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A LuGre Tire Friction Model with Exact Aggregate Dynamics

Panagiotis Tsiotras*, Efstathios Velenis* and Michel Sorine**

Abstract— The LuGre dynamic point contact friction model
for the two-dimensional translation of a body on a surface has
been used in the past to derive a model for the friction forces
and moments at the contact patch of a tire. The resulting
tire friction model is distributed, described by a set of partial
differential equations. Several approximations have been used
in the literature to approximate this distributed model using
a set of ordinary differential equations, making the model
appropriate for control design and on-line estimation. In this
paper the method of moments is used to derive a set of
ordinary differential equations to describe the exact average
dynamics of the distributed model. Three cases of normal
load distribution are considered and compared: uniform,
trapezoidal and cubic load distribution. Simulations are also
presented to compare with existing approximate steady-state
lumped models.

I. INTRODUCTION

In the past several years, the problem of modeling and
predicting tire friction has become an area of intense
research in the automotive community. Knowledge of the
friction characteristics is necessary for the development of
control systems such as the ABS, TCS, ESP, etc. which have
enhanced safety and maneuverability of modern wheeled
vehicles.

Recently, a new class of tire friction models has been
developed that capture the dynamic behavior of friction
forces—the so-called ‘“dynamic tire friction models”. A
model for the longitudinal friction forces of a tire, based
on dynamic elastoplastic friction model is presented in [1]
and extended to the longitudinal/lateral motion in [2], [3].
Slightly different in spirit is the work in [4] where a static
map of relative velocity to friction and the dynamics of slip
and slip angle were used to predict tire friction forces, by
taking into consideration the effects of length relaxation.
The longitudinal LuGre tire friction model, initially intro-
duced in [5] and later corrected and improved upon in [6]
and [7], was based on a dynamic visco-elastoplastic friction
model for point contact initially introduced in [8]. The
LuGre tire friction model for combined longitudinal/lateral
motion first appeared in [9], [10].

In [11] the LuGre tire friction model for combined longitu-
dinal/lateral motion was developed taking into account all
aspects neglected in [9], [10], that is, coupling of the forces
in longitudinal and lateral directions (neglected in [9]), tire
anisotropy (neglected in [10]) and rim rotation (neglected in
both [9] and [10]). In addition, a solid mathematical justifi-
cation for the introduction of dynamic friction models based
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on fundamental physical properties of the friction forces,
such as dissipativity and maximality of the dissipation rate,
as in [12], was provided.

The major advantage of the LuGre dynamic tire friction
model compared to the one of [2], [3] is its simpler
lumped form. The term lumped form refers to the model’s
description by a set of ordinary differential equations. Both
models in [2], [3] and the LuGre tire friction model were
derived initially as distributed models described by a partial
differential equation. The lumped model in [2], [3] was
derived using a finite element approach, resulting in a
system with a potentially large number of states. In [9], [10],
[11] the lumped LuGre tire model for longitudinal/lateral
motion was derived by introducing the mean states along
the length of the contact patch, the behavior of which can
be described by a system of three ordinary differential
equations. These equations give the forces and aligning
moment at the contact patch of the tire. The lumped form
makes the model more suitable for the development and
implementation of on-line estimation and control algorithms
[13], [14]. The main objective of the lumped model in
[9], [10], [11] was to capture the steady-state behavior of
the distributed model exactly. Therefore, the lumped LuGre
model in [9], [10], [11] does not offer any guarantees on
the accuracy of the transient behavior when compared to
the distributed model.

In this paper, the derivation of the lumped LuGre tire
model is revisited, this time using the method of moments
formulation [15], [16] and captures the exact dynamics of
the distributed model. This allows one to validate the as-
sumptions used in the literature for the derivation of simpler,
low order, steady-state lumped models. In the first section
of this paper the distributed LuGre tire model is reviewed.
Next, the essential definitions of the method of moments
are provided and the exact lumped model is derived for
three specific cases of normal load distribution, namely,
uniform, trapezoidal and cubic distribution. At the end of
the paper numerical simulations are presented to compare
the dynamic behavior of the simplified low order lumped
models of [9], [10], [11] with the aggregate dynamics of
the distributed model.

