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Abstract 
Using a distributed parameter model for beaver 
population that accounts for their spatial and 
temporal behavior, an optimal control for a desired 
distribution of the animals is presented. Optimal 
solutions are obtained through a “single network 
adaptive critic” (SNAC) neural network 
architecture.  
Keywords: wildlife management, control 

1. Introduction 
Beavers are small mammal species and have a 
strong tendency to create nuisances, mainly by 
building dams on the flowing water thereby 
creating flooding the low land areas, roads, crop 
lands etc. However, the same activities sometimes 
lead to desirable consequences too- like increased 
vegetation, increased water table etc. However, the 
same activities sometimes lead to desirable 
consequences too- like increased vegetation, 
increased water table etc. Because of this 
conflicting situation, an optimal management 
strategy is needed to control their 
population[McKinstry, McTaggart].With the 
assumption that the neighboring land owners have 
a common goal, a distributed parameter model has 
been proposed in [Bhat]. An optimal harvesting 
strategy using this model has also been proposed 
[Bhat, Leinhart].  
The main goal of this research is to design an 
“optimal” beaver harvesting scheme for a region of 
interest. Solving the associated Hamilton-Jacobi-
Bellman (HJB) equation[Bryson] usually demands 
a very large amount of computations. Werbos 
proposed an innovative idea to get around this 
numerical complexity by using an ‘Approximate 
Dynamic Programming (ADP)’ formulation that 
uses two neural networks called adaptive critics. 
This paper uses a variant of the adaptive 
critic[Balakrishnan,Werbos] architecture that is 
named “Single Network Adaptive Critics (SNAC)” 
using a single network. 

 
2.  Model and Controller Objective 
2.1 Beaver Population Model 
Assuming the beaver population distribution to be 
continuous in a territory, the following distributed  
parameter model has been developed in the 
literature for beaver population density [Bhat, 
Lenhart]: 

( ) ( )
( ) ( )
( ) ( )

2 2

1 2

1 2 0 1 2

in ,

, , 0 on ,

, ,0 , in   at 0

f

f

Z
Z aZ bZ PZ o t

t

Z y y t o t

Z y y Z y y t

α∂ = ∇ + − − Ω ×
∂

= ∂Ω ×

= Ω =

      (1)                              

where Z  is the beaver population density in heads 
per square miles ( 2/hd mi ) and P  is the portion of 

Z  to be trapped per year ( 1yr− ), which acts as a 

control variable. α , a , b  are growth parameters 
of the model (their meanings and values are in 

Table 1). Note that the term ( )2aZ bZ−  represents 

the density-dependent annual biological 
productivity of beavers in the absence of 
dispersion. Assuming that the spatial domain 

2Ω ∈ R  and it is a rectangle, 

( ) [ ] [ ]{ }1 2 1 1 2 2, : 0, , 0,y y y y L y LΩ = ∈ ∈� , 

where 1L  and 2L  are the lengths of its sides. ∂Ω  

represents the boundary of Ω  and time ( )0, ft t∈  

and ( )0 1 2,Z y y  represents the initial density 

distribution. Based on a study for the state of New 
York, the parameters of the model [Bhat, Lenhart] 
are given in Table 1. 

Table 1. Beaver Population Model Parameters 

Symbol Meaning Units Value 

a  Maximum rate 
of net 

recruitment 

1yr−  0.335 

b  Density 
dependence of 
beaver stock 

2 1mi hds−

 

0.2066315 

α  Diffusion 
coefficient 

2 1mi yr−

 

725.27 

It is clear from Eq.(1) that the growth (or decay) of 
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depends on the parameters of the model. Reasons 
for the diffusion term in the model include 
migration of two-year olds to set up new colonies, 
migration of the entire colonies for better food 
availability etc. Similarly, decay terms represent 
their natural demise, being eaten by predators, 
diseases due to contaminated water (their habitat is 
always close to water resources) etc.  
2.2 Controller Objective 
The objective of this controller in this study is to 
trap the beavers throughout the territory in an 
optimal way that leads to a desired distribution 

( )*Z y  in the long run.  

