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Abstract— In this paper we deal with some finite-time
control problems for discrete-time linear systems. First we
provide necessary and sufficient conditions for finite-time
stability; these conditions require either the computation of
the state transition matrix of the system or the solution of
a certain difference Lyapunov equation (or inequality). The
design problem, i.e. the problem of finding a state feedback
controller which stabilizes the closed loop system in the finite-
time sense, is then addressed. The way these conditions can
be solved numerically is finally considered.
Keywords: discrete-time linear systems, finite-time stability,
state feedback.

I. I NTRODUCTION

When dealing with the stability of a system, a distinction
should be made betweenclassical Lyapunov stabilityand
finite-time stability (FTS) (or short-time stability). The
concept of Lyapunov asymptotic stability is largely known
to the control community; conversely a system is said
to be finite-time stable if, once we fix a time-interval,
its state does not exceed some bounds during this time-
interval. Often asymptotic stability is enough for practical
applications, but there are some cases wherelarge values
of the state are not acceptable, for instance in the presence
of saturations. In these cases, we need to check that these
unacceptable values are not attained by the state; for these
purposes FTS could be used.

Most of the results in the literature are focused on
Lyapunov stability. Some early results on FTS can be found
in [8], [10] and [7]; more recently the concept of FTS has
been revisited in the light of recent results coming from
Linear Matrix Inequalities (LMIs) theory [5], which has al-
lowed to find less conservative conditions guaranteeing FTS
and finite time stabilization of uncertain, linear continuous-
time systems (see [1], [2], [3]).

Differently from previous papers, in this paper we deal
with discrete-time systems. First we focus on the finite-
time stability problem. The main theorem guarantees FTS

if and only if either a certain inequality involving the state
transition matrix is satisfied, or a symmetric matrix function
solving a certain Lyapunov difference equation (inequality)
exists.

The conditions involving the state transition matrix or
the Lyapunov difference equation are not useful when the
system is uncertain; moreover they cannot be used as the
starting point to solve the synthesis problem. Therefore,
in view of the design problem, we focus on the condition
involving the Lyapunov inequality. However this condition
can become computationally hard to apply, since it requires
to study the feasibility ofN difference inequalities, if[1, N ]
is the time interval in which FTS is studied. For this reason
we derive a sufficient condition for FTS which requires
to check the feasibility ofonly one inequality and then
we use this condition to address the problem of designing
a state feedback controller guaranteeing some finite-time
performance.

The paper is organized as follows: in Section II the
definition of finite-time stability is recalled and specialized
to the discrete-time case, and the problem we want to
solve is formally stated. In Section III we solve the FTS
analysis problems. In Section IV we address the FTS syn-
thesis problems, namely some sufficient conditions for the
existence of a state feedback controller guaranteeing finite-
time stabilization of the closed loop system are provided.
Our conclusions are drawn in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

In this paper we consider the following discrete-time
linear system

x(k + 1) = Ax(k) + Bu(k) (1)

whereA ∈ Rn×n, B ∈ Rn×m.
The general idea offinite-time stability concerns the

boundedness of the state of the system over a finite time



interval for some given initial conditions; this concept can
be formalized through the following definition, which is an
extension to discrete-time systems of the one given in [8].

Definition 1 (Finite-time stability):The discrete-time
linear system

x(k + 1) = Ax(k) k ∈ N0 (2)

is said to be finite-time stable with respect to(δx, ε, R, N),
where R is a positive definite matrix,0 < δx < ε, and
N ∈ N0, if

xT (0)Rx(0) ≤ δ2
x ⇒ xT (k)Rx(k) < ε2 ∀k ∈ {1, . . . , N}

4
Remark 1:Lyapunov Asymptotic Stability (LAS) and

FTS are independent concepts: a system which is FTS may
be not LAS; conversely a LAS system could be not FTS if,
during the transients, its state exceeds the prescribed bounds
(see also the example in Section III). ¦

Now, given system (1), we consider the (possibly time-
varying) state feedback controller

u(k) = K(k)x(k) , (3)

where K(·) : k ∈ N0 7→ K(k) ∈ Rm×n. One of the
goal of this paper is to find some sufficient conditions
which guarantee that the state of the system given by the
interconnection of system (1) with the controller (3) is
stable over a finite-time interval.

