
Optimal Control Synthesis of a Class of Nonlinear Systems Using Single
Network Adaptive Critics

Radhakant Padhi 1, Nishant Unnikrishnan 2, S. N. Balakrishnan 3

Department of Mechanical and Aerospace Engineering
University of Missouri – Rolla, MO 65409, USA

Abstract
Adaptive critic (AC) neural network solutions to optimal
control designs using dynamic programming has reduced
the need of complex computations and storage
requirements that typical dynamic programming requires.
In this paper, a “single network adaptive critic”(SNAC) is
presented. This approach is applicable to a class of
nonlinear systems where the optimal control (stationary)
equation is explicitly solvable for control in terms of state
and costate variables. The SNAC architecture offers three
potential advantages; a simpler architecture, significant
savings of computational load and reduction in
approximation errors. In order to demonstrate these
benefits a real-life Micro-Electro-Mechanical-system
(MEMS) problem has been solved. This demonstrates that
the SNAC technique is applicable for complex engineering
systems. Both AC and SNAC approaches are compared in
terms of some metrics.
11 Introduction
It is well-known that the dynamic programming
formulation offers the most comprehensive solution
approach to nonlinear optimal control in a state feedback
form [Bryson]. However, solving the associated Hamilton-
Jacobi-Bellman (HJB) equation demands a very large
(rather infeasible) amount of computations and storage
space. An innovative idea was proposed in [aWerbos] to
get around this numerical complexity by using an
‘Approximate Dynamic Programming (ADP)’ formulation.
The solution to the ADP formulation is obtained through a
dual neural network approach called Adaptive Critic (AC).
In one version of the AC approach, called the Dual
Heuristic Programming (DHP), one network (called the
action network) represents the mapping between the state
and control variables while a second network (called the
critic network) represents the mapping between the state
and costate variables. Optimal solution is reached after the
two networks iteratively train each other successfully. This
DHP process, overcomes the computational complexity
that had been the bottleneck of the dynamic programming
approach. Proofs for both stability of the AC algorithm as
well as the fact that the process will converge to the
optimal control is found in [Liu] for linear systems

1 Postdoctoral Fellow, Email: padhi@umr.edu
2 Ph.D. Student, Email: nu7v3@umr.edu
3 Professor (Contact Person), Email: bala@umr.edu, Tel: 1(573)341-4675,
Fax: 1(573)341-4607

Among many successful uses of this method for
nonlinear control design, we cite [Balakrishnan] in which
the authors have solved an aircraft control problem using
this technique and [Han] where the adaptive critic
technique has been used for agile missile control. Padhi
et al. [a-cPadhi] have extended the applicability of this
technique to distributed parameter systems. There are
various types of AC designs available in literature. An
interested reader can refer to [aProkhorov] for more
details.
In this paper a significant improvement to the adaptive
critic architecture is proposed. It is named Single
Network Adaptive Critic (SNAC) because it uses only
the critic network instead of the action-critic dual
network set up in typical adaptive critic architecture.
SNAC is applicable to a large class of problems for
which the optimal control (stationary) equation is
explicitly solvable for control in terms of state and
costate variables. As an added benefit, the iterative
training loops between the action and critic networks are
no longer required. This leads to significant
computational savings besides eliminating the
approximation error due to action networks.
In literature there is an alternate approach to solving the
optimal control problem using a neural network trained
by a ‘back propagation through time’ (BPTT) approach
[bProkhorov] (an interested reader can find the details of
BPTT in [bWerbos]). Even though the motivation behind
the above mentioned work was to carry out a comparison
study of computational complexity, no ‘quantitative’
comparison was made. In this paper, it is clearly shown
through comparison studies with the typical dual-
network based AC approach why SNAC is better. The
SNAC approach presented in this paper is more control
designer friendly since the neural networks embed more
control theoretic knowledge.
2. Approximate Dynamic Programming
In this section, the principles of approximate (discrete)
dynamic programming, on which both AC and SNAC
approaches rely upon are described. An interested reader
can find more details about the derivations in
[Balakrishnan, aWerbos].
In discrete-time formulation, the aim is to find an
admissible control kU , which causes the system
described by the state equation