II. THE DISTRIBUTED LUGRE DYNAMIC TIRE
FRICTION MODEL

The distributed LuGre tire friction model for combined
longitudinal/lateral motion was derived in [11] by apply-
ing the point contact LuGre friction model (for the two-
dimensional translation of a body on a surface) on the
contact patch of a tire. In order to take into consideration
the fact that undeformed tire elements enter the contact
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patch as the tire rotates, the contact patch was divided into
infinitesimal stripes d¢ along the length of the contact patch
(Fig. 1). The point contact model was then applied to the
tire elements in each of the infinitesimal stripes resulting in
a distributed model described by a set of partial differential
equations, with time ¢ and longitudinal position on the patch
¢ being the independent variables.

Fig. 1. Frame of reference and velocities at the contact patch. Derivation
of the distributed tire model.

The distributed tire model is summarized in the following
equations [11]

dzi(t,()  0z(t,() 0zi(t, ¢)
a ot orl=5¢
- Uri(t)*c()i(vr>zi(t7<)v i:l’,y (1)
wi(t,¢) = *%i%(ﬁ()*ﬁi%
*(721}M,(t)7 Z:‘T7y (2)
L
F(t) = /0 it OfOdC, i=zy O
L L
w0 = - [Cm0n© (5-c)a @

By z;(t,¢), i = z,y, we denote the internal friction states
[11] which correspond to the elastic deformations of the tire
element at time ¢ and position ¢ on the contact patch, along
the longitudinal = and lateral y directions. In accordance to
the above discussion, the boundary condition for equations
(1) is z;(t,0) = 0. That is, the tire fiber is undeflected as it
enters the patch. The constants og;, ¢ = x, ¥y, correspond to
the stiffness of the tire elements in the x and y directions,
while oy; and oy; are damping constants for the friction
coefficient p;(¢, ). The functions Cy;(v,) characterize the
steady-state characteristics of the model. For more details
the reader is referred to [11]. For a tire with the same
static friction characteristics along the longitudinal and
lateral directions, as the one considered in [10], the Cp;(v;)
function is given by

|Ur|00i

Coi(vr) = g(vr)

=y (&)

where,

g(vr) = Uk + (,LLS — /,[/k)ei( ‘Z:‘ )’Y. (6)

In (6) px and s denote the kinetic and static Coulomb fric-
tion coefficients, respectively, and v, denotes the Stribeck

characteristic velocity [8]. The parameter 7 is used to
achieve desirable steady-state behavior of the tire friction
[71.

The function f,(¢) in (3) denotes the normal load
distribution along the contact patch. The relative velocity
components of the contact patch with respect to the road
v, (1= x,y), appear as inputs to the system of equations
(1)-(4) and are given by

Vpy = wr —vcos(a), (7

Uy = —usin(a), (8)

where w is the angular rate of the tire and r its radius. By
v we denote the magnitude of the translational speed of the
wheel and by « the slip angle (Fig. 1). By v,. we denote the
Uiy + 02y
The output of the model is the longitudinal F,(¢) and lateral
F,(t) friction forces at the center of the patch as well as
the aligning moment M., (t).

In the following sections we present a methodology for
expressing the exact dynamics of the distributed model (1)-
(4) by a set of ordinary differential equations instead of the
partial differential equation (1), for several special cases of
the normal load distribution f,, ().

vector sum of vy, and v, and thus |v,| =

III. EXACT LUMPED MODEL USING THE METHOD OF
MOMENTS

Define the pth moment of z;(¢, ¢) for ¢ € [a b] as follows

b
M2 (1) = / (t,0)CPAC, i =y ©)

Taking the time derivative of M b yields,

|/ e erac

Integrating by parts, (10) gives a recursive formula for the
calculation of all moments My for p > 1

‘rab
Mp,i (t)

