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Abstract 
Adaptive critic (AC) neural network solutions to optimal 
control designs using dynamic programming has reduced 
the need of complex computations and storage 
requirements that typical dynamic programming requires. 
In this paper, a “single network adaptive critic”(SNAC) is 
presented. This approach is applicable to a class of 
nonlinear systems where the optimal control (stationary) 
equation is explicitly solvable for control in terms of state 
and costate variables. The SNAC architecture offers three 
potential advantages; a simpler architecture, significant 
savings of computational load and reduction in 
approximation errors. In order to demonstrate these 
benefits a real-life Micro-Electro-Mechanical-system 
(MEMS) problem has been solved. This demonstrates that 
the SNAC technique is applicable for complex engineering 
systems. Both AC and SNAC approaches are compared in 
terms of some metrics. 
11 Introduction 
It is well-known that the dynamic programming 
formulation offers the most comprehensive solution 
approach to nonlinear optimal control in a state feedback 
form [Bryson]. However, solving the associated Hamilton-
Jacobi-Bellman (HJB) equation demands a very large 
(rather infeasible) amount of computations and storage 
space. An innovative idea was proposed in [aWerbos] to 
get around this numerical complexity by using an 
‘Approximate Dynamic Programming (ADP)’ formulation. 
The solution to the ADP formulation is obtained through a 
dual neural network approach called Adaptive Critic (AC). 
In one version of the AC approach, called the Dual 
Heuristic Programming (DHP), one network (called the 
action network) represents the mapping between the state 
and control variables while a second network (called the 
critic network) represents the mapping between the state 
and costate variables. Optimal solution is reached after the 
two networks iteratively train each other successfully. This 
DHP process, overcomes the computational complexity 
that had been the bottleneck of the dynamic programming 
approach. Proofs for both stability of the AC algorithm as 
well as the fact that the process will converge to the 
optimal control is found in [Liu] for linear systems 
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Among many successful uses of this method for 
nonlinear control design, we cite [Balakrishnan] in which 
the authors have solved an aircraft control problem using 
this technique and [Han] where the adaptive critic 
technique has been used for agile missile control. Padhi 
et al. [a-cPadhi] have extended the applicability of this 
technique to distributed parameter systems. There are 
various types of AC designs available in literature. An 
interested reader can refer to [aProkhorov] for more 
details.  
In this paper a significant improvement to the adaptive 
critic architecture  is proposed. It is named Single 
Network Adaptive Critic (SNAC) because it uses only 
the critic network instead of the action-critic dual 
network set up in typical adaptive critic architecture. 
SNAC is applicable to a large class of problems for 
which the optimal control (stationary) equation is 
explicitly solvable for control in terms of state and 
costate variables. As an added benefit, the iterative 
training loops between the action and critic networks are 
no longer required. This leads to significant 
computational savings besides eliminating the 
approximation error due to action networks.  
In literature there is an alternate approach to solving the 
optimal control problem using a neural network trained 
by a ‘back propagation through time’ (BPTT) approach 
[bProkhorov] (an interested reader can find the details of 
BPTT in [bWerbos]). Even though the motivation behind 
the above mentioned work was to carry out a comparison 
study of computational complexity, no ‘quantitative’ 
comparison was made. In this paper, it is clearly shown 
through comparison studies with the typical dual-
network based AC approach why SNAC is better. The 
SNAC approach presented in this paper is more control 
designer friendly since the neural networks embed more 
control theoretic knowledge.  
2. Approximate Dynamic Programming 
In this section, the principles of approximate (discrete) 
dynamic programming, on which both AC and SNAC 
approaches rely upon are described. An interested reader 
can find more details about the derivations in 
[Balakrishnan, aWerbos].  
In discrete-time formulation, the aim is to find an 
admissible control kU , which causes the system 
described by the state equation   

( )1 ,k k k kX F X U+ =                   (1) 
to follow an admissible trajectory from an initial point 

