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Nonlinear Stability Analysis for Non-polynomial Systems

S. Mastelloné®, P.F. Hokayent, C.T. Abdallah® , and Peter Dorafo

Abstract—In this paper the stability analysis of nonlinear Definition 2: Multivariate Polynomials. A multivariate
systems is studied through different approaches. The mainidea polynomial of degreen in n variables inR is a function
of the paper is to map the original class of nonlinear systems  gafinaq as a finite sum of multivariate monomiis., :=
into a smaller subclass of systems described by multivariate _p M h N is th b f ials added
polynomial functions, for which the study of stability is .Ei:l i(m n) whereN is the num erP monor_mas adde
available. in Gmn. The degree of the polynomial is defined ms=

max m;, wherem are the degrees of the monomials.

I. INTRODUCTION Definition 3: PSD  Polynomials.We defineR, m as the

The objective of this work is to propose tools to studySet Of positive semi-definite (PSD) polynomials of degree
the stability of a large class of nonlinear systems using+ With m even number, im variables, i.e.
Lyapunov methods. From Lyapunov stability theory [8], we .7 . _ n
kﬁof/)v that the stability of anautonomousysystét():h)[i Fam = {P € RpX: p(x) = 0. degipy =m, vx e R (1)
f(x),x € R" can be investigated by checking the sigriwhereR[x], is the set of polynomials with real coefficients
definiteness of the functiod = 5\35()‘) f(x) whereV(x) >0 in the variablex = [xy,...,Xn].
is a Lyapunov function candidate. For the class of systems Definition 4: SOS Polynomials.We defineZ, m as the
where f(x) is a multivariate polynomial in the componentsset of sum-of-squares polynomialsrivariables, and degree
of x, there are several available tools for stability analysi§, wherem s even, i.e.

and design. Such tools include Quantifier eliminations (QE) 5 m

[5], [16], Branch and Bound techniques [6], [10], probabilis- Znm = {P(X) = Zkhi; deg{p} = m, deglh} = =

tic and statistical learning methods [1], and several positivity p.he € R[X, x € R"} @)
tests [4]. We proceed by giving a formal definition of the class of

In [19], [20] approximation techniques are used tGunctions we will be dealing with throughout this paper.
transform a nonlinear system that does not satisfy the pefinjtion 5: Consider the clas$ of a nonlinear multi-
involutivity conditions required for feedback linearization,, 5 iate function defined as follows

into a feedback-linearizable system. Our work in contrast

proposes different approximation techniques, the main ol _ (f:f(x) = : pi(X)gi(X), pi : R" — R, monomials
jective being to transform the system into a polynomial i; ’ ’

form. Although in this work we are only concerned with g : D] — D>, nonlinear functionsD] C R,
stability analysis, all the techniques proposed can be ex- D, CR,| €N} 3)

tended to design by consideri@pntrol Lyapunov Function
(CLF) [7]. The main advantage of multivariate polynomial

approximations forf(x) is that, if V(x) is selected to be Definition 6: Recall again the clas§ of multivariate

a mgltwanate pol'ynom|al' function, thew is also a mul- functions defined in (5) as the functions composed by sum
tivariate polynomial function, and Lyapunov stability tests

. - .~ of terms in which there are polynomial and non-polynomial
are reduced to the study of sign-definiteness of mUIt'Va”at&ements Consider a subsgitC S in which a part of the
polynomial functions. '

variables only appear in the polynomial functiop&), i.e.

In particular, the elements d& are sums of polynomial
functions, non-polynomial functions, and product of both.

Il. DEFINITIONS AND NOTATION f(x) = Z P (X)i (Xg), X € R", xg € R(K) ()
We recall some standard definitions, and notations. '
Definition 1: Multivariate Monomials. A multivariate Xg(J) =x(j), j=k+1..,nk<n
real monomial of degrem, in n variables inR is a function

where p; are multivariate polynomial functions argl are
multivariate non polynomial functions. Observe that the first
e k components ok only appear in the polynomial part and
degM(mn)} := 31, m. form a so-called polynomial vecto (i) =x(i),i=1,...,k
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defined asvl(m,n) := x{"x52x5 .. XM, for X = [Xq,...,%n] €