2.2.1 Choice of the Desired Distribution 
The territory considered in this paper is a 

forest land and the desired distributions wanted by 

a wildlife manager ( )*Z y  is restricted to satisfy 

the following conditions: 

(i) * 0 in \Z ≥ Ω ∂Ω , * 0Z < is meaningless 

(ii) * 0 onZ = ∂Ω  

(iii) *Z  is continuous and smooth (i.e. 2 *Z∇  
continuous) 

(iv) 2 * */Z Z∇  is finite for Ω ∪ ∂Ω  

Condition (ii) is imposed because the boundary of 
the forest land usually consists of human 
habitation. However, the conditions * 0Z =  and 

( )2 * */Z Z∇  being finite are in conflict. Hence, 

condition 1 is restricted to * 0 in \Z > Ω ∂Ω  

and an approximation for condition (ii) that 
* 0 onZ +→ ∂Ω  is introduced. One such 

approximation is  
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Means of the distributions are selected as 

1 1 2 2/ 2, / 2,L Lµ µ= = 1 1 2 23 / 2, 3 / 2L Lσ σ= = ; 

For continuity in both 1y  and 2y  dimensions, a 

condition ( ) ( )1 1 2 2f fµ µ= is imposed. This leads to 

( )2 1/B A σ σ=  and ( )*
1 2,Z y y becomes 
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Selection of this distribution is found to be good 
enough for this application, even though it does not 
satisfy the boundary condition of the model (see 
Eq.(1)) in a strict sense. For a particular selection 
of the parameter A , the total number of species in a 
rectangular territory having sides 1L  and 2L for 

such a selection of *Z  can be computed as follows. 
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 2.2.2 Feed-forward Controller 
Let *P  be the associated control with *Z  so that 

*Z  remains at steady state. Then from Eq.(1), it is 
clear that *Z  and *P  should satisfy the following 
equation: 

 ( )2 * * * * 0Z Z a bZ Pα ∇ + − − =            (6) 

which leads to 
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              (7) 

Note that the conditions (iii) and (iv) imposed on 
*Z  in Subsection 2.2.1 makes *P  well-behaved. 

By using Eqs.(4) and (7) *P  can be written as: 
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One may observe from Eq.(8) that the steady state 
control *P  is a function of A via the steady state 

*Z .  However since * 0Z →  at the boundary, *P  
is not a function of A at the boundary.  

2.2.3 Deviation Dynamics and Cost Function  

With the availability of the desired final values for 
state *Z  and control *P , *Z Z x+�  and 

*P P u+� , where x  and u  are deviations in state 
and control respectively. Then it follows from 
Eq.(1) that  
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The goal of the controller design now is to cancel 
the deviation terms x  and u  throughout the 
domain. This can be achieved by finding a 
controller that minimizes 

( )1 2 2 2
2 10 0

0

1

2

ft
L L

J qx ru dy dy dt
→∞

= +∫ ∫ ∫     (11)                 

where 0q ≥  and 0r >  are the weights on state 

and control respectively. 

3. Reduced Order Model Development 

3.1 Basis Function Design Based on Proper 
Orthogonal Decomposition (POD) 

Proper Orthogonal Decomposition (POD) is a 
technique of finding an optimal set of basis 
functions, which spans an ensemble of data 
optimally in an average sense. Let 

{ }( ) : 1 ,iU y i N y≤ ≤ ∈Ω  be an ensemble of data, 

consisting of set of N  snapshot solutions 
(observations), of some physical process over the 
domain Ω  at arbitrary instants of time. It is an 
effort to find all possible basis functions Φ , each 
of which provides a local maximum for the 
following figure of merit 
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The problem is reduced to finding eigenvalues and 
eigenvectors where the normalized orthogonal 
eigenvectors are given by 

1 2 N

T
i i i iW w w w =  " .  

The N  basis functions can be written as 

1
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 The eigenspectrum can then be truncated 

judiciously such that 
1 1

N N

j j
j j

σ σ
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�

, where the 

truncated system has N N≤�  eigenvalues and 
eigenvectors.  

3.2 Reduced Order Model: Galerkin Projection 
After obtaining the basis functions, x  and u  are 
expanded as follows 
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Note that: 
•  The principle of Galerkin projection [Holmes] 

is used after substituting Eqs.13-14 in Eqs.(9-

10) to obtain the following reduced-order 
finite-dimensional model for the deviation 
dynamics. 
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               (16) 
Similarly substitutions for x  and u  from Eqs.(13-
14) in the expression for the cost function Eq.(11) 
results in  

