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Collocated Actuator Placement in Structural Systems Using an
Analytical Bound Approach

Michael A. Demetriodr Karolos M. Grigoriadi$

Index Terms— Distributed Parameter Systems, Robust Sen- from u to y, which is given via the quadratic pencil

sor Placement, Robust Estimation, Computational Scheme, )

Spatial Robustness. T(s) = BES<MSZ 4 Ds+ K) Bo. 3)
Abstract—This paper considers the combined output feed-

back control and actuator placement problems for struc- Notice that the above transfer function is symmetric, i.e.

tural systems with collocated actuators and sensors. Using T(s) :TT(S). For control design, one requires the compu-
a particular solution of the Bounded Real Lemma for an tation of the 4™ norm. defined b,y

open loop collocated structural system we obtain an explicit
analytical expression to compute an upper bound of the norm _ :
of these systems and a parameterization of the corresponding IT(S)lleo = 22]150““&"{“]0‘))”' )
output feedback control gains. The above results are utilized
to optimize the actuator placement for such systems using The standard way to compute tf#¢ norm is to bring the
efficient interior point optimization algorithms. Also, we ad-  system (1) in a first-order state-space form (2) and employ
dress the integrated design problem that involves the simul- - 5" oo mpytationally demanding scheme to approximate this
taneous selection of actuator location and the computation iteratively. f | . bisecti thod 11
of feedback control gains leading to improved closed-loop norm iera 'V? y_’ or example using a bisection me_ 0 [.]'
performance. The proposed analytical bounds and actuator If further optimization of the actuator/sensor locations via
placement results have an obvious computational advantage a robustness measure is desired, one would then arrive at
for analysis and control design of large scale systems where g numerically intensive scheme with the obvious burden
the conventional design tools are computationally intractable. on computational resources. This work is motivated by
the results in [4] that provide an analytical calculation
. 4 CONTROL ANALYSIS of the #® norm of symmetric systems using a simple

. . explicit formula. Based on this earlier result, we obtain the
We consider vector second-order systems with collocatef llowing bound for the#/* norm of the vector second-

sensors and actuators order system (1).

M3+Da+Ka = Bou 1) Theorem 1.1:Consider the vector second-order system
y = Blq (1). The system has a#™ (open loop) norm that satisfies
n; i i m
whereq € R" is the generalized coordinate vectare R Y < Vo = Amax BED‘lBo (5)

is the input vector and/(t) € R™Mis the measured output Proof. The proof of Theorem 1.1 is based on the

vect_qr (“n<_n)_. The r_natriceg\/l,D, andK are symmetric Bounded Real Lemma (BRL) and Finsler's Lemma (see
positive definite matrices that represent the structomass, [3]) and is summarized in Appendix A -

damping and stiffness distribution, respectively, i.e. we
consider non-gyroscopic systems with= DT [1]. The

. o . Il. THE H*® CONTROL SYNTHESIS PROBLEM
state-space realization of (1) is given via

We now consider the controlled structural system

X = Ax+Bu
y — Cx @) M§+Dg+Kq = Bo(u+w>
with z = Blq (6)
_[ o ! _[ o y = B
A=l MK —MD } B= [ M~1Bg }

wherey(t) € R™ is the measured outpuk(t) € R™ is the
c=[0 B ] performance output vector ane(t) € R™ is the disturbance
o 0 I input. The #H* control synthesis problem is to design a
- T Wi i : symmetric static output feedback gath= G' such that
wherex(t) = [ q(t) ¢(t) | . Without utilizing the first or-
der formulation (2), one may calculate the transfer functiof® output feedback control

u=—Gy, )
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(6), (7) is then given by In a similar fashion as in the case Bf= By, we have the
. T - following result that is based on the conditiad, (A.2)
Méj+ (D+BOGBO)q+ Kq = Bow

8) _ T\ L leeT o
;= 84 (D+BOGBO) + EET <0,
We use the following results that provide an explicit exand which guarantees a closed loop system (13) with an
pression of the output feedback gains which guarantee4® norm of less thary.

closed-loop#{™ norm less thary. Corollary 2.1: Consider the vector second order system

Theorem 2.1:Consider the vector second order systenfll). For anyy > O there exists a symmetric output feedback
(6). For anyy > 0 there exists a symmetric output feedbackcontrol lawu= —Gyto provide a closed-loop{® norm less
control law (7) to provide a closed-loog{® norm less thany.