(10)

M;;ﬂ; = %Wz — Coi(vr) M5
oz, O]+ lorlpMg, Ay
For p =0 (11) gives
Mg; = (b—a)vr — Coi(vy) Mg,
—fwr|(z:(t,0) - z(ta)  (2)

Given any normal load distribution f,,({), we can approxi-
mate f,, with a Taylor series as follows

Q)= > et
k=0

13)
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for some constants cg, c1, ..., ¢y,. Note that the total normal
load on the contact patch is given by

L

Fo= [ e (14)
0

Using the moments M %, the friction forces F;(t), i = x,y

in (3) can be written as follows

m m
E OL § : ‘rOL

Fl(t) = —00; CkMk,i — 014 CkMk,i — JQZ'UM'Fn
k=0 k=0

Finally, the aligning torque M. (¢) in (4) can be written in
terms of the moments M;}lz as

L

M) = -

L
Fy(t) + U2y”ry/0 fn(€)¢d¢

m m
0L ‘rOL
+0o0y E CkMk+17y + 01y E CkMk+17y
k=0 k=0

A. Closure Relationship

Equations (11), (12) require the time history of the
internal friction states z;(¢,¢) for fixed positions on the
contact patch ( = (p, namely, (, = a and (5 = b. In
this section we discuss the calculation of these terms.
Going back to the original partial differential equation (1)
let us consider the characteristics given by

ot _y o€

t=t = ith

(), ¢=C(s), with =1, =
Let the characteristic y(s) = ((¢(s)) starting from ¢ = 0 at
time ¢ — 7 for some (still unknown) 7 and ending at = (j
at time ¢. Then

= |wr|.

Fig. 2. Solution z; (¢, ¢) along the characteristic y(s) = {(t(s)).

t
w0 = [ lerloo (15)
t—1
and y(t) = (o. Hence,
t
o = [ lwrlo)do (16)
t—T1

Let us follow the solution along the characteristic (Fig. 2).
To this end, define &;(t) := z;(¢,y(t)). Thus,
; Jz; 0z Oy
i(t) = a, — Uri — C i(vr)&i(t
&) = 5 + G gr = vrs — Coslo ()

with initial condition
§it—7)=z(t—Ty(t—7)) =2t —-7,0)=0.
Finally, z;(t, (o) = &;(t) and 7 is such that (16) holds.

IV. THE EFFECT OF NORMAL FORCE DISTRIBUTION
A. Exact Lumped Model for Uniform Load Distribution

The uniform load distribution f,,(¢) = ¢g is derived from
(13) with m = 0 while in equations (11) and (12) we
substitute @ = 0 and b = L. The dynamics of friction
are described by five ordinary differential equations with
states MJ%, Mg from equation (12), M{% from equation
(11) with p = 1 and 2, (¢, L), z,(t, L) from equation (17).
A methodology for choosing realistic initial conditions is
discussed in Section IV-D.

a7)

B. Exact Lumped Model for Trapezoidal Load Distribution

In order to reproduce realistic aligning moment charac-
teristics a non-symmetric normal load distribution should
be used. In [10] a trapezoidal normal load distribution was
introduced. In this case the function f,(¢) is given by

Ci¢ for 0<(<aq,
fn(Q) =1 fmax for a<({<pB, (18)
CoC+C5 for [B< (<L

The normal load distribution above is only piecewise
smooth. In this case, it is necessary to define different
moments of z;(t, () for different areas of the contact patch,
ie. MO(t) for ¢ € [0 af, M (t) for ¢ € (o ) and
Mﬁ L(t) for ¢ € [3 L]. Thus, the dynamics of friction are
described by a set of nineteen ordinary differential equations
with states z;(t, @), z(t, 8) and z(t, L), Mg$, Mg‘f and
Mé% f from equation (12), Mﬂ‘j‘ and Mlﬁ f from equation
(11), with i = 2,y and finally M2, M{ and ME™ again
from equation (11). The calculation of z;(t, «), z;(t, 3) and
z;(t, L) is done in accordance to the discussion of Section
III-A using equation (17). The choice of initial conditions
is discussed in Section IV-D.