1X  to a final desired point NX  while minimizing  a 
desired cost function J  given by 
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where the subscript k  denotes the time step. kX  and kU  
represent the 1n×  state vector and 1m×  control vector, 
respectively, at time step k . The functions kF  and kΨ  are 
assumed to be differentiable with respect to both kX  and 

kU . Moreover, kΨ  is assumed to be convex (e.g. a 
quadratic function in kX  and kU ). One can notice that 
when N →∞ , this leads to the infinite time problem. The 
aim is to find kU  as a function of kX , so that the control 
can be implemented as a feedback.  
Now, the steps in obtaining optimal control are described. 
First, the cost function in Eq(20) is rewritten for 
convenience to start from time step k  as 
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Then kJ  can be split into  
                   1k k kJ J += Ψ +                                  (4)  
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 represent the utility function at 

time step k  and the cost-to-go from time step 1k +  to N , 
respectively.  The 1n×  costate vector at time step k  is 
defined as 
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For optimal control (stationary) equation, the necessary 
condition for optimality is given by  
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Thus combining Eqs.(6) and (7), the optimal control 
equation can be written as 
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The costate equation is derived in the following way 
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Note that by using Eq.(8), on the optimal path, the costate 
equation Eq.(9) can be simplified to 
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Eqs.(1), (8) and (10) have to be solved simultaneously, 
along with appropriate boundary conditions for the 
synthesis of optimal control. Some of the broad classes 
of problems include fixed initial and final states, fixed 
initial state and free final state etc. For infinite time 
regulator class of problems, however, the boundary 
conditions usually take the form: 0X is fixed and 

0Nλ →  as N →∞ . 
3. Adaptive Critics for Optimal Control 
Synthesis 
In this section, the process of adaptive critics (AC) for 
optimal control synthesis is reviewed. In an AC 
framework, two neural networks (called as ‘action’ and 
‘critic’ networks) are iteratively trained. After successful 
training, these networks capture the relationship between 
state and control and state and costate variables 
respectively. We review the steps in this section in fair 
detail. 
3.1 State Generation for Neural Network Training 
State generation is an important part of training 
procedures for both the AC and the newly-developed 
SNAC. For this purpose, define 

{ }:i k kS X X Domain of operation= ∈  where the action 
and critic networks have to be trained. This is chosen so 
that the elements of this set cover a large number of 
points of the state space in which the state trajectories are 
expected to lie. Obviously it is not a trivial task before 
designing the control. However, for the regulator class of 
problems, a stabilizing controller drives the states 
towards the origin. From this observation, a ‘telescopic 
method’ is arrived at as follows. 
For 1, 2,i = … define the set iS  as { }:i k k iS X X c

∞
= ≤  

where, ic  is a positive constant. At the beginning, a 
small value of  1c  is fixed and both the networks are 
trained with the states generated in 1S . After 
convergence, 2c  is chosen such that 2 1( )c c> . Then the 
networks are trained again for states within 2S  and so on. 
Values of 1 0.05c =  and 1 0.05( 1)ic c i= + −  for 2, 3,i = "  
are used in this study in Subsections 5.2 and 5.3. The 
network training is continued until i I= , where IS  
covers the domain of interest. 
3.2 Neural network training 
The training procedure for the action network is as 
follows (Figure 1): 
1. Generate set iS  (see Section 3.1). For each element kX of 

iS , follow the steps below: 

a. Input kX to the action network to obtain kU  

b. Get  1kX +  from state Eq.(1) using kX  and kU  

c. Input 1kX +  to the critic network to get 1kλ +  



 

d. Using kX  and 1kλ + , calculate t
kU  (target kU ) from the 

optimal control Eq.(8) 
2. Train the action network for all  kX in iS , the output being 

corresponding t
kU . 

The steps for training the critic network are as follows 
(Figure 1): 
1. Generate set iS  (see Section 3.1). For each element kX  of 

iS , follow the steps below: 

a. Input kX to the action network to obtain kU  

b. Get 1kX +  from the state Eq.(1) using kX  and kU  

c. Input 1kX +  to the critic network to get 1kλ +  

d. Using kX  and 1kλ + , calculate t
kλ from the costate 

equation Eq.(10) 
2. Train the critic network for all  kX  in iS , the output being 

corresponding t
kλ .  