()1 ,k k k kX F X U+ = (1)
to follow an admissible trajectory from an initial point

1X to a final desired point NX while minimizing a
desired cost function J given by

 ()
1

1

,
N

k k k
k

J X U
−

=

= Ψ∑ (2)

where the subscript k denotes the time step. kX and kU
represent the 1n× state vector and 1m× control vector,
respectively, at time step k . The functions kF and kΨ are
assumed to be differentiable with respect to both kX and

kU . Moreover, kΨ is assumed to be convex (e.g. a
quadratic function in kX and kU). One can notice that
when N →∞ , this leads to the infinite time problem. The
aim is to find kU as a function of kX , so that the control
can be implemented as a feedback.
Now, the steps in obtaining optimal control are described.
First, the cost function in Eq(20) is rewritten for
convenience to start from time step k as

 ()
1

,
N

k k k k
k k

J X U
−

=

= Ψ∑ � � �
�

 (3)

Then kJ can be split into
 1k k kJ J += Ψ + (4)

where kΨ and
1

1
1

N

k k
k k

J
−

+
= +

= Ψ∑ �
�

 represent the utility function at

time step k and the cost-to-go from time step 1k + to N ,
respectively. The 1n× costate vector at time step k is
defined as

 k
k

k

J
X

λ
∂

=
∂

 (5)

For optimal control (stationary) equation, the necessary
condition for optimality is given by

 0k

k

J
U
∂

=
∂

 (6)

However,
1

1 1 1
1

1

k k k

k k k

T T

k k k k k
k

k k k k k

J J
U U U

X J X
U U X U U

λ

+

+ + +
+

+

 ∂ ∂Ψ ∂
= + ∂ ∂ ∂

 ∂Ψ ∂ ∂ ∂Ψ ∂
= + = + ∂ ∂ ∂ ∂ ∂

 (7)

Thus combining Eqs.(6) and (7), the optimal control
equation can be written as

 1
1 0

T

k k
k

k k

X
U U

λ+
+

 ∂Ψ ∂
+ =

∂ ∂
 (8)

The costate equation is derived in the following way
1

1 1 1

1

1
1

k k k
k

k k k

TT

k k k k k k k

k k k k k k k

T

k k k
k

k k k

J J
X X X

U X X U J
X X U X U X X

X U
X X X

λ

λ

+

+ + +

+

+
+

 ∂ ∂Ψ ∂
= = + ∂ ∂ ∂
 ∂Ψ ∂ ∂Ψ ∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂Ψ ∂ ∂ = + + ∂ ∂ ∂

1
1

T T

k k
k

k k

X
U U

λ+
+

 ∂Ψ ∂ + ∂ ∂

 (9)
Note that by using Eq.(8), on the optimal path, the costate
equation Eq.(9) can be simplified to

1
1

T

k k
k k

k k

X
X X

λ λ+
+

 ∂Ψ ∂
= + ∂ ∂

 (10)

Eqs.(1), (8) and (10) have to be solved simultaneously,
along with appropriate boundary conditions for the
synthesis of optimal control. Some of the broad classes
of problems include fixed initial and final states, fixed
initial state and free final state etc. For infinite time
regulator class of problems, however, the boundary
conditions usually take the form: 0X is fixed and

0Nλ → as N →∞ .
3. Adaptive Critics for Optimal Control
Synthesis
In this section, the process of adaptive critics (AC) for
optimal control synthesis is reviewed. In an AC
framework, two neural networks (called as ‘action’ and
‘critic’ networks) are iteratively trained. After successful
training, these networks capture the relationship between
state and control and state and costate variables
respectively. We review the steps in this section in fair
detail.
3.1 State Generation for Neural Network Training
State generation is an important part of training
procedures for both the AC and the newly-developed
SNAC. For this purpose, define