Problem 1: Given system (1), find a state feedback con-
troller (3) such that the closed-loop system is finite-time
stable with respect to(δx, ε, R,N). 4

III. M AIN RESULTS

The following theorem is the main result of the paper.
Theorem 1 (Necessary and Sufficient conditions for FTS):

The following statements are equivalent:

i) System (2) is FTS with respect to(δx, ε, R, N).
ii)

(
AT

)k
RAk < ε2

δ2
x
R for all k ∈ {1, . . . , N}.

iii) For eachk ∈ {1, . . . , N} let

Pk(k) = R

Pk(h) = AT Pk(h + 1)A h ∈ {0, 1, . . . , k − 1}.

thenPk(0) < ε2

δ2
x
R.

iv) For eachk ∈ {1, . . . , N} there exists a symmetric
matrix-valued functionPk(·) : h ∈ {0, 1, . . . , k} 7→
Pk(h) ∈ Rn×n such that

AT Pk(h + 1)A− Pk(h) < 0
h ∈ {0, 1, . . . , k − 1} (4a)

Pk(k) ≥ R (4b)

Pk(0) <
ε2

δ2
x

R . (4c)

Proof: Proof that i) is equivalent to ii). First we
prove that ii) implies i); letk ∈ {1, . . . , N} andx(0) such
that x(0)T Rx(0) ≤ δ2

x. We have

x(k) = Akx(0)

then

xT (k)Rx(k) = xT (0)(AT )kRAkx(0)

<
ε2

δ2
x

xT (0)Rx(0)

≤ ε2 for all k ∈ {1, . . . , N} .

Conversely, assume by contradiction that system (2) is
FTS and that for somek ∈ {1, . . . , N}, x̄ ∈ Rn

x̄T (AT )kRAkx̄ ≥ ε2

δ2
x

x̄T Rx̄ . (5)

Now let x(0) = λx̄, such that

xT (0)Rx(0) = λ2x̄T Rx̄ = δ2
x ; (6)

moreover letx(·) the state evolution of system (2) starting
from x(0).

From (5) and (6) we have

xT (k)Rx(k) = x(0)T (AT )kRAkx(0)

≥ ε2

δ2
x

xT (0)Rx(0) = ε2 .

Therefore we have found an initial conditionx(0) satisfying
x(0)T Rx(0) = δ2

x such that, for somek, xT (k)Rx(k) ≥ ε2.
This contradicts the hypothesis that the system is FTS.

Proof that i) is equivalent to iii) . First we prove that iii)
implies i). Let k ∈ {1, . . . , N} and assume there exists a
symmetric matrix-valuedPk(·) such that

Pk(h) = AT Pk(h + 1)A h ∈ {0, 1, . . . , k − 1} (7a)

Pk(k) = R (7b)

Pk(0) <
ε2

δ2
x

R . (7c)

By (7a) we have

xT (h + 1)Pk(h + 1)x(h + 1)− xT (h)Pk(h)x(h) =

= xT (h)
(
AT Pk(h + 1)A− Pk(h)

)
x(h) = 0 .

(8)

By summing (8) between0 andk we have that

xT (k)Pk(k)x(k)− xT (0)Pk(0)x(0) = 0 , (9)

From the last equation and by using (7b) and (7c) it follows
that

xT (k)Rx(k) <
ε2

δ2
x

xT (0)Rx(0) . (10)

Therefore ifxT (0)Rx(0) ≤ δ2
x we have thatxT (k)Rx(k) <

ε2 for all k ∈ {1, . . . , N} and then the proof follows.



Conversely assume that system (1) is FTS, let

Pk(h) = AT Pk(h + 1)A h ∈ {0, 1, . . . , k − 1} (11a)

Pk(k) = R (11b)

and assume by contradiction that for somex̄ ∈ Rn

x̄T Pk(0)x̄ ≥ ε2

δ2
x

x̄T Rx̄ . (12)

Again let x(0) = λx̄ such thatxT (0)Rx(0) = δ2
x andx(k)

the state evolution starting fromx(0). By (11a) it follows
that

xT (k)Rx(k) = xT (0)Pk(0)x(0) (13)

which implies, by virtue of (12), that

xT (k)Rx(k) ≥ ε2

δ2
x

xT (0)Rx(0) = ε2 (14)

which contradicts the hypothesis that the system is FTS.

Proof that i) is equivalent to iv). The proof that iv) implies
i) follows from the fact that, under the assumptions (4),
equations (8) and (9) hold with< in place of=. The rest
of the proof follows exactly the same steps of the proof that
iii) implies i).