3.3 Convergence Conditions 
In order to check the individual convergence of the critic 
and action networks, a set of new states, c

iS  and target 
outputs are generated as described in Section 3.2. Let these 
target outputs be t

kλ  for the critic network and t
kU  for the 

action network. Let the outputs from the trained networks 
(using the same inputs from the set c

iS ) be a
kλ  for critic 

network and a
kU  for action network. Tolerance values ctol  

and atol   are used as convergence criteria for the critic and 
action networks respectively. 
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Figure 1: Adaptive Critic Network Training 

The following quantities are defined as relative errors: 
( )/
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{ }, 1, ,
kc ce e k S=� "  and { }, 1, ,

ka ae e k S=� " . When 

c ce tol< , the convergence criterion for the critic network 
training is met and when a ae tol< , the convergence 
criterions for the action network is met.  
After successful training runs of the action and critic 
networks (i.e. after the convergence criterions are met), 
cycle error criterion are checked. For the training cycle 

1n > , the error is defined as 
1

/
n n n nc c c cerr e e e

−
= −  and 

1
/

n n n na a a aerr e e e
−

= −  for the critic and the action networks 

respectively. Also by defining 
fc c ctol tolβ= , and 

fa a atol tolβ=  where 0 , 1c aβ β< ≤ , (for 1n > ) if both 

1n n fc c cerr err tol
−

− <  and 
1n n fa a aerr err tol
−

− < , the cycle 
convergence criterion has been met. Further discussion 
on this adaptive critic method can be found in [aWerbos, 
Balakrishnan, aPadhi]. Note that this iterative training 
cycle will not be needed in the newly-developed SNAC 
technique (Section 4).  
3.4 Initialization of networks: Pre-training 
Note that during the process of action network training, 
the critic network is assumed to be optimal and vice 
versa. Consequently, there is a need to start with ‘good’ 
initial weights for the networks to lead to convergence. A 
process called “pre-training” is used for this purpose. 
This is carried out before starting the AC or SNAC 
training cycle. The neural networks are initially trained 
with the solution of the linearized problem using the 
standard linear quadratic regulator (LQR) theory 
[Bryson]. Intuitively, the idea is to start with a solution 
that is guaranteed to be ‘close enough to’ the optimal 
solution, at least in a small neighborhood of the origin. 
This approach is followed in the problems discussed in 
Section 5.  
4. Single Network Adaptive Critic (SNAC) 
Synthesis 
In this section, the newly developed single network 
adaptive critic (SNAC) technique is discussed in detail. 
As mentioned in Section 1, the SNAC technique retains 
all powerful features of the AC methodology while 
eliminating the action network completely. Note that in 
the SNAC design, the critic network captures the 
functional relationship between states kX at stage k, and 
the costates 1kλ + at (k+1), whereas in the AC design the 
critic network captures the relationship between states 

kX at stage k, and the costates kλ at stage k. The SNAC 
method though is applicable only for problems where the 
optimal control equation Eq.(8) is explicitly solvable for 
control variable kU  in terms of the state variable kX  and 
costate variable 1kλ +  (e.g. Systems that are affine in 
control fall into this class if the associated cost function 
is quadratic). This is not a hugely restrictive since many 
engineering problems such as aerospace, mechanical and 
chemical processes fall under this class.  
4.1 Neural Network training 
The steps in SNAC neural network training are as 
follows (Figure 2): 
1. Generate iS  (see Subsection 3.1). For each element 

kX  of iS , follow the steps below: 
a. Input kX to the critic network to obtain 1 1

a
k kλ λ+ +=  

b. Calculate kU , form the optimal control equation since 

kX  and 1kλ +  are known. 

c. Get 1kX + from the state Eq.(1) using kX  and kU  



 

d. Input 1kX +  to the critic network to get 2kλ +  

e. Using 1kX +  and 2kλ + , calculate 1
t
kλ +  from costate 

Eq.(10) 
2. Train the critic network for all  kX  in iS ; the output 

being corresponding 1
t
kλ + . 

3. Check for convergence of the critic network 
(Subsection 4.2). If convergence is achieved, revert to 
step 1 with 1i i= + . Otherwise, repeat steps 1-2.  