R" and the degreen of a monomial is defined am =



Definition 7: Consider the class of systems that producehere f is a vector functionf : D] — D3 whereD], Dj C
a derivative of the quadratic Lyapunov function along th&R", and f;,i = 1,...,n are continuous multivariate func-
trajectory that belongs to the clas defined in (6), we tions. Also consider the polynomial approximatign of
refer to this class of system as “decoupled state systemd”, with p: R" — R" on the intervalsfa;,bj],i =1,...,n,
in which the state vector can be split into two parts, thavith a bound on the approximation error given ly=
first part of the state vector only contribute to the dynamige; &, ..., &n]" ,i.e.

of the system through polynomial functions, i.e. .
Y gh poly Ifix) — pi(X)| < &, V% € [&,bi],i=1,...,n. (10)

X = P(X)G(xg), x€R" xg e RMY (5)  From now on we will use the notatione [a, b], meaning
Xg(j)=x(j) j=k+1,..,n, k<n X € [&,b],i=1,...,n, also |A|, will denote the absolute
value of all the elements of thex 1 vectorA. Assume we
can find a quadratic Lyapunov function for the polynomial
SystemV, = X" QxwhereQ = Q' is a positive definiten x n

WhereP and G are respectively a vector polynomial func-

tion and a vector non-polynomial function. Consider th
- - - _ T . -

state vectok and split it into two partx=[§ ¢]", inwhich i “Then, the original system is stable [&,bi], i =

¢ is the vector of polynomial variables amdis the vector 1 nif and only if

of global variables as defined in (6), we can then rewrite’ "’

. oV,
(5) as follows Vp = a—pp(x) < —(IX"Qlne+£T|QXn), ¥x € [a,b]  (11)
g Proo)fiz We will denote withV; the Lyapunov function
{ o } = P(&.¢)G(¢) 6)  ofthe original system, and witl, that of the approximated
EQ) = x i=1..k (7) System. We choosé =V, = x"Qx. Then
#(j) = x j=k+1,..nk<n. ®) Vi = XTQf(x)+ fT(x)Qx (12)
Next we present conditions for the stability of a nonlinear Vo = X Qp(X)+p' (X)Qx (13)
system based on the stability of its polynomial approxima- . . . .
tion. Let Ay = Vi —V,. Then two cases might arise:

1) A, > 0: we get

Vi =Vp = X" Q(f(x) = p(x)) + ((x) — p(x))" Qx
In thishsecti%n., we stud)_/ thg Ioca! ﬁtabilitly of a nlonlinear < IXTQ(f(X) — p(X)) + (f(X) — p(x))TQX|

system through its approximation with a polynomial system. T T

This analysis is valid as long as our system function is < X" Qln(g) + (&) |QXIn (14)

within an errore from the polynomial approximation. Our from which we can conclude that a necessary and

results, of course, hinge on the fact that we are able to geta  sufficient condition foV; to be negative is that

‘good’ approximation. Several references on approximation . T T

with multivariate polynomials can be found in [11], [12]. Vo = (X Qln +7|Qxn), X  [a, ] (15)

The main idea of approximating with multivariate polyno- 2) A, < 0: In this case we observe that from the condition

mials is to sample (deterministically or probabilistically) Ay < 0, it follows that Vp —\'(f > 0 from which

the original function, the to interpolate the samples using we guarantee the negativity & directly from the

polynomials. Since almost all approximation schemes are  negativity opr, ie. Vp < 0. Since condition (15) is

valid in a region, our stability results will naturally be stronger than this last condition, we can summarize

local For our purposes, we assume that a polynomial that the result and state that the local stability of the

approximates the system function on the region of interest  original system forx € [a,b] is guaranteed fon <

is available. —(IX"Qlne + £T|QXn), VX € [a,b].