The lumped forces are now given by

Fi(t) = —oivri Fy,
—0i (CLMS + fnax MG + CoM{T + CyM[E)
—o1i (CLNYS + funas M7 + CoMIE + CoMPE) (19)
and the aligning torque by
L L
M. (t) = _§Fy + U2yvry/ fa(€)¢d¢
0

0y (CLMES + fma M) + CoMEE + CyM{E)

1y (CLMSG + funas M) + CoNIL + CoNIPL ) (20)
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C. Exact Lumped Model for a Cubic Load Distribution

In this section we introduce another approximation for
the normal load distribution at the contact patch. The cubic
normal load distribution (Fig. 3) is derived from (13) for
m = 3:

fn(Q) = e3C® 4+ 2t + 1 + o (21)

Using this approximation, one is able to incorporate the
effects of the pneumatic trail, resulting in realistic aligning
torque predictions, as well as the natural boundary con-
ditions of the normal load distribution, i.e. f,(¢ = 0) =
fn(¢C = L) = 0. In addition, the proposed expression is
smooth along the whole length of the contact patch and the
pth moment of z;(¢,¢) from ( = 0to ( = L, Mgf, may
be used. Thus, we avoid splitting the integral (10) as was
done for the trapezoidal distribution. This also results in a
smaller number of states (and differential equations).

It can be easily shown that in this case the dynamics of
the tire friction are described by a set of eleven ordinary
differential equations with states z, (¢, L) and z, (¢, L) from
equation (17), Mg% and M]% with p = 0,1,...,3 from
equations (11) and (12) and M, fﬁg from equation (11). Once
again, the choice of initial conditions is discussed in Section
IV-D.

1T N — Cubic
' S - - Trapezoidal

O

0 ¢

Fig. 3. Trapezoidal and Cubic normal load distributions

D. Initial Conditions

The initial condition &;(0) = 2;(0,¢p) in (17) can be
calculated easily by integrating (17) from ¢ = —7 to ¢t = 0,
where

Go
T = .
jwr|
Under the assumption that during this period v, w and «

are constant, one obtains
(1-

g(t - 0) - OOQL}E;V)

Substituting 7 from (22) in (23) one obtain

£(t=0) (1-PEF) = 20.60) @4

(22)

(23)

6—001' (UT)T)

Urg

B Coi(vy)

The same result can be obtained by assuming that the tire
is initially at steady-state with constant w, v and «. To this

end, we may enforce % = 0 in equation (1) to obtain

8Zi(t, C) 1

o Jerl
Taking into consideration the boundary condition z;(¢,0) =
0 (no deflection at the entry point of the contact patch)
and the steady-state conditions of constant w, v and «, we
may integrate (25) to obtain the distribution z7*(¢) of z;
(i = x,y), along the contact patch length at steady-state, as
in [10] and [11].

58 _ Urs (1 - Co\iu(,ﬁ)(
% (C) COi(’UT) e

For ¢ = (y the previous expression coincides with (24).

We use the expression (26), equivalently (24), in (9) to
calculate the initial conditions Mg’ (0) for all the moment
equations (11), (12).

(Um‘ — Coi(vy)2i(t, C)), 1=ux,y (25)

), i=zy (26)

V. NUMERICAL SIMULATIONS

In this section we present numerical simulations of the
previously developed lumped LuGre tire friction models [9],
[10], [11] and compare the results with the exact lumped
model developed in this paper. The tire friction models un-
der consideration are subject to the same excitation consist-
ing of a linearly decreasing angular rate w (from 32 rad/sec
to Orad/sec in 2sec) and constant velocity v = 8m/sec
and slip angle @ = 4° (Fig. 1). It is noted that although
such an excitation is not realistic for passenger vehicles
under normal operating conditions, nonetheless it can be
reproduced experimentally in a laboratory environment!.