4. Continue steps 1-3 this process until  i I= . 
4.2 Convergence Condition 
Convergence check in the SNAC scheme is carried out as 
in the AC case. First a set c

iS  of states is generated as 
explained in Subsection 3.1.  Let these target output be 

1
t
kλ + and the outputs from the trained networks (using the 

same inputs from the set c
iS ) be 1

a
kλ + . A tolerance value 

tol  is used to test the convergence of the critic network. 
By defining the relative error ( )1 1 1/

k

t a t
c k k ke λ λ λ+ + +−�  and 

{ }, 1, ,
kc ce e k S=� " . , the training process is stopped when 

ce tol< .

 
 
    Figure 2: Single Network Adaptive Critic Scheme 
4.3 Initialization of Networks: Pre-training 
By using the standard discrete Linear Quadratic Regulator 
(LQR) theory, the Riccati matrix DS  and gain matrix DK  
are obtained for use in pretraining[Bryson]. Note that DS  
gives the relationship between kX and kλ , whereas the 
critic network in the SNAC has to be trained to capture the 
functional relationship between kX and  1kλ + . This can be 
done by observing that  
          1 1k d k d kS X S Xλ + += = �                                 (11) 
where ( )d d d d dS S A B K−� � . Eq.(11) is to pre-train the 
networks. 
5. Numerical Results 
In this section, numerical results from a representative 
problem is reported. The goals of this study are (i) to 
investigate the performance of the newly-developed SNAC 
controller in stabilizing a nonlinear system and (ii) to 
compare quantitatively the computations in using the 
SNAC and the AC. A personal computer having a Pentium 
III processor with 930 MHz speed and 320 MB of RAM 
was used to conduct the numerical experiments. The 
software used for training was MATLAB V. 5.2, Release 

12. The Neural Network Toolbox V.3.0 in MATLAB 
was used with the Levenberg-Marquardt back-
propagation scheme for training the networks. 
5.1 Example 1: A Micro-Electro-Mechanical-System 
(MEMS) Actuator 
5.1.1 Problem statement and optimality conditions 
The problem considered in this study is a MEMS device, 
namely electrostatic actuator [Senturia]. In addition to 
demonstrating the computational advantage, this problem 
also proves that the SNAC technique is applicable for 
complex engineering systems of practical significance.  
The schematic diagram for this problem is as shown in 
Figure 3. 
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Figure 3: Electrostatic Actuator 

There are two domains that are interlinked in the 
dynamics of the system. One is the electrical domain and 
the other is the mechanical domain. The governing 
equations are given by 
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where Q  denotes the charge, g  the gap between the 
plate and the base ( 0 1g mµ= ), and g�  represents the rate 
of change of the gap when the plate moves. inV  is the 
input voltage that is used to move the plate to the desired 
position. The mass m ( 1mg= ) represents the mechanical 
inertia of the moving plate, a dashpot b  ( 0.5 /mg s= ) 
captures the mechanical damping forces that arise from 
the viscosity of the air that gets squeezed when the plate 
moves, a spring k ( 21 /mg s= )  represents the stiffness 
encountered when the plate actuator moves, a source 
resistor R  ( 0.001= Ω )  for the voltage source that drives 
the transducer. [Senturia]  
Defining the state variable 1 2 3[ ] [ ]T TZ z z z Q g g= = � , 
Eq.(12) can be written as 
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The function of the control input in this problem is to 
bring the plate to some desired position, i.e. the gap g  
has to be maintained at some desired value. We selected 
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the desired value of the gap as 0.5 mµ . An optimal 
controller is designed to drive the plate to the desired 
value. At the equilibrium point, 2 0.5, 0z Z= =� . Solving 
Eq.(13) for 1 3,z z  and inV  the values of the states at the 
equilibrium (operating) point  are obtained as 

[ ]0 10 0.5 0 TZ = and the associated steady state controller 
value is given by 

0
0.05inV = .  Next the deviated state is 

defined as 1 2 3 0[ ]TX x x x Z Z= −�  and deviated control 

0in inu V V−� . In terms of these variables, the error dynamics 
of the system  is 
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          (14)  

Now an optimal regulator problem can be formulated to 
drive 0X →  with a cost function, J as 

          ( )2
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1
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T
w wJ X Q X R u dt