I11. POLYNOMIAL APPROXIMATIONS

[ |
A. Approximated by Polynomial Functions

In most Lyapunov tests, we have little knowledge on hOWB - Stability of Perturbed Systems

to verify the sign-definiteness of the resulting complicated USing stability results of perturbed systems [8], we can
multivariate functions. Since many tools are however avaiftate sufficient conditions for a nominally stable system
able for determining the sign-definiteness of polynomiai® remain stable after it is subjected to a perturbation
functions, a potential solution to the original problem is tg?ePending on the size of the perturbation. We consider
consider the approximation of a generic nonlinear functiof'® Pelynomial approximation of the original system as the
by a polynomial, and to study how the local stability of the"ominal system, and the original system as the perturbed
original system may be deduced to the local stability of th€yStém. In particular consider the nonlinear system
approximated system. This is the case of the next theorem. x= f(t,x). (16)

Theorem 1:Consider the nonlinear system o . . .
Wheref : [0,00) x D — R" is piecewise continuous inand

x= f(x), f(0)=0,xe R" (9) locally Lipschitz inx on [0,00) x D, D C R" andx=0¢D.
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Also consider the approximation df(t,x) in the interval
x € [a,b] ¢ D by a polynomial functionp(t,x) with error
of approximatione(t,x) such thate: [0,») x [a,b] — R"
is piecewise continuous in and locally Lipschitz inx
on [0,) x [a,b], [a,b] C D C R" andx= 0 € [a,b]. Also
assume we have an upper boundn the error of approxi-
matione(t, x) such that f (t,x) — p(t,x)| = |e(t,x)| < €. With

Theorem 2:Given the autonomous system

x=f(x), f(0)=0 (27)
with f(x) continuously differentiable, a sufficient condition
for the asymptotic stability of the system is that the Jacobian

of F(x), [‘” (x)] satisfies

this assumption, we have the nominal and perturbed systems

17
(18)

p(t,x)
p(t,x) + e(t,x)

Knowing that the polynomial systep(t,x) has a uniformly

asymptotically stable equilibrium point at the origin, we
want to determine the size of approximation for whic
the original system remains stable. We can now apply tr]F

stability results of perturbed systems.

Lemma 1:[8] Let x=0 be an exponentially stable equi-

librium point of the approximated system (17). Consider

of

ax

.
S (x)] Q<-I,vxeDCR"  (28)

ox
of

ola]+|

or equivalently

x"Qf(x) + fT (x)Qx< —x"x, ¥xe D C R" (29)
f we apply Theorem 2 to the system rewritten in terms of
5 approximated version, we obtain the following stability

conditions in terms ofp(x) and &

3TQp(X) + p" (X)Qx< —x"x— (X" Qe + T Qx)Vx € [a, b]

Lyapunov function associated with the approximated system

Vp(t,x), and assume that it satisfy the following

aal X2 < Vit 0 < X 19)
—_ P, 70 <

~2+ Z2p(%) < —cql x| (20)
oV,

S0 < e < I Vit X) € [0.00) x [a.b], (21)

[ab] = {xeR":||x|| <r}

Wherecy, ¢y, C3, C4 are positive constants. Also assume th
the error of approximatior(t,x) satisfies

et )] <e< =2 [Zor (22)
Cq\ C2
Vvt >0,Vxe[ab,0<0 <1 (23)

Wheree is an upper bound on the approximation error i.

[f(t,x) — p(t,x)| = |e(t,x)| < &€ ThenV||X(to)|| < %r, the
solutionx(t) of the original system (18) satisfy
[IX(®)]| < kexd—y(t —to)][[X(to)|[, to <t <to+T  (24)
and
Ix®)|<bt=to+T (25)
for some finite timeT, and
kﬁ; y= 15208, bgﬁg (26)

C. Krasovskii's Method
In studying the stability of nonlinear systems, the on

which is obviously a positivity condition on a multivariate
polynomial function.

IV. S-PROCEDUREAPPROACH

There are several available tools to study the sign definite-
ness of polynomial functions. Our goal in this section is to
simplify the structure of non-polynomial functions through
a transformation that allows us to rewrite the function as

aé multivariate polynomial whose variables are subject to
some inequality constraints. The positivity of the original
function can then be investigated, by studying the new set of
inequalities, of the transformed function and the constraints.
In [18] a technique to test the polynomial nonnegativity
over a finite set described by polynomial equalities and
einequalities is proposed. We propose here an alternative
approach. The S-procedure will allow us to obtain sufficient
conditions for the positivity of the system of inequalities.
We start by stating the problem of determining the positivity
of a multivariate nonlinear function ovéR".

Problem 1: Consider a multivariate nonlinear function
composed of sum of an arbitrary number of nonlinear
functions, f = 2'1 fi, fi : D} — D2 where D} C R" and
D, C R. Our objective is to determine if (x) is non-
negative for allx € DY.

