of 
nonlinear systems from data. 
   In order to construct TSK models it is necessary to 
determine the fuzzy sets (membership functions) of the 
premise part and the parameters of the consequents. Based 
on the previous knowledge of the system, it could be 
assumed the type of the membership functions and an 
initial guess of its parameters. In the consequent, given that 
functions are usually chosen to be aff ine, the least squares 
method can be applied to find the coeff icients. 
Unfortunately, this approach has the drawback of not being 
able to tune the antecedents, limiting the approximation 
capabilit y of the model. 
   There is a diff iculty finding the membership functions 
parameters   because    it   is a  nonlinear  optimization. The 
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gradient descendent method is typically used. This method 
has the following drawbacks: (1) The convergence of the 
method is sensible to the initial parameters; (2) even 
though the suitable initial parameters were given, it can 
have a high index of global prediction but lacking of local 
interpretabilit y. An option to avoid the previous problem is 
to derive the consequents and antecedents of the model 
from a partition obtained by means of clustering 
techniques in the product space of inputs and outputs [3]. 
   With the purpose of searching linear tendencies, three 
algorithms are traditionally used: the Gustafson-Kessel 
(GK) algorithm, methods based on Maximum Likelihood 
Estimation (MLE) algorithm and Fuzzy c-Regression 
Models (FCRM) [4][5][6]. From these techniques, clusters 
with rotated axis to the input variables are obtained. This 
could generate some errors or lack of interpretabilit y when 
the corresponding TSK models are derived. Another issue 
is the presence of noise in data or outliers, with a negative 
influence in the partition generated by the clustering 
algorithm. Furthermore, in unknown systems it is diff icult 
to determinate beforehand the appropriate number of 
clusters (rules), which is a requirement for these 
techniques. 
   In this paper an algorithm is proposed, in which clusters 
with parallel axis to the input variables and linear 
regression submodels are obtained, similar to those used in 
FCRM. The fact of having non rotated clusters reduces the 
decomposition errors, without loss of interpretabilit y. In 
addition, the robust statistics and competitive 
agglomeration techniques are applied as those used in the 
Robust Competitive Agglomeration (RCA) and RFRA 
algorithms [7][8], with the purpose of offering robustness 
in presence of noise and to obtain the appropriate number 
of clusters. 
   The rest of the paper is organized as follows. Section II 
describes the characteristics of the TSK model; the method 
used in order to derive the model from data clustering and 
the problems that appear when traditional techniques are 
used. Section III  presents the proposed robust 
agglomerative clustering algorithm. Section IV shows the 
use of the approach in two numerical examples related to 
both static and dynamic nonlinear systems. Finally, 
conclusions are given in Section V. 
 



II . TSK MODEL GENERATION BY MEANS OF 
FUZZY CLUSTERING 

A. TSK Models 

   The linear TSK models are fuzzy models that consist of 
rules with the following structure: 

Ri: If  x1 is A i1 … and xp is A ip Then gi = ai

Tx +bi , i=1,..,c   (1) 

   Where c is the number of rules, x is the input vector, A i 
and gi are the multidimensional fuzzy set and the aff ine 
function of the ith rule, respectively. In the same way, ai 
and bi are the parametric vector and the scalar 
displacement of the ith linear function. The degree of 
fulfill ment for the ith rule is given by: 

βi (x) )(x�)(x�)(x� pA2A1A pi,i,2i1
∧∧∧= �           (2) 

   Where ∧ represents a T-norm [1][3]. The TSK system 
output is inferred as follows: 

∑

∑

=

=

+
=

c

1i
i

c

1i
ii

)(�

)b)((�
y

x

xax T
i

                         (3) 

   The expression (3) shows that the TSK models can play 
the role of function regressors, they can approximate with 
certain degree of accuracy any function y = f(x). 