Now let us assume that system (1) is FTS. Then by con-
tinuity arguments it follows that there exists a sufficiently
small γ such that, lettingz = γx,

xT (0)Rx(0) ≤ δ2
x ⇒ xT (k)Rx(k) + ‖z‖22 < ε2 (15)

where‖z‖22 =
∑k

h=0 zT (h)z(h) .
Now let Pk(·) : h ∈ {0, 1, . . . , k} 7→ Pk(h) ∈ Rn×n

defined as follows

AT Pk(h + 1)A = Pk(h)− γ2I , Pk(k) = R (16)

and assume, by contradiction, that there existsx ∈ Rn such
that

xT Pk(0)x ≥ ε2

δ2
x

xT Rx

By following the same steps of previous proofs we can
construct anx(0), with xT (0)Rx(0) = δ2

x, such that from
(16)

xT (k)Pk(k)x(k)− x(0)T Pk(0)x(0) + ‖z‖22 = 0

from which it follows that

xT (k)Rx(k) + ‖z‖22 ≥
ε2

δ2
x

xT (0)Rx(0) = ε2 .

which contradicts (15).
Therefore we have proven that, for anyk ∈ {1, . . . , N},

there existsPk(·) : h ∈ {0, 1, . . . , k} 7→ Pk(h) ∈ Rn×n

such that

AT Pk(h + 1)A− Pk(h) = −γ2I < 0
Pk(k) ≥ R

Pk(0) <
ε2

δ2
x

R

This completes the proof.
Remark 2:Statements ii) and iii) are very useful to test

the FTS of a given system. However they cannot be used
to deal with uncertain systems. Assume for example that
system (2) depends on a vector of uncertain parameters,
that is

x(k + 1) = A(p)x(k)

wherep is the parameter vector

p =
(
p1 p2 . . . pq

)T
pi ∈ [p

i
, pi] , i = 1, . . . , q .

Let us defineR the set to which the uncertain parameters
belong

R = [p
1
, p1]× [p

2
, p2]× · · · × [p

q
, pq]

and assume thatA(·) depends affinely on parameters, that
is A(p) = A0 +

∑
i=1,...,q Aipi. In this case condition ii)

for robust FTS becomes
(
AT (p)

)k
RA(p)k <

ε2

δ2
x

R (17)

for all k ∈ {1, . . . , N} andp ∈ R.
To test (17) we would need to verify an infinite number

of conditions, that is one condition for each value ofp. The
same applies to condition iii) of Theorem 1.

Conversely consider condition iv) in presence of param-
eters. In particular (4a) becomes

AT (p)Pk(h + 1)A(p)− Pk(h) < 0 , p ∈ R . (18)

By using the results of [4] it can be shown that (18) can be
converted into a finite number of conditions and therefore
it leads to a computationally tractable problem. Indeed (18)
is satisfied for allp ∈ R if and only if it is satisfied on the
vertices ofR.

In other words (18) is equivalent to

AT (p(i))Pk(h + 1)A(p(i))− Pk(h) < 0
i = 1, . . . , 2q.

(19)

wherep(i) denotes thei-th vertex of the hyper-boxR. ♦
In the following example we use the results of Theorem 1

to show that finite-time stability and asymptotic stability are
independentconcepts.

Example 1 (Finite-Time Stability and Asymptotic Stability):
Let us first consider the system

x(k + 1) =




0.8026 1.0000 0.2392
−0.1842 0.8026 0.2034

0 0 0.3333


x(k) .

This system is asymptotically stable, since its eigenvalues
are inside the unit circle. But it is not FTS with respect to
(δx, ε, R, N) with δx = 1, ε = 1.78, R = I and N = 5.
Indeed condition ii), iii) and iv) of Theorem 1 fails for
k = 3.

On the other hand, let us consider the system

x(k + 1) =




0.3333 0.4189 0.0833
0 1.1053 0.4189
0 0 0.3333


 x(k) ,
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Fig. 1. Relative gap between the necessary and sufficient conditions of
Theorem 1 and the sufficient condition of Corollary 1.

which is unstable. Anyway, by applying condition ii) or iii)
or iv) of Theorem 1 it is possible to show that this system
is FTS with respect to(δx, ε, R, N) with δx = 1, ε = 2.13,
R = I andN = 5. 4
From condition iv) of Theorem 1, we can easily derive the
following corollary, which gives asufficientcondition for
FTS. This condition requires to check onlyone difference
inequality and for this reason it will be used in Section IV
for the synthesis problem.