Next we consider the problem of deciding positivity of
a multivariate polynomial function, whose variables are
subject to inequality constraints.

Problem 2: Consider a multivariate polynomial function

lyo: R" — R whereD is a n-dimensional domain. We aim to

unanswered question is usually the choice of a Lyapunaletermine ifp(x) is non-negative for alk € R" subject to

function candidate. Krasovskii showed that choosing t

himequality constraints i.g(x) > 0, Vx€ R", x; <X <X, i =

Lyapunov function candidate as a quadratic form of thd,...,n.

system function, i.eV(x) = f(x)TQf(x),Q = Q" > 0,
the asymptotic stability conditions can be reformulated
follows.

Next we show how using a special transformation, Problem
ad) can be reformulated as Problem (2). Then the S-
procedure [3] can be used to solve problem (2).
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A. S-procedure for quadratic functions We can now expresE; andF; as quadratic forms

RnITet Fo...,F be quadratic functions of the variables Fi(2= zTlez+2ujle—;j >0 37)
' Fi(2) =2 Tjpz+2ul,z—2; > 0 (38)
F(2) =2 Tiz+2u'z+v,i=0,... k (30) J : : :
. in which Tj1, Tj2 are zerogn+nyg) x (n+ny) matricesujs,
where Ty = T;", are nxn, uj are nx 1 vectors andvi  yj, are(n-+ny) x (1) vectors with all the components null
are scalars. Then a sufficient condition for the followingexcept those in th¢ position that are respectivelyj(j) =
statement 3, uj2(j) = —3. Applying the S-procedure we obtain that
Vz such that F2) >0,i=1,...k=Fo>0 317) @ sufflc_lent condition forf(_x) to be positive under the
ftz) 2 Fo= (31) constraints (37) and (38), is that there extsE R, 7; > 0
is that there existsy,..., 7x > 0 such that such thatf(z) — y2; TiFi(2) > 0. Next we show an example

on the applicability of this technique.

Fo2mF -+ 0k (32) Example 1:Consider the nonlinear system
B. Function Transformation ¥ o= 8% (39)
= 1 1
In order to simplify the structure of the problem we refine ¥o = XoSin(xy) — 2% — x%xz (40)

the class of functions described in Problem (1). Starting
with the classS defined in Definition 5, we will, through a and the Lyapunov function candidatéx) = 3 (X3 +x3). We
two-step transformation, rewrite a function from the cl8ss want to analyze the stability of the system around the origin,
as a gquadratic function. As a first step, we observe thathich is an equilibrium point for the system. Sinvéx)

a function in classS with n variables andn; <1 non- is quadratic, in order to check the stability we need to test
polynomial elementsy;, can be viewed as a polynomial thatV(x) < 0. Then,

function inn+ ny variables, where the vectarof variables . .
is an extension of the original vectar if we rewrite the Y (X = =X X+ XX +XGsin(a) — 2G —XpG  (41)

non-polynomial functions as new variables defined over th@fe aim to determine whether or neV > 0, ¥x € R2. First

range of the function as follows: we reformulate the problem as a multivariate polynomial
. [ problem with interval constraints i.e.
f) = f(2= Zpi (2)hi(z),ze RV (33) ). _ _ N .
= =X =X Z3=X1Xe; Z4=X%5; 25 =sin(Xy)
2 = %i=1..n - - we obtain
zi = 9j(x),z €D2={z, 21Uz 22 -}, y _
j=n+1...n+mn flog = V@=Z-22-22—-22z1+23+2F

L . -1 < <5, 21>0;2>0
The second step of the transformation is to rewrite the

function f, and the variable constraints in a quadratic fornConsider the quadratic form associated witfz) = z' Qz
as follows: Following the usual procedure we obtain the following
decomposition for-V(z)

flzg=2"Tz+2u"z+v (34)
. . o 21'"T1 o -1 o o z
WhereT is a (n+n1) x (n+n;) symmetric matrix,u is a 2 0 2 _i 0 0 2
(n+n1) x (1) vector andr is a scalar. Also consider intervals f(z) = zi 11 12 0o 0 zg
defining the domairD, n 2 2 1
Z 0 0 0 01 -3 2
Dzz{zjiSZjiSZji,,j:n+l7-..,n+nl7 25 0 O O T2 O 25
i=1,..m}h (35) Also consider the quadratic forms associated with the