B. Existing Algorithms 

   The parameters obtained in the GK and MLE algorithms 
are the fuzzy covariance matrix and fuzzy mean, which 
indicate the direction and the midpoint of each cluster 
respectively. From the geometric interpretation of the 
eigenvectors of the covariance matrix and the fuzzy mean, 
hyperplane equations can be formed, obtaining the 
consequents parameters corresponding to each cluster. This 
estimation is equivalent to use Total Least Square (TLS) 
[3]. The FCRM algorithm seeks to generate the functional 
prototypes that acts like a local regressor and whose linear 
combination performs like a global regressor. In order to 
find the parameters it is possible to choose linear 
subfunctions so that the algorithm identifies hyperplanar 
clusters, where the parameters of each submodel are 
obtained directly from the algorithm. In this case the 
membership functions play the role of the label of the data. 
These labels determine with which one of the regression 
submodels is more related. This algorithm has been put 
forward by Hathaway and Bezdek [3][6]. 
   The partitions obtained in the algorithms are equivalent 
to the membership functions of multivariate, which 
generally are diff icult to interpret. With the purpose of 
obtaining univariate membership functions the multivariate 
membership functions are projected over each one of the 
input variables [9]. This projection can present two types 
of errors: (1) by decomposition, because the obtained 
clusters have a certain degree of rotation with regard to the 
input variables. (2) by approach, because the data obtained 
are projected points, which must be approximated by 

parametric functions. The decomposition error can be 
reduced by using the projection with eigenvectors. 
However, it deteriorates the transparency and 
interpretabilit y of the model, since each variable would be 
expressed as a linear combination of the real variables. 
    In order to reduce this problem without deteriorating the 
interpretabilit y, a modification of the parallel axis version 
of the algorithm MLE has been applied [10]. This 
algorithm produces clusters of hyperelli psoidal shape, but 
without rotation with regard to the axis of the input 
variables. In addition, the parameters of the consequents 
are estimated through weighted least square method (WLS) 
in each iteration. The drawback of this algorithm is based 
on the exponential nature of its distance; it needs to have 
suitable input parameters to converge in an optimal 
solution.  
   Another problem presented is when data experimentally 
obtained are noisy; this leads to non optimum partitions, 
when traditional clustering algorithms are used. 
Furthermore, in these techniques it is necessary to 
determine previously the number of clusters; this can be a 
hard task in complex systems without previous knowledge. 
Having in mind the problems and drawbacks cited above, 
we propose an algorithm, in which clusters with parallel 
axis to the input variables and linear regression submodels 
are obtained. This is accomplished by mixing the parallel 
axis version of the GK clustering algorithm with the 
FCRM algorithm; with the purpose of reducing the 
sensitivity problems at the initialization. Once the 
algorithm is obtained the robust statistics and competitive 
agglomeration techniques are applied to have the capabilit y 
to reject noisy data and appropriate number of clusters 
detection. 
 

III . PROPOSED ALGORITHM  

   The original objective functional for the GK algorithm is 
the following: 
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The following restrictions hold 
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   Where c is the number of clusters, N is the number of 
data points, zk is a vector that contains the kth taken data, vi 

is a prototype vector as signed as the ith cluster center, 
which has the same dimension as zk. A is is a symmetrical 
matrix corresponding to ith cluster, µik is the membership 
function of the kth data to the ith cluster, m influences the 
fuzziness of the clusters and ηi is the hypervolume of the 
ith cluster [4]. Being A is symmetrical, the functional given 
by (4) describes rotated clusters of hyperelli psoidal shape. 



Therefore, if clusters with principal axis parallel to the data 
axis are desired, the matrix A is must be a diagonal matrix, 
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   Subject to (5) and (6). Being A id a diagonal matrix, the 
functional described by the equation (7) can be rewritten as 
follows: 
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   Where zk = [xk

T

, yk]
T, and vector xk and yk are the input and 

output components of the kth data respectively; similarly, 
vi=[vix

T, viy]
T, where vector vix and constant viy contain the 

input and output components of the center of the ith 
cluster; A ixd is a diagonal matrix, where each element 
corresponds to each input variable of the matrix A id and σi 

corresponds to the component related with the output 
variable of A id. 
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   Taking the functional given in (8) as a reference, where 
clusters with parallel axis with regard to the input variables 
are produced, the term related to the output is modified 
with the purpose of producing linear submodels as follows: 
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   Where f(xk,θθi) = ai

Txk +bi  represents each one of the ith 
linear submodels. Also, in the same way that in GK 
algorithm there exists an extra restriction related to the 
hypervolume of each cluster: 

iiiiixd ∀>= 0��1A             (10) 

   This conditions avoids the trivial solution A ixd = 0, σi = 0. 
In (9) it is possible to notice that the term related to the 
output variable is practically equal to the functional 
proposed in the FCRM algorithm, except for the σi 
coeff icient: 
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   Obviously the functional in (9) must be also subject to 
the restriction (5). In order to minimize (9) subject to (5) 
and (10), Lagrange multipliers are applied. Combining the 
developments done in [4] and [6] the following equations 
are obtained: 
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   Where l indicates the iteration number and n indicates 
the dimension of the input-output product space. 
 