{ }:i k kS X X Domain of operation= ∈ where the action
and critic networks have to be trained. This is chosen so
that the elements of this set cover a large number of
points of the state space in which the state trajectories are
expected to lie. Obviously it is not a trivial task before
designing the control. However, for the regulator class of
problems, a stabilizing controller drives the states
towards the origin. From this observation, a ‘telescopic
method’ is arrived at as follows.
For 1, 2,i = … define the set iS as { }:i k k iS X X c

∞
= ≤

where, ic is a positive constant. At the beginning, a
small value of 1c is fixed and both the networks are
trained with the states generated in 1S . After
convergence, 2c is chosen such that 2 1()c c> . Then the
networks are trained again for states within 2S and so on.
Values of 1 0.05c = and 1 0.05(1)ic c i= + − for 2, 3,i = "
are used in this study in Subsections 5.2 and 5.3. The
network training is continued until i I= , where IS
covers the domain of interest.
3.2 Neural network training
The training procedure for the action network is as
follows (Figure 1):
1. Generate set iS (see Section 3.1). For each element kX of

iS , follow the steps below:

a. Input kX to the action network to obtain kU

b. Get 1kX + from state Eq.(1) using kX and kU

c. Input 1kX + to the critic network to get 1kλ +

d. Using kX and 1kλ + , calculate t
kU (target kU) from the

optimal control Eq.(8)
2. Train the action network for all kX in iS , the output being

corresponding t
kU .

The steps for training the critic network are as follows
(Figure 1):
1. Generate set iS (see Section 3.1). For each element kX of

iS , follow the steps below:

a. Input kX to the action network to obtain kU

b. Get 1kX + from the state Eq.(1) using kX and kU

c. Input 1kX + to the critic network to get 1kλ +

d. Using kX and 1kλ + , calculate t
kλ from the costate

equation Eq.(10)
2. Train the critic network for all kX in iS , the output being

corresponding t
kλ .

3.3 Convergence Conditions
In order to check the individual convergence of the critic
and action networks, a set of new states, c

iS and target
outputs are generated as described in Section 3.2. Let these
target outputs be t

kλ for the critic network and t
kU for the

action network. Let the outputs from the trained networks
(using the same inputs from the set c

iS) be a
kλ for critic

network and a
kU for action network. Tolerance values ctol

and atol are used as convergence criteria for the critic and
action networks respectively.

Action
System Model

Optimal Control
Equation

e

Critic

System Model

Co-state Equation

Action
Critic

Critic

Action NN Training

e Critic NN Training

kX

kX

t
kλ

a
kλ

1+kX

1+kX 1+kλ

1+kλ

kU

a
kU

t
kU

Figure 1: Adaptive Critic Network Training

The following quantities are defined as relative errors:
()/

k

t a t
c k k ke λ λ λ−� and ()/

k

t a t
a k k ke U U U−� . Also define

{ }, 1, ,
kc ce e k S=� " and { }, 1, ,

ka ae e k S=� " . When

c ce tol< , the convergence criterion for the critic network
training is met and when a ae tol< , the convergence
criterions for the action network is met.
After successful training runs of the action and critic
networks (i.e. after the convergence criterions are met),
cycle error criterion are checked. For the training cycle