A. Uniform Normal Load Distribution

In [10] two approximate lumped LuGre tire friction
models were developed. These models are summarized in
the equations below:

s i -
Zi(t) Vpi — (COi(Ur) + Ilwro Zi(t)
Fi(t) —F, (00iZi + 0132 + 02i0ri) , © = x,y(28)

The two different lumped models are derived for different
approximations of the x; term. This term is either approxi-
mated as a constant x; € [1.1 1.4], or as a function of w and
Uy, Ki = K{°(vr,w), such that the steady-state solution of
the lumped model captures exactly the steady-state solution
of the distributed model. The latter expression for ; is
given by [10] as follows

—L)Z;

= 27

o wr|

" Coi(vy)

s 1—e

55 — 29
l‘fz 1—%(1—67L/ZL) Y ( )

It is shown in [10] that these approximate lumped models
capture the steady-state characteristics of the distributed
friction very well, while no guarantees for the accuracy

IThe “Mobile Tire Tester” in [4] is such a device. It is used to validate
tire friction models.
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of the dynamic behavior were given. Evaluation of the
dynamic behavior of the approximate lumped models is
now possible via comparison with the exact lumped model
presented in Section I'V-A.

Two cases are investigated. The first one assumes low tire
stiffness (oo; = 150 m™', i = z,%), and the second one
assumes higher tire stiffness (0o; = 500 m~*!, i = x,7).
The time histories of the friction forces (Fig. 4) show that
the approximations made in [10] are more realistic when the
stiffness of the tire is higher. In this case the steady-state
is reached faster. As already mentioned, the approximate
lumped models in [10], [11] were derived with the steady-
state behavior accuracy in mind.

k=12 Z 1200
s L= 1000 k=12
ss
—— exact lumped -- K
6001 i/ —— exact lumped

k=12 1400
- K . 1200]

— exact lumped <

- K
—— exact lumped

o 05 15 2 o 05

1 1
t (sec) t (sec)

Fig. 4. Time histories for longitudinal and lateral forces (left column:
00; = 150 m~ 1, 4 = x,y, right column: og; = 500 m~— !, i = z,y)

B. Trapezoidal and Cubic Load Distribution

In [11] an approximate average lumped model was devel-
oped for the case of the trapezoidal normal load distribution.
The dynamics of the friction forces are given by (27) and
(28). In [11] the x, term was approximated by a function ~;*
such that the force prediction of the lumped model matches
the ones of the distributed model at steady-state. The align-
ing torque predictions of the LuGre tire friction model with
a trapezoidal normal load distribution are comparable to
experimental data [10], [11] at steady-state. The dynamics
of the aligning torque completing the approximate average
lumped model [10], [11] are summarized below:

. G . .
5 = oo — Cogdy(t) — v(Blwrl2(0)
—I—%Zy(t) (30)
M.(t) = F,L L s L
() = I [on §Zy_zy + 01y Ezy_zy

1 G
g (5””’ - FnLN @1

where G = fOL fal€)CdC.

Similarly to the approximation of the x; term for the
friction forces, the v(t) term in (30) was approximated in
[11] by a static function »*°, such that the aligning torque
predictions of the average lumped model matches the ones
of the distributed one at steady-state.

Next, we compare the dynamic behavior of the average
lumped model developed in [11] with the ones presented in
Sections IV-B and IV-C. In order to make a fair comparison
between the trapezoidal and the cubic normal load distri-
bution models, we have selected the parameters of the two
different expressions (18) and (21) such that they produce
the same total normal force F), and the same longitudinal
position of C.G. of the normal load distribution.

We consider the case of tire stiffness g =
500 m~!, (i = z,y). The results are shown on the left
column of Fig. 5. In Fig. 5 the time histories of the friction
forces and aligning torque are shown. We observe that the
three models converge to the same steady-state. We also
observe, however, significant differences in the transient
behavior of the three models which are more apparent in
the lateral force F, and aligning torque M.