Note that the domaifd, is composed of all the domains SONStraints

of definition of the functiongj, j =n+1,....n+m, each  gin(x;) > -1 —254+1>0; sin(x) <1—1—25>0 (42)
of those domains may be composed as the union of many

intervals [z,z],i = 1,...m mis the number of intervals observe that since —z and z are both nonnegative,
for each domain. Consider now the set of intervals in thg0 is their product(1 — z5)zs. Rewriting the constraints
domain D, expressed as in (35), in order to express thi#) a quadratic formF,(z) and Fi(z) and applying theS-
constraint as inequality of quadratic forms as follows. LeProcedurewith 11 =0, T2 =1 we obtain

us focus first on the lower bounds

2

. f- S uF
Fi(@ = z-z2=0j=n+1...,n+n (36) i;"
Fi(@)

f—x3(1+sin(xq))

ijZjZO. = XilelX%fX%X2+X§+X%X§
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Applying the SOS procedure, which will be explained inwhich the two classes (SOS and PSD) are equivalent [14]:
the next section, we get polynomials in two variables, polynomials of degree two
and polynomials in three variables of degree four.

B 2 X% T 1 0 —% X% -
f— Zlm:, =| % 0 1 -3 Xo B. Sum of square decomposition
= X1X2 —% —% 1 X1X2 First we will show that using semi-definite programming

(SDP) it is possible to test if a given polynomial admits an
SOS decomposition [14].

Theorem 3:Given a multivariate polynomialp : x €
R" — R?" of degree2m, a sufficient condition for the
V. GENERALIZED SUM OF SQUARES existence of SOS representati@ix) = p(z) = 2'Qz is

In [14], it was shown how SOS programming can be apQ > 0 where z is a vector of monomials irx of degree
plied to analyze the stability of nonlinear systems described , ,
by polynomial functions. The tool has also been extended to°, 1€ test forSOSof a polynomial function has been
several applications other than stability analysis [17], [15[.€duced to a linear matrix inequality (LMI) [3]. Then for
We aim in this section to extend this approach to systerr?s symme_tnc matrixQ V\T’e obtain the followmg eigenvalue
that are not characterized by polynomial functions. Thictorization [2]Q =L TL, from which follows the de-

" <o s
main advantage of the proposed approach is the compuf2MPositionp(x) = 3;(Lz)7. In general we have that the

tional tractability of the SOS decomposition for muItivariateSO,S representation might not be unique, depend!ng on the
polynomials choice of the components of the vector. In particular,
' different choices of the vector correspond to different

A. Global nonnegativity matricesQ that satisfy the SOS representation. It could be

As stated repeatedly in this paper, many problems ithat only some of those matrices are PSD, so the existence
nonlinear systems can be reduced to the basic problem & SOS decomposition for a polynomial may depend on
checking the global nonnegativity of a function of several® representation. If at least one of the matrices of the
variables [4]. The problem is to give equivalent conditiondinear subspace is positive semidefinite (i.e. the intersection

or procedure for checking the validity of the proposition of the linear subspace of matrices satisfying the SOS repre-
sentation with the positive semidefinite matrix cone is non

F(X1,.--,%) > 0,Vx,..., X% €R (43)  empty), thenp(x) is SOS and therefore PSD. In general we
will choose the components afto be linearly independent,

If we limit our study tp_polynomlal fulnct|on5E(x) = p(x), and we will say that the corresponding representation is
then a sufficient condition fop(x) > 0, is thatp(x) be a sum minimal

of squares. The general problem of testing global positivity
can then be reformulated as a condition for the existence 6f SOS Generalization: A Partial State Vector Approach

SOS decomposition. We will show how, under certain assumptions, it is
Observe first that a necessary condition for a multivariatsossikﬂe to apply the SOS procedure to a nonlinear, non-
polynomial function (43) to satisfy global nonnegativity holynomial function. The main idea is based on the use of
is that the degree of the polynomial be even. In 19080s procedure, considering the generic nonlinear function
(First congress of Mathematicians) Hilbert presented thgs 5 polynomial function, in which the non-polynomial
following conjecture, that will be referred as Hilbet?™  parts are treated as coefficients of the function. Rewrit-
problem [9]: Considep € B, m, then there exist polynomials ing the function as a quadratic form we gé{x) =
qi andr; such that 2(xp)TQ(xg)Z(Xp) Where z is a vector of monomial of
Z(ri(x))2p<x> _ z (qi (x))2 (44) K- % € Xp, andQ is a matnx of appropriate dimension,
, , which depend on the variabbg,1,...,X, € Xg trough the