1n > , the error is defined as
1

/
n n n nc c c cerr e e e

−
= − and

1
/

n n n na a a aerr e e e
−

= − for the critic and the action networks

respectively. Also by defining
fc c ctol tolβ= , and

fa a atol tolβ= where 0 , 1c aβ β< ≤ , (for 1n >) if both

1n n fc c cerr err tol
−

− < and
1n n fa a aerr err tol
−

− < , the cycle
convergence criterion has been met. Further discussion
on this adaptive critic method can be found in [aWerbos,
Balakrishnan, aPadhi]. Note that this iterative training
cycle will not be needed in the newly-developed SNAC
technique (Section 4).
3.4 Initialization of networks: Pre-training
Note that during the process of action network training,
the critic network is assumed to be optimal and vice
versa. Consequently, there is a need to start with ‘good’
initial weights for the networks to lead to convergence. A
process called “pre-training” is used for this purpose.
This is carried out before starting the AC or SNAC
training cycle. The neural networks are initially trained
with the solution of the linearized problem using the
standard linear quadratic regulator (LQR) theory
[Bryson]. Intuitively, the idea is to start with a solution
that is guaranteed to be ‘close enough to’ the optimal
solution, at least in a small neighborhood of the origin.
This approach is followed in the problems discussed in
Section 5.
4. Single Network Adaptive Critic (SNAC)
Synthesis
In this section, the newly developed single network
adaptive critic (SNAC) technique is discussed in detail.
As mentioned in Section 1, the SNAC technique retains
all powerful features of the AC methodology while
eliminating the action network completely. Note that in
the SNAC design, the critic network captures the
functional relationship between states kX at stage k, and
the costates 1kλ + at (k+1), whereas in the AC design the
critic network captures the relationship between states

kX at stage k, and the costates kλ at stage k. The SNAC
method though is applicable only for problems where the
optimal control equation Eq.(8) is explicitly solvable for
control variable kU in terms of the state variable kX and
costate variable 1kλ + (e.g. Systems that are affine in
control fall into this class if the associated cost function
is quadratic). This is not a hugely restrictive since many
engineering problems such as aerospace, mechanical and
chemical processes fall under this class.
4.1 Neural Network training
The steps in SNAC neural network training are as
follows (Figure 2):
1. Generate iS (see Subsection 3.1). For each element

kX of iS , follow the steps below:
a. Input kX to the critic network to obtain 1 1

a
k kλ λ+ +=

b. Calculate kU , form the optimal control equation since

kX and 1kλ + are known.

c. Get 1kX + from the state Eq.(1) using kX and kU

d. Input 1kX + to the critic network to get 2kλ +

e. Using 1kX + and 2kλ + , calculate 1
t
kλ + from costate

Eq.(10)
2. Train the critic network for all kX in iS ; the output

being corresponding 1
t
kλ + .

3. Check for convergence of the critic network
(Subsection 4.2). If convergence is achieved, revert to
step 1 with 1i i= + . Otherwise, repeat steps 1-2.

4. Continue steps 1-3 this process until i I= .
4.2 Convergence Condition
Convergence check in the SNAC scheme is carried out as
in the AC case. First a set c

iS of states is generated as
explained in Subsection 3.1. Let these target output be

1
t
kλ + and the outputs from the trained networks (using the

same inputs from the set c
iS) be 1

a
kλ + . A tolerance value

tol is used to test the convergence of the critic network.
By defining the relative error ()1 1 1/

k

t a t
c k k ke λ λ λ+ + +−� and

{ }, 1, ,
kc ce e k S=� " . , the training process is stopped when

ce tol< .

 Figure 2: Single Network Adaptive Critic Scheme
4.3 Initialization of Networks: Pre-training
By using the standard discrete Linear Quadratic Regulator
(LQR) theory, the Riccati matrix DS and gain matrix DK
are obtained for use in pretraining[Bryson]. Note that DS
gives the relationship between kX and kλ , whereas the
critic network in the SNAC has to be trained to capture the
functional relationship between kX and 1kλ + . This can be
done by observing that
 1 1k d k d kS X S Xλ + += = � (11)
where ()d d d d dS S A B K−� � . Eq.(11) is to pre-train the
networks.
5. Numerical Results
In this section, numerical results from a representative
problem is reported. The goals of this study are (i) to
investigate the performance of the newly-developed SNAC
controller in stabilizing a nonlinear system and (ii) to
compare quantitatively the computations in using the
SNAC and the AC. A personal computer having a Pentium
III processor with 930 MHz speed and 320 MB of RAM
was used to conduct the numerical experiments. The
software used for training was MATLAB V. 5.2, Release