Robust and Competitive Agglomeration Formulation  

   In real applications, training data sets usually contain 
noise and outliers which can seriously affect the 
performance of the clustering algorithm. In addition there 
exist the problem of determine the appropriate number of 
clusters. Considering this problems Krishnapuram and 



Frigui have used robust statistics and competitive 
agglomeration techniques to generate the RCA algorithm 
[7]. Chiang, Su and Chen applied the RCA algorithm on 
the FCRM algorithm; this technique is called RFRA [8]. 
On the basis of the previous explanation, the robust and 
agglomeration competitive formulations are developed for 
the proposed algorithm 
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   With 2
ijd  described by (20) and subject to the restrictions 

(5) and (10). In (22) ρi is the robust loss function 

associated to the ith cluster, wik=
2
ij

2
iji d)(d! ∂∂  is the 

weight function that represents the typicality of the xk data 
with respect to the ith cluster. The second term is the 
negative of the sum of the square of the clusters 
cardinaliti es and it is minimized when cardinality of a 
cluster is n and the rest of the clusters are empty. The loss 
function in the first term reduces the noise effects and the 
weight function discards the noisy data when it calculates 
the cardinality in the second one. Once α is correctly 
chosen, the functional J can be used to find compact 
clusters, while the data is partitioned into a minimum 
number of clusters. Initially α must be small to allow the 
formation of small clusters. Next, α must be increased 
gradually to foment the agglomeration process. When the 
optimum number of clusters is found, • must be reduced 
with the purpose of stopping the agglomeration process 
and allow the algorithm to converge. An appropriate 
choice of α is explained in [7]. The related expressions are 
as follows: 
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   In this case λ and α are functions of the number of 
iterations to fulfill t he behavior described previously. To 
minimize (22) with regard to each of the cluster 
parameters, µik is fixed, obtaining the following expression: 
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   Where βi denotes the parameters of the ith cluster. As a 
result of (24), similar equations to (12)-(17) are obtained, 

with the ones difference that the term m
ik� , which is 

replaced by ik
m
ik w�  and (18)-(21) stay the same. 

   Based on the developed process in [7], the ik� value can 

be expressed as follows: 

Bias
ik

RR
ik2

iki

ti
C

1l

2
lkl

2
iki

ik uu
)(d!

)N(N .
)(d1/!

)(d1/!
u +=

−
+=

∑
=

     (25) 

   Where ∑ =
=

N

1 ikik�w Ni
J

 is called the robust cardinality 

of the ith cluster and 
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weighted average of cardinalities. If the robust cardinality 
it is less than a pre-specified threshold, the corresponding 
cluster is discarded. Several functions of loss and weight 
exist; in this case it will be taken the same functions used 
in [7], which are adaptations of the Tukey´s biweight 
functions, given by: 
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ensures that any noisy data will have the same weight 
function in all clusters. In (26) Ti and Si denote the median 
(Med) and median of absolute deviations (MAD) 
respectively, which are used to normalize the distances. 
The constant q is a tuning parameter, which must start with 
a large value and is decreased with time run. This 
parameter is chosen as a function of the number of 
iterations and can be calculated by: 
 

1ûTand4q12,qûT�q,max(qkq min01kmin ===−= −  (27) 

IV. APPLICATIONS 

   In this section, two examples of fuzzy modeling 
concerning to static and dynamic nonlinear systems are 
shown to demonstrate the effectiveness of the proposed 
algorithm. 



   In the first one, a three-dimensional function z=f(x,y) that 
corresponds to static nonlinear behavior is modeled, 
defined by: 

[ ]222 1,1-    y)(x,   0 y)(1x)(y 100z ∈+−−−=         (28) 

   Where ε∼N (0, 1) is an added noise distributed normally 
with mean 0 and standard deviation of 1. For this example 
441 training points were taken. The algorithm was run 
initially with 10 clusters and the threshold to discard 
clusters was established equal to 10. Five clusters were 
obtained. A comparison between the clusters obtained 
through the proposed and GK algorithm is depicted in the 
Fig.1. The original and the obtained model are depicted in 
the Fig.2. For comparison purposes, the GK and MLE 
algorithm are implemented by applying the orthogonal 
projection method in order to get univariate membership 
functions. 

 

     (a) 

    
      (b) 

Fig.1. Projection over the input variables of clusters. (a) Generated by the 
proposed algorithm. (b) Generated by the GK algorithm. 

