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Abstract— Nonnegative and compartmental dynamical sys-
tem models are derived from mass and energy balance
considerations and involve the exchange of nonnegative quan-
tities between subsystems or compartments. These models
are widespread in biological and physical sciences and play
a key role in understanding these processes. A key phys-
ical limitation of such systems is that transfers between
compartments is not instantaneous and realistic models for
capturing the dynamics of such systems should account for
material in transit between compartments. In this paper we
present necessary and sufficient conditions for stability of
nonnegative and compartmental dynamical systems with time
delay. Specifically, asymptotic stability conditions for linear
and nonlinear as well as continuous-time and discrete-time
nonnegative dynamical systems with time delay are established
using linear Lyapunov-Krasovskii functionals.

I. I NTRODUCTION

Nonnegative and compartmental models play a key role
in understanding many processes in biological and medical
sciences [1]–[6]. Such models are composed of homoge-
neous interconnected subsystems (or compartments) which
exchange variable nonnegative quantities of material with
conservation laws describing transfer, accumulation, and
outflows between compartments and the environment. The
range of applications of nonnegative and compartmental
systems is not limited to biological and medical systems.
Their usage includes chemical reaction systems, queuing
systems, ecological systems, economic systems, telecom-
munication systems, transportation systems, and power sys-
tems, to cite but a few examples. A key physical limitation
of such systems is that transfers between compartments is
not instantaneous and realistic models for capturing the dy-
namics of such systems should account for material, energy,
or information in transit between compartments [3]. Hence,
to accurately describe the evolution of the aforementioned
systems, it is necessary to include in any mathematical
model of the system dynamics some information of the past
system states. This of course leads to (infinite-dimensional)
delay dynamical systems [7]–[9].

In this paper we develop necessary and sufficient condi-
tions for time-delay nonnegative and compartmental dynam-
ical systems. Specifically, usinglinear Lyapunov-Krasovskii
functionals we develop necessary and sufficient conditions
for asymptotic stability of linear nonnegative dynamical
systems with time delay. The consideration of a linear
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Lyapunov-Krasovskii functional leads to anew Lyapunov-
like equation for examining stability of time delay non-
negative dynamical systems. The motivation for using a
linear Lyapunov-Krasovskii functional follows from the
fact that the (infinite-dimensional) state of a retarded non-
negative dynamical system is nonnegative and hence a
linear Lyapunov-Krasovskii functional is a valid candidate
Lyapunov-Krasovskii functional. For a time delay com-
partmental system, a linear Lyapunov-Krasovskii functional
is shown to correspond to the total mass of the system
at a given time plus the integral of the mass flow in
transit between compartments over the time intervals it
takes for the mass to flow through the intercompartmental
connections.

The contents of the paper are as follows. In Section II we
establish definitions, notation, and review some basic results
on nonnegative dynamical systems. In Section III we show
that for a nonnegative continuous function specifying the
initial state of a retarded nonnegative system, time delay
nonnegative and compartmental systems are confined to a
nonnegative state space. Furthermore, we give necessary
and sufficient conditions for asymptotic stability for linear
time delay nonnegative systems using a linear Lyapunov-
Krasovskii functional and a new Lyapunov-like equation.
We then turn our attention to nonlinear nonnegative sys-
tems with time delay and present sufficient conditions for
asymptotic stability. In Section IV we present a discrete-
time analog of the results developed in Section III. Finally,
we draw conclusions in Section V.

II. M ATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
and some key results concerning linear nonnegative dy-
namical systems [1], [5], [6], [10] that are necessary for
developing the main results of this paper. Specifically,N
denotes the set of nonnegative integers,R denotes the reals,
and Rn is an n-dimensional linear vector space over the
reals with the maximum modulus norm‖ · ‖ given by
‖x‖ = maxi=1,...,n |xi|, x ∈ Rn. For x ∈ Rn we write
x ≥≥ 0 (resp.,x >> 0) to indicate that every component
of x is nonnegative (resp., positive). In this case we say
that x is nonnegativeor positive, respectively. Likewise,
A ∈ Rn×m is nonnegativeor positive if every entry ofA
is nonnegative or positive, respectively, which is written as
A ≥≥ 0 or A >> 0, respectively. LetRn

+ andRn
+ denote

the nonnegative and positive orthants ofRn; that is, if x ∈
Rn, thenx ∈ Rn

+ andx ∈ Rn
+ are equivalent, respectively,

to x ≥≥ 0 and x >> 0. Finally, C([a, b],Rn) denotes a
Banach space of continuous functions mapping the interval
[a, b] into Rn with the topology of uniform convergence.