12. The Neural Network Toolbox V.3.0 in MATLAB
was used with the Levenberg-Marquardt back-
propagation scheme for training the networks.
5.1 Example 1: A Micro-Electro-Mechanical-System
(MEMS) Actuator
5.1.1 Problem statement and optimality conditions
The problem considered in this study is a MEMS device,
namely electrostatic actuator [Senturia]. In addition to
demonstrating the computational advantage, this problem
also proves that the SNAC technique is applicable for
complex engineering systems of practical significance.
The schematic diagram for this problem is as shown in
Figure 3.

Fixed Support

g

Fixed Plate

Spring kDashpot b

Mass m

Resistor R

V in

I

+

-

+

-

Figure 3: Electrostatic Actuator

There are two domains that are interlinked in the
dynamics of the system. One is the electrical domain and
the other is the mechanical domain. The governing
equations are given by

2

0

1 0

() 0
2

in
QgQ V

R A
Qmg bg k g g

A

ε

ε

 − − =

+ + − + =

�

�� �
 (12)

where Q denotes the charge, g the gap between the
plate and the base (0 1g mµ=), and g� represents the rate
of change of the gap when the plate moves. inV is the
input voltage that is used to move the plate to the desired
position. The mass m (1mg=) represents the mechanical
inertia of the moving plate, a dashpot b (0.5 /mg s=)
captures the mechanical damping forces that arise from
the viscosity of the air that gets squeezed when the plate
moves, a spring k (21 /mg s=) represents the stiffness
encountered when the plate actuator moves, a source
resistor R (0.001= Ω) for the voltage source that drives
the transducer. [Senturia]
Defining the state variable 1 2 3[] []T TZ z z z Q g g= = � ,
Eq.(12) can be written as

1 2
1

2 3

2
1

3 3 2 0

1

1 ()
2

in
z z

z V
R A

z z

z
z bz k z g

m A

ε

ε

 = −

=

= − + + −

�

�

�

 (13)

The function of the control input in this problem is to
bring the plate to some desired position, i.e. the gap g
has to be maintained at some desired value. We selected

Critic

Optimal Control
Equation

State Equation Critic

Costate Equation

kX 1
a
kλ +

1
t
kλ +

2kλ +

1kX +

kU

the desired value of the gap as 0.5 mµ . An optimal
controller is designed to drive the plate to the desired
value. At the equilibrium point, 2 0.5, 0z Z= =� . Solving
Eq.(13) for 1 3,z z and inV the values of the states at the
equilibrium (operating) point are obtained as

[]0 10 0.5 0 TZ = and the associated steady state controller
value is given by

0
0.05inV = . Next the deviated state is

defined as 1 2 3 0[]TX x x x Z Z= −� and deviated control

0in inu V V−� . In terms of these variables, the error dynamics
of the system is

1 2 1 2
1

2 3
2

1 1 0
3 2 3

1 ()
2

1 1()
2 2 2

x x x xx u
R A AA

x x

x x k gx kx bx
m A kA

ε εε

ε ε

= − − −

=

= − + + + + + −

�

�

�

 (14)

Now an optimal regulator problem can be formulated to
drive 0X → with a cost function, J as

 ()2

0

1
2

T
w wJ X Q X R u dt

∞

= +∫ (15)

where 0wQ ≥ and 0wR > are weighting matrices for state
and control respectively. As in Subection 5.1, the state
equation and cost function were discretized as follows:

1

1

1

1 1 2 1 2

2 3

2
1 1 2 3 0

3

2

1
2 2 2

k k k k k

k k

k k k k

k

k

k

x x x x xu
R AR R AR A

x X t x

x x kx bx gk
x Am m m m m kmm A

ε εε

ε ε

+

+

+

 − − −

 = + ∆

 − − − − − − +

 (16)
 ()2

1

1
2

N
T
k W k W k

k

J X Q X R u t
→∞

=

= + ∆∑ (17)

Next, using 2() / 2T
k k W k W kX Q X R u tΨ = + ∆ in Eqs.(8) and (10),

the optimal control and costate equation can be obtained as
follows:

 111 k
k wu R

R
λ

+−= − (18)

 1

T

k
k w k k

k

F
t Q X

X
λ λ +

 ∂
= ∆ + ∂

 (19)

5.1.2 Selection of design parameters
For this problem, values of 0.01t∆ = , 3wQ I= and 1wR = ,

0.05a ctol tol= = and 0.01c aβ β= = were chosen and the
domain of the state { }: 1, 1,2,3I iS X x i= ≤ = .The
‘telescopic method’ described in subsection 3.1 was used
for state generation. Each time 1000 points were randomly
selected for training the networks. In SNAC synthesis, the
tolerance value 0.05tol = was used for convergence check.
In the AC synthesis, three sub-networks each having a 3-6-
1 structure were used as critics and a 3-6-1 network was
used as the action network. In each network, hyperbolic

tangent functions for the input and hidden layers and
linear function for the output layer served as activation
functions.
5.1.3 Analysis of results
Simulations were carried out using the same initial
conditions for both AC and SNAC schemes. One set of
initial conditions used was 0[] [9.85 1.5 1]T T

tQ g g = = −� .
Figure 4 shows the trajectory of Q for both AC and
SNAC techniques. Likewise Figures 5 and 6 show g
and g� trajectories respectively. Figure 7 shows the
control trajectory obtained from using the two schemes.

0 5 10 15 20 25
9.8

9.85

9.9

9.95

10

10.05

10.1

10.15

time

C
ha

rg
e

SNAC
AC

 Figure 4: SNAC/AC State 1 trajectories

0 5 10 15 20 25
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

P
os

iti
on

SNAC
AC

 Figure 5: SNAC/AC State 2 trajectories

0 5 10 15 20 25
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time

V
el

oc
ity

SNAC
AC

 Figure 6: SNAC/AC State 3 trajectories

0 5 10 15 20 25
-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

time

C
on

tro
l

SNAC
AC

 Figure 7: Associated control trajectories
Figures 4-6 indicate that both the AC and SNAC
schemes performed well to drive the states to their
respective values. It can be seen from Figure 5 that the

position of the actuator has been forced to the desired
value of 0.5 mµ . The velocity of the plate is driven to the
steady state value of zero and the charge is driven to the
steady state desired value. The control signal in both
schemes drive toward a steady state value and are very
close to each other (Figure 7).
Table 1 gives average training times and standard
deviations for ten independent runs used in the AC scheme
to find the optimal neural controller. (Total
time: 890.33767ACT = seconds). Table 2 gives the average
time taken to train the critic network in the SNAC
methodology. (Total time: 531.40634SNACT = seconds). It
was observed that 0.59SNAC ACT T= , i.e. the training time for
the SNAC method is 59 % of the training time for the AC
technique. Small values of standard deviations once again
indicate that the ten runs were very similar to each other
from computational complexity considerations. The cost
analysis for the two techniques from different initial
conditions for 25ft = shown in Table 3 show that both
schemes are close to each other as expected.