( )
0
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2

T TJ X QX U RU dt
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= +∫         (17)  

where  ˆ
N

Q qI= �  and ˆ
N

R rI= �  

3.4 Snapshot Solution Generation 
The spatial domain \Ω ∂Ω  is discretized denoting 

1 11,...,m M=  as the node points along 1y  and 

2 21,...,m M=  as the node points along 2y . Then 

for ( )1 12,..., 1m M= −  and ( )2 22,..., 1m M= −  the 

following ordinary differential equations can be 
written [Gupta]. 
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It is also observed that 
1 2, 0m mx =  for either 

1 11,m M=  or 2 21,m M=  for all time t  (because of 

the boundary conditions). By defining 

1 2 1 22,2 1,2 2, 1 1, 1... ...
T T

M M M MX x x x x− − − −
         

� # " #  

1 2 1 22,2 1,2 2, 1 1, 1... ...
T T

M M M MU u u u u− − − −
         

� # " # , 

the following finite-dimensional approximated 
system dynamics can be written as 
           ( ),X AX BU f X U= + +�                    (19) 

where matrices ,A B  and the function ( ),f X U  

are appropriately defined (we have omitted the 
detailed expressions for brevity). Next the cost 
function was also approximated using this 
discretized system in the form 
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( )
0

1

2
T TJ X QX U RU dt

∞

= +∫         (20) 

where ( ) ( ) ( )( )1 21 2 2 21/ 2 M MQ q y y I − −= ∆ ∆  and 

( ) ( ) ( )( )1 21 2 2 21/ 2 M MR r y y I − −= ∆ ∆ .  
4. Single Network Adaptive Critics (SNAC) 

4.1 Optimality Conditions 
The necessary conditions of optimality for a 
lumped system driven by the system dynamics in 
Eq.(15) and cost function in Eq.(17) is  
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U R B X
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∂ 
         (21) 

where the nk th element of ˆ ˆ/F U ∂ ∂   matrix is 
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The costate equation is given by 
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where the nk th element of ˆ ˆ/F X ∂ ∂   matrix is 

given by 
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F
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∂
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Eq.(15), Eq.(21) and Eq.(23) need to be solved 
simultaneously, along with the boundary 

conditions for optimal control with ( )ˆ 0X  is 

known and ( ) 0ftλ → ∞ = . 

4.2 Neural Network Synthesis Process 

4.2.1 Sate Generation for Training 
Let maxX̂  denote the vector of maximum values for 

ˆ
kX  and minX̂  the vector for minimum values. Then 

fixing a positive constant 0 1ic≤ ≤ , the states 

min max
ˆ ˆ ˆ,k iX c X X ∈   are selected. Let 

{ }min max
ˆ ˆ ˆ ˆ: ,i k k iS X X c X X = ∈   . Then for 

1 2 3c c c≤ ≤ ≤… ,   …⊆⊆⊆ 321 SSS . Hence, 

for some Ii = , 1Ic =  and IS  will include the 

domain of interest for initial conditions. At the 
beginning a small value for the constant 1c  is fixed 

and the networks is trained with these states, 

randomly generated within 1S . Once the critic 

networks converge for this set, a higher value of ic  

s are picked and the network training is continued 

until the set iS  includes domain of interest for the 

initial conditions.  

4.2.2 Training Procedure 

The SNAC training algorithm is described in 
Figure 1. 

 

 
 

Figure 1: Schematic of SNAC synthesis 

4.2.3 Network Structure 

Since 5N =�  for the beaver problem, five critic 
networks are used with kX  as inputs and a 

component of the vector 1kλ +  as the output. For the 

wildlife management problem the network 
architecture is 5,8,1π  where 5,8,1π  means five 

neurons in the input layer, eight neurons in the 
hidden layer and one neuron in the output layer. 
For activation functions, a tangent sigmoid 
function for the input and hidden layers and a 
linear function for the output layer are used. 
Simulation results indicate the network choices 
were adequate. 

5. Numerical Results 

5.1 Selection of Numerical Values 

The values of parameters used in the numerical 
experiments in this study are the same as used in 
[Bhat, Leinhart]. A spatial domain having 

1 62.75L =  miles and 2 112.95L =  miles was 

selected and the grid parameters are 

1 2 12.55y y∆ = ∆ =  miles. The time step 

( )7 / 365t yr∆ =  (one week), means that the 

control solution (rate of beavers to be harvested) is 
updated every one week. For the costhence *N ) in 
Eq.(4), random values were used for 

Critic 
Networks 

Optimal Control 
Equation 

State 
Equation 

Costate 
Equation 

ˆ
kX

1
t
kλ +

ˆ
kU

1
ˆ

kX +

2kλ +

Critic 
Networks 

1 1
a

k kλ λ+ +=
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[ ]min max,A A A∈  where min 10.4 2A π σ=  and 

min 10.5 2A π σ=  in the simulation. 