For a given real numberτ ≥ 0 if [a, b] = [−τ, 0] we let
C = C([−τ, 0],Rn) and designate the norm of an element
φ in C by |||φ||| = supθ∈[−τ,0] ‖φ(θ)‖. If α, β ∈ R and
x ∈ C([α− τ, α+β],Rn), then for everyt ∈ [α, α+β], we
let xt ∈ C be defined byxt(θ) = x(t+ θ), θ ∈ [−τ, 0]. The
following definition introduces the notion of a nonnegative
function.

Definition 2.1: Let T > 0. A real functionu : [0, T ] →
Rm is a nonnegative(resp.,positive) function if u(t) ≥≥ 0
(resp.,u(t) >> 0) on the interval[0, T ].

The next definition introduces the notion of essentially
nonnegative matrices.

Definition 2.2 ( [10]): Let A ∈ Rn×n. A is essentially
nonnegativeif A(i,j) ≥ 0, i, j = 1, . . . , n, i 6= j.

Next, we present a key result for linear nonnegative
dynamical systems

ẋ(t) = Ax(t), x(0) = x0, t ≥ 0, (1)

where x(t) ∈ Rn, t ≥ 0, and A ∈ Rn×n is essentially
nonnegative. The solution to (1) is standard and is given
by x(t) = eAtx(0), t ≥ 0. The following lemma proven in
[5] (see also [6]) shows thatA is essentially nonnegative if
and only if the state transition matrixeAt is nonnegative on
[0,∞).

Lemma 2.1:Let A ∈ Rn×n. Then A is essentially
nonnegative if and only ifeAt is nonnegative for allt ≥ 0.
Furthermore, ifA is essentially nonnegative andx0 ≥≥ 0,
then x(t) ≥≥ 0, t ≥ 0, wherex(t), t ≥ 0, denotes the
solution to (1).

Next, we consider a subclass of nonnegative systems;
namely, compartmental systems.

Definition 2.3: Let A ∈ Rn×n. A is a compartmental
matrix if A is essentially nonnegative and

∑n
i=1 A(i,j) ≤ 0,

j = 1, 2, . . . , n.
If A is a compartmental matrix, then the nonnegative

system (1) is called aninflow-closed compartmental system
[3], [4], [6]. Recall that an inflow-closed compartmental sys-
tem possesses a dissipation property and hence is Lyapunov
stable since the total mass in the system given by the sum
of all components of the statex(t), t ≥ 0, is nonincreasing
along the forward trajectories of (1). In particular, with
V (x) = eTx, where e = [1, 1, · · · , 1]T, it follows that
V̇ (x) = eTAx =

∑n
j=1

[∑n
i=1 A(i,j)

]
xj ≤ 0, x ∈ Rn

+.
Furthermore, since ind(A) ≤ 1, where ind(A) denotes
the index of A, it follows that A is semistable; that is,
limt→∞ eAt exists. Hence, all solutions of inflow-closed
linear compartmental systems are convergent. Of course,
if det A 6= 0, where detA denotes the determinant ofA,
then A is asymptotically stable. For details of the above
facts see [5], [6].

III. STABILITY THEORY FORCONTINUOUS-TIME

NONNEGATIVE DYNAMICAL SYSTEMS WITH TIME

DELAY

In the first part of this paper we consider a linear time
delay dynamical systemG of the form

ẋ(t) = Ax(t) + Adx(t− τ),
x(θ) = φ(θ), −τ ≤ θ ≤ 0, t ≥ 0, (2)

wherex(t) ∈ Rn, t ≥ 0, A ∈ Rn×n, Ad ∈ Rn×n, τ ≥
0, and φ(·) ∈ C = C([−τ, 0],Rn) is a continuous vector
valued function specifying the initial state of the system.