Table 1: Average AC training data

Table 2: Average SNAC training data

Table 3: SNAC/AC Cost comparison for different initial
conditions

Initial condition
X(0)

COST
(SNAC)

COST
(AC)

[-0.15 1 -1]T 3.1964 3.1971

[0.05 -0.5 0.5]T 0.7989 0.7989

[-0.05 0.5 -0.5]T 0.7987 0.799

[0.15 -1 1]T 3.1937 3.194

[0.1 -0.6 0.3]T 0.7994 0.7997

[0.1 0.3 -0.6]T 0.729 0.7292

6. Conclusions
A new single network adaptive critic (SNAC) approach
was presented. This approach is applicable to a wide class
of nonlinear systems. This technique essentially retains all
the powerful properties of a typical adaptive critic (AC)
technique. However, in SNAC the action networks are no
longer needed. As an important additional advantage, the
associated iterative training loops are also eliminated. This
leads to a great simplification of the architecture and

results in substantial computational savings. Besides, it
also eliminates the neural network approximation error
due to the eliminated action networks. Tremendous
computational savings with the SNAC have been
demonstrated by using an interesting example. In
addition, the MEMS problem also demonstrates that it is
applicable for complex engineering systems of practical
significance.

Acknowledgement: This research was supported by NSF
grants 0201076 and 0324428.

References
1. Balakrishnan, S. N. and Biega, V., “Adaptive-

Critic Based Neural Networks for Aircraft Optimal
Control”, Journ. of Guid., Control and Dynamics,
Vol. 19, No. 4, July-Aug. 1996, pp. 893-898.

2. Bryson, A. E. and Ho, Y. C., “Applied Optimal
Control”, Taylor and Francis, 1975.

3. Han, D. and Balakrishnan S. N., “Adaptive Critics
Based Neural Networks for Agile Missile Control”,
Journ. of Guid., Control and Dynamics, Vol.25
,2002, pp.404-407.

4. Liu, X. and Balakrishnan, S. N., “Convergence
Analysis of Adaptive Critic Based Optimal
Control”, Proceedings of the American Control
Conference, 2000, Chicago, USA, pp. 1929-1933.

5. aPadhi, R., “Optimal Control of Distributed
Parameter Systems Using Adaptive Critic Neural
Networks”, 2001, Ph.D. Dissertation, University of
Missouri Rolla.

6. bPadhi, R., Balakrishnan, S. N. and Randolph T.
W., “Adaptive-Critic Based Optimal Neuro Control
Synthesis for Distributed Parameter Systems”,
Automatica, Vol.37, 2001, pp.1223-1234.

7. cPadhi, R. and Balakrishnan, S. N., “Proper
Orthogonal Decomposition Based Neurocontrol
Synthesis of a Chemical Reactor Process Using
Approximate Dynamic Programming”, Neural
Networks, Vol.16 , 2003, pp.719-728.

8. aProkhorov, D.V., and Wunsch, D.C. II, “Adaptive
Critic Designs”, IEEE Transactions on Neural
Networks, Vol.8, 1997, pp.997-1007.

9. bProkhorov, D.V., “Optimal Controllers for
Discretized Distributed Parameter Systems”,
Proceedings of the American Control Conference,
2003, Denver, pp.549-554.

10. Senturia, S. D., “Microsystem Design”, Kluwer
Academic Publishers, 2001.

11. aWerbos, P. J., “Approximate Dynamic
Programming for Real-time Control and Neural
Modeling”. In White D.A., & Sofge D.A (Eds.),
Handbook of Intelligent Control, Multiscience
Press, 1992.

12. bWerbos, P. J., “Backpropagation Through Time:
What it Does and How to Do It”, Proceedings of the
IEEE, Vol.78, No.10, 1990, pp.1550-1560.

 Critic
training and
convergence

check

Action
training and
convergence

check

Cycle
convergence

check

Time
(sec)

203.3852
535.0037 151.9488

Std. dev 0.412157 1.836064 0.234116

 Critic
training

Critic
convergence

check
Time (sec) 477.9031 53.50321

Std. dev 2.204302 0.065727

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control ConferenceBoston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeP08.6
	Page0: 1592
	Page1: 1593
	Page2: 1594
	Page3: 1595
	Page4: 1596
	Page5: 1597