∞

= +∫                           (15) 

where 0wQ ≥ and 0wR >  are weighting matrices for state 
and control respectively. As in Subection 5.1, the state 
equation and cost function were discretized as follows:  
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Next, using 2( ) / 2T
k k W k W kX Q X R u tΨ = + ∆  in Eqs.(8) and (10), 

the optimal control and costate equation can be obtained as 
follows: 

                 111 k
k wu R

R
λ

+−= −                          (18) 
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5.1.2 Selection of design parameters 
For this problem, values of 0.01t∆ = , 3wQ I=  and 1wR = , 

0.05a ctol tol= =  and 0.01c aβ β= =  were chosen and the 
domain of the state { }: 1, 1,2,3I iS X x i= ≤ = .The 
‘telescopic method’ described in subsection 3.1 was used 
for state generation. Each time 1000 points were randomly 
selected for training the networks. In SNAC synthesis, the 
tolerance value 0.05tol = was used for convergence check. 
In the AC synthesis, three sub-networks each having a 3-6-
1 structure were used as critics and a 3-6-1 network was 
used as the action network. In each network, hyperbolic 

tangent functions for the input and hidden layers and 
linear function for the output layer served as activation 
functions. 
5.1.3 Analysis of results 
Simulations were carried out using the same initial 
conditions for both AC and SNAC schemes. One set of 
initial conditions used was 0[ ] [9.85 1.5 1]T T

tQ g g = = −� .  
Figure 4 shows the trajectory of Q  for both AC and 
SNAC techniques. Likewise Figures 5 and 6 show g  
and g� trajectories respectively. Figure 7 shows the 
control trajectory obtained from using the two schemes.  
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         Figure 4: SNAC/AC State 1 trajectories 
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              Figure 5: SNAC/AC State 2 trajectories 
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            Figure 6: SNAC/AC State 3 trajectories 
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           Figure 7: Associated control trajectories 
Figures 4-6 indicate that both the AC and SNAC 
schemes performed well to drive the states to their 
respective values. It can be seen from Figure 5 that the 



 

position of the actuator has been forced to the desired 
value of 0.5 mµ . The velocity of the plate is driven to the 
steady state value of zero and the charge is driven to the 
steady state desired value. The control signal in both 
schemes drive toward a steady state value and are very 
close to each other (Figure 7). 
Table 1 gives average training times and standard 
deviations for ten independent runs used in the AC scheme 
to find the optimal neural controller. (Total 
time: 890.33767ACT = seconds). Table 2 gives the average 
time taken to train the critic network in the SNAC 
methodology. (Total time: 531.40634SNACT =  seconds). It 
was observed that 0.59SNAC ACT T= , i.e. the training time for 
the SNAC method is 59 %  of the training time for the AC 
technique.  Small values of standard deviations once again 
indicate that the ten runs were very similar to each other 
from computational complexity considerations. The cost 
analysis for the two techniques from different initial 
conditions for 25ft =   shown in Table 3 show that both 
schemes are close to each other as expected.  

Table 1: Average AC training data 

Table 2: Average SNAC training data 
 
 
 
 
 
 

Table 3: SNAC/AC Cost comparison for different initial 
conditions 

Initial condition 
X(0) 

COST 
(SNAC) 

COST 
(AC) 

[-0.15 1 -1]T 3.1964 3.1971 

[0.05 -0.5 0.5]T 0.7989 0.7989 

[-0.05 0.5 -0.5]T 0.7987 0.799 

[0.15 -1 1]T 3.1937 3.194 

[0.1 -0.6 0.3]T 0.7994 0.7997 

[0.1 0.3 -0.6]T 0.729 0.7292 

6. Conclusions 
A new single network adaptive critic (SNAC) approach 
was presented. This approach is applicable to a wide class 
of nonlinear systems. This technique essentially retains all 
the powerful properties of a typical adaptive critic (AC) 
technique. However, in SNAC the action networks are no 
longer needed. As an important additional advantage, the 
associated iterative training loops are also eliminated. This 
leads to a great simplification of the architecture and 

results in substantial computational savings. Besides, it 
also eliminates the neural network approximation error 
due to the eliminated action networks. Tremendous 
computational savings with the SNAC have been 
demonstrated by using an interesting example. In 
addition, the MEMS problem also demonstrates that it is 
applicable for complex engineering systems of practical 
significance. 
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