Corollary 1 (Sufficient condition for FTS):System (2)
is FTS with respect to(δx, ε, R, N) if there exists
a symmetric matrix-valued functionP (·) : k ∈
{0, 1, . . . , N} 7→ P (k) ∈ Rn×n such that

AT P (k + 1)A− P (k) < 0 ,

k ∈ {0, 1, . . . , N − 1} (20a)

P (k) ≥ R , k ∈ {1, . . . , N} (20b)

P (0) <
ε2

δ2
x

R . (20c)

Proof: It is straightforward to check that a matrix func-
tion P satisfying conditions (20) also satisfy conditions (4)
of Theorem 1.
Note that a matrix functionP (·) satisfying Corollary 1 can
be found, if one exists, by using the LMI Toolbox [9].

Example 2: In order to compare the necessary and suf-
ficient conditions stated in Theorem 1 with the sufficient
condition of Corollary 1 we have randomly generated 1,000
discrete-time linear systems. For each sample we have
computed the minimumε such that the given system is FTS
wrt (δx, ε, R,N) with δx = 1, N = 5, R = I.

Figure 1 shows, for each generated system, the value of
the following quantity

err% = 100(εsuff − εtrue)/εtrue ,

where εtrue denotes the exact value ofε computed using
Theorem 1 andεsuff its estimated value obtained applying
Corollary 1.

Note that for most of the systems the value of err% is
close to zero. 4

Remark 3: In Section IV we shall show that Corollary 1
leads to a computationally tractable problem for what
concerns the synthesis problem. ♦

IV. STATE FEEDBACK STABILIZATION

Now let us go back to our original problem, that is to
find sufficient conditions which guarantee that the intercon-
nection of system (1) with the controller (3)

x(k + 1) = (A + BK(k))x(k) (21)

is finite-time stable with respect to(δx, ε, R, N). The solu-
tion of this problem is given by the following theorem.

Theorem 2 (Finite-time stability via state feedback):
System (21) is finite-time stable with respect to
(δx, ε, R, N) if there exists a positive definite matrix-
valued functionP (·) and a matrix-valued functionK(·)
such that( −P (k) (A + BK(k))T

A + BK(k) −P−1(k + 1)

)
< 0,

k ∈ {0, 1, . . . , N − 1}
(22a)

P (k) ≥ R , k ∈ {1, . . . , N} (22b)

P (0) <
ε2

δ2
x

R (22c)

Proof: We can apply Corollary 1 to system (21), by
replacingA with A + BK; in this way we find that the
system is guaranteed to be FTS w.r. to(δx, ε, R, N) if

(A + BK(k))T P (k + 1)(A + BK(k))
− P (k) < 0, k ∈ {0, 1, . . . , N − 1} (23a)

P (k) ≥ R , k ∈ {1, . . . , N} (23b)

P (0) <
ε2

δ2
x

R . (23c)

Now, using Schur complement it is easy to check that (23a)
is equivalent to (22a).

Remark 4:The fact that the controller provided by Theo-
rem 2 is time-varying is consistent with the fact that we are
solving a finite-time control problem; see for example the
finite horizon LQ optimal control framework for discrete-
time systems [6]. ♦

Remark 5: In order to find a numerical solution to
Problem 1, i.e. to compute the matrix-valued functions
P (·) andK(·), a back-stepping algorithm can be used for
conditions (22). In the first step inequalities (22a) and (22b)
can be solved, obtaining the matricesP (N), P (N − 1),
K(N − 1). ThenP (N − 1) is determined and in the next
step (22a) and (22b) can be solved fork = N − 2, finding



P (N − 2), K(N − 2), and so on. The final step consists
in solving (22a) and (22c) together fork = 0. In order to
find the smallest value forε, in the various steps a further
condition can be added, which imposes the minimization of
the largest eigenvalue ofP (k) at each step. ♦

V. CONCLUSIONS

In this paper we have considered the finite-time stabi-
lization problem for a discrete-time linear system. The first
result of the paper consists of some necessary and sufficient
conditions for finite-time stability; then the state feedback
problem has been considered and a sufficient condition
guaranteeing the existence of a state feedback controller
has been provided.
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