thany. () If By is square and invertible aril ¢ Ker(By 1), then
(a) If By is square and invertible the@ can be selected G can be selected as
as 1
-1 Tp—1T —1 —1T
G> },7561D861T' ) G = [By'EEBy" —B; DBy
y . (14)
(b) If Bg is singular therG can be selected as - —(BglE)(BglE)T fBalDB(;lT
Y
-1 1
G>B}|DBs" (B¢DBy') ByD—D+ -BoBJ|B]T
=0 [ 0 ( 0= ) 0 0 0} O (b) If By is singular ancBéS%EET —D) Bg " nonsingular,
) ( thenG can be selected as
whereB} denotes the Moore-Penrose inverse [3], &3d 1 1
is a matrix such thaBBo = 0 and BYBL T > 0 (i.e. left G>Bj | EE'-E/B;T(BjEBYT) BYE-D|B,
null space ofBp). Y (15)
Proof: The proof of Theorem 2 follows from the BRL whereE, = \—/EET —-D.

and the Generalized Finsler's Theorem and is presented in Proof: The proof of Corollary 2.1, which is similar to

Appendix B. ®  that of Theorem 2.1, is summarized in Appendix C. m

Remark 2.1:The upper value for the boungin Theo-  paan 2 o:since the optimal gairG from either (14)

rem 2.1 cannot exceed the one for the open loop case, givgln (15), depends on thé/* boundy , one needs to find

by Yo in (5), as it would produce a closed loop system,, acceptable bound foy. To do so, we consider the
with identical #* norm bound as that of its open Ioopuncontrolled system

counterpart, i.e. ensure that

1 MG+Dg+Kg = Ew
“BSS(M52+(D+BOGBO)S+K) BOHw . _ T
< HBES(MserDer K)ilBon. and bound its#*® norm using (5) from Theorem 1.1, by

o replacingBp with E, to arrive at
In order to allow for more general vector distributions of

disturbances, we consider the following vector second-order y<Vo= )\max(ET DflE),
system
MG+Dg+Kg = Bou+Ew This then can be used in (14) or (15) as an initial upper
z = ETq (11) bound fory to calculate the feedback gai@. Once the
feedback gainG is found for that initialy, then the next
y = Bg, iterate ofy can be found fromdf. (A.2))
wherez(t) is now ak-dimer_nsiqnal_vector V\_/itlz(ft) cR*and _ (D n BOGB(T)) i }EET <0,
E is ann x k disturbance distribution matrix witk<n. The

closed loop transfer function fromy(t) to z(t) is given by 4 continue with the newtill it satisfies an a priori given

-1 stopping criterion.
_ T T
T(s)=E S(MSZ+ (D+BOGBO)S+ K) E, (12) The algorithm for this iteration is summarized below. For

where the closed-loop system, with a collocated feedba@@Se Of exposition, we consider the case of a square and

u=—Gy, is given by invertible B and make repeated use of (14) in Corollary 2.1.
. . Algorithm 1:
Mq+(D+BoGBS)q+Kq = Ew £gomm = S
(13) Step l.nitialize yo = Amax(E' D~E), (open loop bound)
z = ETq Step 2.for k=0,1,...

1605



() selectGk as Once the optimal locatio®°? is found, then the optimal
1 gain can be found via

Gk > —(BylE)(BylE)" — B, DB, T 1
Y 00 0 =0 GOt > B [DBjT (BjDBfT) D-D+ %B*BI] BT,
(i) set newy by (18)
. whereB, is the control distribution vector corresponding to
Ykl = )\maX(ET (D+BoGKBY{) E) Bopt, i-. B = Bo(Bopt) and the correspondingis
(i) if yk— Vi1 > €, wheree is the a priori chosen yoPt = gneig )\max(Bg(ei)DilBO(ei))
|

threshold, then continue with «— k+1 in _ : .
step 2, else terminate iteration and exit with Remark 3.1:The above lemma provides the optimal lo-

cation with respect to the’’® norm of the open loop

transfer function (3). To incorporate closed loop consid-
Remark 2.3:The basic idea behind the above algorithnerations, which would enhance the robustness capabilities

is that the closed loop system should haveffinorm less  of the collocated static output feedback, one considers the

the current valuegi. 1, Gk 1.

than that of the open loop, i.e. location-parameterized feedback
—1 ug) = -G(§
[ETs(MS+ (D+BoGRO)s+K) E| @) (®)y o (19)
e 7G(el)c(el)q7 = 1727"'aNa
-1
< HETS<|\/|52—|-DS+ K) EH . to arrive at the closed loop transfer function of (6)