5.2 Analysis of Results 

The main goal in this study is to drive *Z Z→  and 

in the process drive the control *P P→  for any 
initial condition in the chosen domain of interest.  
A lot of initial profiles were used and simulation 
studies carried out where these conditions were 
met. However, since it is impossible to include a 
number of simulation results (due to space 
constraints),  results for one representative random 
case is presented in Figures 2-9. 

Figures 2 and 3 depict the steady state (or target) 
state and control profiles respectively. In other 
words, starting from any initial condition that has 
been accounted for training the networks, the sate 
and control should converge to these profiles with 
time.  

 
Figure 2: Target profile for state 

 

 
Figure 3: Target profile for control 

The randomly chosen initial condition (for time 
0t = ) for this simulation and the associated 

control computed are shown in Figures 4 and 5 
respectively. 

 
Figure 4: Initial condition for state 

 
Figure 5: Control for the initial condition 

Since it is impossible to show a three dimensional 
surface plot as it evolves, we have included the 
state and control at different time instants. At 6t =  
months the state and control are as in Figures 6 and 
7 respectively.  

 
Figure 6: State at 6t =  months 
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Figure 7: Control at 6t =  months 

To further illustrate the way the state and control 
develop towards their steady state, we have 
included the time histories of the lumped parameter 
states and controls for the state and control 
deviations (see Section 3.2) in Figures 8 and 9 
respectively. 

 
Figure 8: Lumped parameter state histories for the 

state deviation 

 
Figure 9: Lumped parameter control histories for 

the control deviation 

 From Figures 8 and 9 it is clear that the state and 
control converge to their respective targets in about 

two years time and it stays there afterwards. We 
observed this in all of the large number of 
simulations we have carried out. The results in 
Figures 2 through 9 clearly indicate that the control 
design achieved it objective. 

6. Conclusions 

The optimal harvesting technique presented for 
managing the beaver population leads to a healthy 
desired distribution. Hence this strategy will not 
invoke much of opposition from the animal 
conservationist and may be a great tool for a 
wildlife manager. 

Acknowledgement 

Dr. M. G. Bhat, of Florida International University, 
Miami, FL, was quite helpful. This research was 
supported by NSF grants 0201076 and 0324428. 

References 
1. Balakrishnan S. N. and Biega V., Adaptive-

Critic Based Neural Networks for Aircraft 
Optimal Control, J. of Guid., Cont.& 
Dynamics, Vol. 19, 1996, 893-898. 

2. Bhat M. G., Controlling Wildlife Damage by 
Diffusing Beaver Population: A Bioeconomic 
Application of the Distributed Parameter 
Control Model, Ph.D. Dissertation, The 
University of Tennessee, Knoxville, 1991. 

3. Bryson A. E. and Ho Y. C., Applied Optimal 
Control, London: Taylor and Francis, 1975. 

4. Holmes P., Lumley J. L. and Berkooz G., 
Turbulence, Coherent Structures, Dynamical 
Systems and Symmetry, Cambridge University 
Press, 1996, 87-154. 

5. Lenhart S. M. and Bhat M. G., Application of 
Distributed Parameter Control Model in 
Wildlife Damage Control Management, Math. 
Models and Meth. in Applied Sciences, Vol. 4, 
1992, 423-439. 

6. McKinstry M. C. and Anderson S. H., Attitude 
of Private and Public managers in Wyoming, 
USA, Towards Beaver, Environmental 
Management, Vol. 23, 1999, 95-101. 

7. McTaggart S. T. and Nelson T. A., 
Composition and Demographics of Beaver 
(Castor Canadensis) Colonies in Central 
Illinois, American Midland Naturalist, Vol. 
150, 2003, 139-150. 

8. Werbos P. J., Approximate dynamic 
programming for real-time control and neural 
modeling. In White D.A., & Sofge D.A (Eds.), 
Handbook of Intelligent Control, Multiscience 
Press, 1992. 


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP09.1
	Page0: 1598
	Page1: 1599
	Page2: 1600
	Page3: 1601
	Page4: 1602
	Page5: 1603