. non-polynomial functiong;. From SOS theory, a sufficient

In other words any PSD p_olynom@l(x) can be _expressed ondition for f(x) > 0 is thatQ(xg) to be positive definite.

as asum of squares of ratios of polynomials, I—plbert proveftin order to apply the SOS procedure to a generic nonlinear

Eﬂg C(:%rgi%tt r;f?(;rteggar%r:‘orlrg;:fg, [gTdﬁrttrl]gggée?S non-polynomial function, we need to restrict the class of
) n | A .~ system we deal with, in particular we will consider the class

presented, and a step-by-step algorithm is given allowing u%( systems defined in (7). The state vectds divided into

. . " . 0
to obtain the Hilbert decomposition of a polynomial form. . )
From Hilbert’s conjecture it is proven that any PSD formtWO parts,¢ and¢. In fact, choosing a quadratic Lyapunov

: . . function V = x"x and applying the SOS procedure for
can t_)e written as a sum of squares of .rat|os of pOIynom'alaétermining the sign of-V we want to find conditions on
This is no longer true if instead of a ratio of polynomials we¢ that guarante¥ is decreasing along the trajectory of the
limit ourselves to polynomial functions. In general, havingS stem for all¢ i.e

an SOS form is a sufficient but non-necessary condition for _
PSD. As Hilbert proved however, there are three cases for —V =2&)TQ(¢)2(&) >0 V& eRK (45)

1729
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Next, we present an example to illustrate these results.

VI. CONCLUSION

Example 2:Consider a nonlinear system characterized |, this paper, we presented various methods to analyze

by a decoupled vector space as described

X1 = —-X1 Sin(X3) (46)
X2 = —X5+4X1c09X3) (47)
X3 = —XxXalog(xs) (48)

The state vectok = [x; X x3]T, satisfies the condition for
the system to bealecoupled statei.e. x;, X» only appear

the stability of nonlinear systems. The main idea was to
reformulate the nonlinear stability problem into a poly-
nomial setting, and then utilize results pertaining to the
stability of polynomial systems, or extend existing results.
We presented a new analysis relating a class of nonlinear
systems to approximated polynomials systems. Also, we
utilized the S-procedure in a novel setting , and extended the

in a polynomial form. Considering the quadratic Lyapuno5OS procedure to that end. All these reformulations present

functionV = %xz, sufficient condition for the stability of

a new way to analyze nonlinear systems, through analyzing

the system is the positivity of the following function
—V = xsin(x3) + X3 — x1x2€09x3) + X5x3log(x3) > 0, (49)

Vx1,% € R?. The corresponding quadratic form is [1]
. X1 sin(xs)  —3cogxs) O X1

V= x —Jcogxs) Xlog(xs) O X2 2l
X3 0 0 1 X3

the expression above result to be positive if all the minord”!

of the matrix are positive, i.e.
. . 1 4l
sin(xz) > 0; & x3log(xg)sin(xg) — Zfcos?(xe,) >0

from which we get the condition oms to guarantee the [
stability of the system. The system is stable in the domain

D {x1 €R, % € R,x3 > 2.7183 [6]
2K <x3 < mM2K+1),K=0,1,2,...}
In order to verify the stability of the system in the domain

D we evaluate-V(x) in a set of sampled value taken from
D and outside oD. More precisely consider the domains [9]

{x1 =100, X2 =1,x3 = [0,2r]}  (50)
{x1 =10,% = 0,2m}  (51)

(7]

X3 [10]
ann’ )Qg - [

100 [11]
[12]
(13]

[14]

~avidt

(18]

[16]

[17]

Fig. 1. Values of-V in Q.

(18]

In Figure (1) —V(x) is plotted forx € Q1, we can notice
how the function is positive, and then the system is stable9]
for values ofxz € (0, ), and is negative for values o €
(1T, 2m).

The result is however conservative, in fact even for values
of X3 < 2.7 the function—V is still positive as we can see
in the Figure (1).

[20]

their polynomial counterparts.
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