Md+D(6)g+Kg = Bo(8)w
[1l. INTEGRATED CONTROL AND ACTUATOR _ RT/ANe (20)

z = BO (6|) ’

PLACEMENT

. i =12...,N, whereD(6;) £ D+ Bo(6;)G(6)B{ (6i). The
We now consider the problem of actuator placement for .. S .
an optimal #® norm bound measure. Towards this endfgptlmal actuator location is then given by

we assume that one has a finite set of candidate actuator 8ot =
locations and it is desired to choose one location (or a , T 1
smaller subset) from this set. We denote skeof candidate afgeﬁQg‘AmaX(Bo (8) (D(8)) BO(G‘)) (21)
locationsvia 1
— inBT (0 . A
B6) = [Bo(61) ... Bo(®) ... Bo(By) ] = argminef () (D(6)) Eo(8)
— [Bi61 ... B6 ... Buby Remark 3.2:The above modification allows one to gen-
(16) eralize the distribution matrices for the performance output.
where 6 = ( 01, ..., On ) is a vector of logical de- Thus, one considers titeparameterized closed loop system
cision variables, i.e._6i € {O_, _1}, for i = 1_,2,...,N, and M§+D(6)g+Kgq = Ew
each pair(D,Bp(6;)) is stabilizable for alli =1,2,...,N, T (22)
in the sense that there exists soi®e= G(6;) such that z = E'q

D +Bo(61)G(61)B( (6i) > D > 0 for all ; € ©. In the above The g-parameterized closed loop transfer function for (11)
formulation, we adopted the notation from de Oliveira angrom w(t) to z(t) is given by

Geromel [2] for the set of candidate actuator locations. 1
T(s,6) = ETs(M52 +D(6)s+ K) E,  (23)

A. Single Actuator Placement . . N
i=1,...,N. In order to incorporate an additional robustness

When a single actuating device is desired to be chosgfith respect to theworst distribution of disturbanceg,
from the set of candidate locatio6), one then chooses one considers the worst possibie which translates to
the location that yields the smalle#f™ norm bound given gisturbances affectingll the modes. Possible choices are

by (5). _ :
_ 1 0 0 ... 0
Lemma 3.1:Consider the vector second-order system (1)
whose actuator locations have the parameterization (16). 1 01 0 .0
Using the bound (5), one chooses the optimal actuator 1 _ ) ) ) i
location via E=| .|, oo E=|0 o o ot =l
goPt = arger_nigxmax(sg(ei)Dflso(ei)) 1 S
R 17 00 - 0 1
= arge?glgBO(ei)D Bo(6i). - T (a)
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With the above choices foE, one then finds the best

location using o

. —T 1=
Goptzargefgg\Amax(E (D(8)) 1E)~ (25)
Similar to Remark 2.2, one finds the initigivia [
y< )\max<E D E) CON

and then performs the location optimization via (25), by
using an extension of Algorithm 1. [4]
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Algorithm 2:
- 3458.

Step L.initialize yo = Amax(ETD1E)
Step 2.for k=0,1,...

(i) select the optimaBo(e'gpt) at iteration level
k, and its associated optimal ga’.BﬁG'gpt) via

APPENDIXA

We first recall the following lemmas required for the
proof of Theorem 1.1:

Lemma A.1 (Bounded Real Lemma[3}):stable system
has an#® norm less thary if and only if there exists a
matrix P > 0 satisfying

ko _ - = W—1E
0 = argerir;gmmax(E (Dk(8)) E) ,

whereDy(6;) £ D+ Bo(6;)Gk(8)B{ (8;), and

1, _ T d
G9'>—Ble'E Ble.ET A'P+PA PB
k( l)_yk(o(l) )(By~(6i)E) BTP Y 0 <o
—B,(6:)DBy ™ (81) c 0 -
(i) set newy by Lemma A.2 (Schur complement formul@ie  block
matrix
-1
—A ET D ek E S11 S12
Yi+1 max( ( k( opt)) )a |: 821 522 )
where whereS;; andS», are symmetric, is positive definite if and
only if
Dk(65p) 2 D+ Bo(Bhp) Gr(B BT (B)
_al 1
denotes the closed loop damping matrix eval- Su>0 and $2-5,8,;$2>0,
uated at the optimal actuator location at itery
ation levelk and at the optimal value of the 1QT
>0 and — > 0.
feedback gain corresponding to the optimal S22 S1— 51251 512
actuator8fj,, and to the optimal boung Lemma A.3 (Finsler's Lemma, [3])Consider matrices