Note that the state of (2) at timet is thepiece of trajectories
x betweent−τ andt, or, equivalently, theelementxt in the
space of continuous functions defined on the interval[−τ, 0]
and taking values inRn; that is,xt ∈ C([−τ, 0],Rn). Hence,
xt(θ) = x(t+θ), θ ∈ [−τ, 0]. Furthermore, since for a given
time t the piece of the trajectoriesxt is defined on[−τ, 0],
the uniform norm|||xt||| = supθ∈[−τ,0] ‖x(t+θ)‖ is used for
the definitions of Lyapunov and asymptotic stability of (2).
For further details see [7], [9]. Finally, note that sinceφ(·)
is continuous it follows from Theorem 2.1 of [7, p. 14] that
there exists a unique solutionx(φ) defined on[−τ,∞) that
coincides withφ on [−τ, 0] and satisfies (2) fort ≥ 0. The
following definition is needed for the main results of this
section.

Definition 3.1: The linear time delay dynamical system
G given by (2) isnonnegativeif for every φ(·) ∈ C+, where
C+

4= {ψ(·) ∈ C : ψ(θ) ≥≥ 0, θ ∈ [−τ, 0]}, the solution
x(t), t ≥ 0, to (2) is nonnegative.

Proposition 3.1:The linear time delay dynamical system
G given by (2) is nonnegative if and only ifA ∈ Rn×n is
essentially nonnegative andAd ∈ Rn×n is nonnegative.

Proof. It follows from Lagrange’s formula that the solu-
tion to (2) is given by

x(t) = eAtx(0) +
∫ t

0

eA(t−θ)Adx(θ − τ)dθ

= eAtφ(0) +
∫ t−τ

−τ

eA(t−τ−θ)Adx(θ)dθ. (3)

Now, if A is essentially nonnegative it follows from Lemma
2.1 that eAt ≥≥ 0, t ≥ 0, and if φ(·) ∈ C+ and Ad is
nonnegative it follows that

x(t) = eAtφ(0) +
∫ t−τ

−τ

eA(t−τ−θ)Adφ(θ)dθ ≥≥ 0,

t ∈ [0, τ). (4)

Alternatively, for all τ < t,

x(t) = eAτx(t− τ) +
∫ τ

0

eA(τ−θ)Adx(t + θ − 2τ)dθ,

and hence, sincex(t) ≥≥ 0, t ∈ [−τ, τ), it follows that
x(t) ≥≥ 0, τ ≤ t < 2τ . Repeating this procedure iteratively
it follows that x(t) ≥≥ 0, t ≥ 0.

Conversely, assumeG is nonnegative and suppose,ad
absurdum, A is not essentially nonnegative. That is, suppose
there existI, J ∈ {1, 2, . . . , n}, I 6= J , such thatA(I,J) <
0. Now, let φ(·) ∈ C+ be such thatφ(θ) = 0, −τ ≤ θ ≤ 0
and φ(0) = eJ , whereτ > 0 and eJ ∈ Rn is a vector of
zeros with one in theJ th entry. Next, it follows from (3)
that

x(t) = eAteJ , 0 ≤ t < τ.

Hence, for sufficiently smallT > 0, M(I,J) < 0, where
M

4= eAT , which implies thatxI(T ) < 0 which is a
contradiction. Now, suppose,ad absurdum, Ad is not non-
negative, that is, there existI, J ∈ {1, 2, . . . , n} such that
Ad(I,J) < 0. Next, let{vn}∞n=1 ⊂ C+ denote a sequence of
functions such thatlimn→∞ vn(θ) = eJδ(θ+η−τ), where
0 < η < τ andδ(·) denotes the Dirac delta function. In this
case, it follows from (3) that

xn(η) = eAηvn(0) +
∫ η

0

eA(η−θ)Adx(θ − τ)dθ,



which implies thatx(η) = limn→∞ xn(η) = eAηAdeJ .
Now, by choosingη sufficiently small it follows that
xI(η) < 0 which is a contradiction.