 
Fig.2. Comparison between the original model (black) and the obtained 

model through the proposed algorithm (gray). 

   The performance index ∑ =
−=

N

j jj yyN
1

2)ˆ(1RMSE  

(Root Mean Square Error) was used to evaluate the 
models. The results are registered in Table I. 
 

TABLE I. PERFORMANCE INDEX COMPARISON 
 

Algor ithm MLE GK Proposed 
RMSE 23.0247 24.5280 16.9507 

 
   In the second example a nonlinear dynamic system is 
considered, which is described by: 
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   Where u is the input signal. In order to evaluate the 
model behavior in the presence of different levels of noise, 
a Gaussian distributed noise with mean zero and three 
different values of standard deviation was added, ε (k) ∼N 
(0,•), with •0=0.05, •1=0.1, and •2 =0.3. Initially a training 
signal uniformly distributed was applied in [-0.4, 0.4] with 
400 sample data. For the approximation process a first 
order NARX model was selected, so that y(k+1) output is a 
function of the previous output y(k) and the u(k) input, this 
means y(k+1)=f (y(k),u(k)). 
  The input and output data were submitted to the 
clustering process using the proposed algorithm. Initially 
10 clusters were considered and a discard limit of 5, finally 
4 clusters were obtained. In order to ill ustrate the algorithm 
behavior in presence of noise, a case where the noise has a 
greater standard deviation was considered. The 
corresponding membership functions for the input and 
output are shown in Fig.3. 

  
                               (a)                                                        (b) 

Fig.3. Obtained membership functions: (a) Corresponding to the system 
input u. (b) Corresponding to the system output y 

   A comparison between the real model and the 
approximate model outputs due to the training signal is 
ill ustrated in Fig. 4(a). To validate the model a sinusoidal 
signal k/25)0.35sin(2�u(k) = was applied. In the Fig. 4(b) 

the output of the TSK model, in presence of the validation 
signal is compared with the output of the real system. In 
both cases, the approximate model using the proposed 
algorithm gives a close output to the real model. 
 
 



 

 
(a) 

 
      (b) 

Fig. 4. Outputs due to  (a) Training signal, ( ) Original model without 
presence of noise,  (- - -) TSK model from the proposed algorithm and  
(b) Validation signal, ( ) Original model without presence of noise,      

(- - -) TSK model output from the GK algorithm. 
 
   To evaluation purposes, the GK and MLE algorithms 
were run over the same training signal and to the obtained 
models which the validation signal was applied. Over the 
obtained outputs, the RMSE criteria were applied; the 
results are shown in Table II f or several noise levels, in the 
training and validation signals respectively. 
 

TABLE II . COMPARISON OF THE RMSE 
PERFORMANCE INDEX FOR THE TRAINING AND 

VALIDATION SIGNALS 
 

RMSE Per formance Index 
Training Signal Validation Signal 

 
σσ 

Proposed 
Algor ithm 

GK  MLE  Proposed 
Algor ithm 

GK  MLE  

0.05 0.0691 0.049 0.144 0.0908 0.042 0.083 
0.1 0.0979 0.084 0.141 0.1856 0.338 0.176 
0.3 0.1686 1.446 2.328 0.1067 1.491 1.687 

 

V. CONCLUSIONS 

   The developed algorithm reduces the decomposition 
error in the membership functions projected, due to the fact 
that clusters are parallel to the axis, without deterioration 
of the model interpretabilit y. Unlike of the obtained 
membership functions with GK or MLE algorithms, in 
which the projection error is greater due to the generation 
of rotated clusters. If is desired to reduce this error, the 
variables from the obtained model must be expressed like a 
linear combinations of the real input variables, which lead 
to vanish the interpretabili ty.  

   Furthermore, submodels that describe well enough the 
general model are obtained, in comparison with generated 
models with other algorithms, as it is proved by the RMSE 
index. In situations where the data extraction from the 
system can cover a great amount of operation ranges, the 
proposed algorithm can become in a good modeling option 
of nonlinear dynamic systems. It was not necessary to 
indicate the number of clusters required, since the 
algorithm finds them by itself, when the agglomeration 
techniques are applied. 
   In order to choose the threshold, one must consider 
carefully the limits, if this is too high with regard to the 
number of clusters, the algorithm will end discarding all 
clusters. On the other hand, with a very small number the 
agglomeration process would not be carried out. Finally 
through the showed examples it was il lustrated that the 
algorithm is able to detect and to reduce the effect of 
outliers in the training data thanks to the robust statistics 
applied. 
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