This discrepancy is due to the fact that the normal
load distribution f,,({), along with the distribution of the
contact patch deflection z;(t, (), determine the amount of
the total friction generated by each tire element along the
contact patch length (see equations (2), (3)) at each time
t. In the case of the approximate lumped model of [11]
the use of the average states Z;(t), ¢ = z,y and Z,(t)
averages the individual contribution of each tire element
to the total friction, thus resulting in smoother transient
behavior of the friction forces and aligning torque. On the
other hand, in the case of the exact lumped model, the
product of the individual contact patch deflection z;(¢, (),
with f,,({) determines the amount of friction generated by
each tire element in the contact patch; see equations (2)-(3).
This is true both for the distributed and the exact lumped
models. In Fig. 3 we observe that the trapezoidal normal
load distribution weights more the tire elements close to
the contact patch entry point (( = 0) compared to the
cubic distribution. Observing the initial distribution of z;*
in Fig. 6 we notice that the tire elements close to ( = 0 are
less deformed compared to tire elements for larger values of
¢. As w is reduced however (for example, w = 20 rad/sec)
the distribution of zj* tends to a uniform one. As a result,
it is expected that for the case of trapezoidal normal load
distribution we should get lower lateral forces initially, but
finally tending to the same values as the ones predicted by
the cubic distribution model. This is in agreement with the
results shown in Fig. 5.

To verify these observations, a second set of numerical
simulations was performed, using the approximate model
in [11] and the exact trapezoidal and cubic models of
Sections IV-B, IV-C respectively, with the slip angle taken
as a = 15°. The tire stiffness and the excitation remained
the same. The results are shown in the right column of
Figure 5. In this set of simulations the time histories of the
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friction forces and the aligning moment is almost identical
for all three cases of normal load distributions. The right
plot in Fig. 6 reveals that for o = 15° the distribution of

55 : .
z," is very close to a uniform one.
2000 1500]
1500
1000
z z
=~ 1000| ~
u_x w
! [— exact lumped (trapezoidal) 500
5001 exact lumped (cubic)
J - - approximate lumped (trapezoidal) —— exact lumped (trapezoidal)
0 exact lumped (cubic)
0 - approximate lumped (trapezoidal)
o 05 1 15 2 o 05 1 15 2
t (sec) 1 (sec)
. — exact lumped (trapezoidal)
1899 —— exact lumped (trapezoidal) 2000) ‘ exact lumped (cubic)
1600 exact lumped (cubic) . - approximate lumped (trapezoidal)
- approximate lumped (trapezoidal)
100
1600}
1200
z = 1400
=~ 1000|
> 1™ 1200
o0
00| 1000}
400| 800]
200| 600
o5 ; 5 5
t (sec)
2 — exact lumped (trapezoidal) 2|
exact lumped (cubic)
M - approximate lumped (trapezoidal)
£
2
.
=
19 — exact lumped (trapezoidal)
exact lumped (cubic)
o - - approximate lumped (trapezoidal)
0 05 1 15 2 0 1 15 2
t (sec) t (sec)
Fig. 5. Time histories for longitudinal/lateral forces and aligning torque

(trapezoidal and cubic normal load distribution), left column: o = 4°,
right column: a = 15°

= 20 rad/sec

a=15°

o

B o =4 B o = 20 rad/sec
gN)—‘ 5] wN>—1 5|
= 32 rad/sec
2 -
o = 32 rad/sec
2O 0.05 0.1 0.15 20 0.05 0.1 0.15
&(m) ¢(m)
Fig. 6.  Distribution of z* (¢) along the contact patch, left column:

a = 49, right column: o = 15¢

VI. CONCLUSIONS

A methodology to compute the exact dynamics of
the aggregate distributed LuGre dynamic tire friction
model by a set of ordinary differential equations is
presented. The results of this work allow one to validate
the assumptions considered in the development of the
low-order approximate lumped models. A comparative
analysis shows that, given a sufficiently high stiffness of
the tire, the approximate models reproduce the dynamics
of the aggregate distributed tire model very accurately.
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