For the remainder of this section, we assume thatA is
essentially nonnegative andAd is nonnegative so that for
everyφ(·) ∈ C+, the linear time delay dynamical systemG
given by (2) is nonnegative. Next, we present necessary and
sufficient conditions for asymptotic stability for the linear
time delay nonnegative dynamical system (2). Note that for
addressing the stability of the zero solution of a time delay
nonnegative system, the usual stability definitions given in
[7] need to be slightly modified. In particular, stability no-
tions for nonnegative dynamical systems need to be defined
with respect to relatively open subsets ofRn

+ containing
the equilibrium solutionxt ≡ 0. For a similar definition
see [6]. In this case, standard Lyapunov-Krasovskii stability
theorems for nonlinear time delay systems [7] can be used
directly with the required sufficient conditions verified on
C+.

Theorem 3.1:Consider the linear nonnegative time delay
dynamical systemG given by (2) whereA ∈ Rn×n is
essentially nonnegative andAd ∈ Rn×n is nonnegative.
Then G is asymptotically stable for allτ ∈ [0,∞) if and
only if there existp, r ∈ Rn such thatp >> 0 andr >> 0
satisfy

0 = (A + Ad)Tp + r. (5)
Proof. To prove necessity, assume that the linear time

delay dynamical systemG given by (2) is asymptotically
stable for allτ ∈ [0,∞). In this case, it follows that the
linear nonnegative dynamical system

ẋ(t) = (A + Ad)x(t), x(0) = x0 ∈ Rn

+, t ≥ 0, (6)

or, equivalently, (2) withτ = 0, is asymptotically stable.
Now, it follows from Theorem 3.2 of [6] that there exists
p >> 0 and r >> 0 such that (5) is satisfied. Conversely,
to prove sufficiency, assume that (5) holds and consider the
candidate Lyapunov-Krasovskii functionalV : C+ → R
given by

V (ψ) = pTψ(0) +
∫ 0

−τ

pTAdψ(θ)dθ, ψ(·) ∈ C+.

Now, note thatV (ψ) ≥ pTψ(0) ≥ α‖ψ(0)‖, where
α

4= mini∈{1,2,...,n} pi > 0. Next, using (5), it follows
that the Lyapunov-Krasovskii directional derivative along
the trajectories of (2) is given by

V̇ (xt) = pTẋ(t) + pTAd[x(t)− x(t− τ)]
= pT(A + Ad)x(t)
= −rTx(t)
≤ −β‖x(t)‖,

whereβ
4= mini∈{1,2,...,n} ri > 0 andxt(θ) = x(t+θ), θ ∈

[−τ, 0], denotes the (infinite-dimensional) state of the time
delay dynamical systemG. Now, it follows from Corollary
3.1 of [7, p. 143] that the linear nonnegative time delay
dynamical systemG is asymptotically stable for allτ ∈
[0,∞).

Remark 3.1:The results presented in Proposition 3.1
and Theorem 3.1 can be easily extended to systems with
multiple delays of the form

ẋ(t) = Ax(t) +
nd∑

i=1

Adix(t− τi),

x(θ) = φ(θ), −τ̄ ≤ θ ≤ 0, t ≥ 0, (7)

aijxj(t), τ

)º

¹

·

¸
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Fig. 1. Linear compartmental interconnected subsystem model with time
delay.

where x(t) ∈ Rn, t ≥ 0, A ∈ Rn×n is essentially
nonnegative,Adi ∈ Rn×n, i = 1, . . . , nd, is nonnegative,
τ̄ = maxi∈{1,··· ,nd} τi, andφ(·) ∈ {ψ(·) ∈ C([−τ̄ , 0],Rn) :
ψ(θ) ≥≥ 0, θ ∈ [−τ̄ , 0]}. In this case, (5) becomes

0 = (A +
nd∑

i=1

Adi)Tp + r, (8)

which is associated with the Lyapunov-Krasovskii func-
tional

V (ψ) = pTψ(0) +
nd∑

i=1

∫ 0

−τi

pTAdiψ(θ)dθ. (9)

Similar remarks hold for the nonlinear extension presented
below and the discrete-time results presented in Section IV.