(i) if Yk —Ykr1 > € where g is the a priori
chosen threshold, then continue wikh—
k+1 in step 2, else terminate iteration and

exit with the current valuesi 1,655, and

Gk+1(eE£tl). |.,lBBT -Q>0.
Remark 3.3 (Practical considerations for Algorithm 2): (b) The following condition holds

Before the optimization, one may compute tNeterms
that correspond to each actuator location

B and Q such thatB has full column rank and) = Q".
Then the following statements are equivalent:

(a) There exists a scalar such that

B-QB'T <0.

i=12...,N, If the above statements hold, then all scalaege given by

u>pa AmaX{B+ [Q_ QB'T (BLQB”) - BLQ} B”} .

Proof of Theorem 1.1:By using the following Lyapunov
and thus the computation &(6;) for each iteration level matrix
[ i)

(By "(B)E)(BoM(8)E)T,
and

B,1(6:/)DB,T, i=1,2...,N,

K 0
0 M

can be simplified by simply dividing the first term hy

and subtracting the second term. (A1)
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we have from Lemma A.1 that

0 —K™™M1 K 0
ATP+PA = { | _DTM-1 ] { 0 M } Proof of Theorem 2.1:
K o 0 | (a) Using the 4 bound —D+\—1/BOBS < 0 with D now
+{ 0 M } [ M-k —M-1D } replaced b>D+BoGBg, along with the fact thaBy is
invertible, one has
[0 —KT 0 K S
- K -pT | 7| .k —-p —(D+BoGBO> + VBOBO <0
[0 0 1
-~ |0 -2p ] éBoGBE>§BOBT—D
r 1
_ | KO 0 _|0 =G> -1 —B;'DB;'T.
PB ~|o M}[MlBO}_[BO}’ y °°°
and therefore (b) From —(D+ BoGB]) + iBoB} < 0 and application of
y (0]
0 o0 0 0 Lemma B.1, one has
ATP+PA PB C 0 -2 B B 1
BTP -yl 0 _ I o Po D+ BoGB{ — ~BoB} > 0=
0 Bf -y 0 Y
C 0 -y 0
0 B 0 -y 1N o
- o BO(G—?)B —(-D)>0=
Application of Schur complement formula (Lemma A.2) G—}I - Bo+ {DBOH (BOLDBéT)il BéD—D} BB’T N
with %
0 O 0 0 ) 1 -
Sll:[o o ],312:[ - },szzz_y[ - } G > B |DB; T (B;DB; ") 'B{D-D|Bg
yields +$B§BOBSB§T =

0 0 110 0 0 0
+ - = <0, -1 1
[ 0 -2D } v[ 0 2BoB] } { 0 —2D+2BoBj } G>B [DB&T (BéDBOH) B&D—DWBOBE]BgT,
and after simplification, .
1 where we used the fact thBf Bo = Imxm=B{Bj'. B
-D+ v BoBY <O, (A.2)

which is equivalent to APPENDIXC

Proof of Corollary 2.1: By considering the closed loop

y[ (I) ] [0 1 ]- { _BP Ez)o } >0. system (13) in its state space formulation
0 :
Application of Finsler's lemma (Lemma A.3) provides the X=Aax+BW
bound (5). [ ] z=Cx
with

APPENDIXB

0 I 0
Lemma B.1 (Generalized Finsler's Lemmajonsider Adl = { ~M~'K  —M~1(D+BoGB]) ] , B= { M-1E } ’
matricesM and Q such thatM has full column rank and
Q= Q". Then the following statements are equivalent: C= [ 0 ET ] ,

(a) There exists a symmetric matri such that and using the expression (A.1) fBr the BRL (Lemma A.1)

MXMT —Q > 0. (8.1) VYields )
1 T

(b) The following condition holds *(D+BOGBo) + \7EE <0.

MIQMT <. Part (a) immediately follows. Part (b) follows from
If the above statements hold, then all matridesatisfying D+BOGBE _ }EET >0=
(B.1) are given by Y

- 1
X >M*[Q-QM*T (M-Qm*T) 1MLQ} M*+T, BoGB] — (\f/EET -D)>0=
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-1
G>Bj |E—~EB5" (B§EBoL T) ByE|B§" =
1 -1
G> B} [QEET —EBST (B&EVBOJ_ T) BLE, — D} BT
where

1
E,2 _EE' -D.
y
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