Next, we show that inflow-closed, linear compartmental
dynamical systems with time delays [3] are a special case
of the linear nonnegative time delay systems (2). To see
this, for i = 1, . . . , n, let xi(t), t ≥ 0, denote the mass
and (hence a nonnegative quantity) of theith subsystem of
the compartmental system shown in Figure 1, letaii ≥ 0
denote the loss coefficient of theith subsystem, and let
φij(t − τ), i 6= j, denote the net mass flow (or flux)
from the jth subsystem to theith subsystem given by
φij(t − τ) = aijxj(t − τ) − ajixi(t), where the transfer
coefficientaij ≥ 0, i 6= j, andτ is the fixed time it takes
for the mass to flow from thejth subsystem to theith
subsystem. For simplicity of exposition we have assumed
that all transfer times between compartments are given by
τ . The more general multiple delay case can be addressed
as shown in Remark 3.1. Now, a mass balance for the whole
compartmental system yields

ẋi(t) = −(aii +
n∑

j=1,i6=j

aji)xj(t)

+
n∑

j=1,i 6=j

aijxj(t− τ),

t ≥ 0, i = 1, . . . , n, (10)

or, equivalently,

ẋ(t) = Ax(t) + Adx(t− τ),
x(θ) = φ(θ), −τ ≤ θ ≤ 0, t ≥ 0, (11)

where x(t) = [x1(t), · · · , xn(t)]T, φ(·) ∈ C+, and for
i, j = 1, . . . , n,

A(i,j) =
{ −∑n

k=1 aki, i = j
0, i 6= j

, (12)

Ad(i,j) =
{

0, i = j
aij , i 6= j

. (13)



Note thatA is essentially nonnegative andAd is nonnega-
tive. Furthermore,A + Ad is a compartmental matrix and
hence it follows from Lemma 2.2 of [5] that Reλ < 0
or λ = 0, where λ is an eigenvalue ofA + Ad. Now,
it follows from Theorem 3.2 of [6] and Theorem 3.1 that
the zero solutionx(t) ≡ 0 to (11) is asymptotically stable
for all τ ∈ [0,∞) if and only if A + Ad is Hurwitz.
Alternatively, asymptotic stability of (11) for allτ ∈ [0,∞)
can be deduced using the Lyapunov-Krasovskii functional

V (ψ) = eTψ(0) +
∫ 0

−τ

eTAdψ(θ)dθ, ψ(·) ∈ C+,

(14)
which captures the total mass of the system att = 0 plus the
integral of the mass flow in transit between compartments
over the intervals it takes for the mass to flow through
the intercompartmental connections. In this case, it follows
that V̇ (xt) ≤ −β‖x(t)‖, where β

4= mini∈{1,··· ,n} aii

and xt(θ) = x(t + θ), θ ∈ [−τ, 0]. This result is not
surprising, since for an inflow-closed compartmental system
the law of conservation of mass eliminates the possibility
of unbounded solutions.

Next, we present a nonlinear extension of Proposition 3.1
and Theorem 3.1. Specifically, we consider nonlinear time
delay dynamical systemsG of the form

ẋ(t) = Ax(t) + fd(x(t− τ)),
x(θ) = φ(θ), −τ ≤ θ ≤ 0, t ≥ 0, (15)

wherex(t) ∈ Rn, t ≥ 0, A ∈ Rn×n, fd : Rn → Rn is
locally Lipschitz andfd(0) = 0, τ ≥ 0, andφ(·) ∈ C. Once
again, sinceφ(·) is continuous, existence and uniqueness
of solutions to (15) follow from Theorem 2.3 of [7, p. 44].
Nonlinear time delay systems of the form given by (15)
arise in the study of physiological and biomedical systems,
ecological systems, population dynamics, as well as neural
Hopfield networks. For the nonlinear time delay dynamical
system (15), the definition of nonnegativity holds with (2)
replaced by (15). The following definition is needed for our
next result.

Definition 3.2: Let fd = [fd1, · · · , fdn]T : D → Rn,
whereD is an open subset ofRn that containsRn

+. Then
fd is nonnegative iffdi(x) ≥ 0, for all i = 1, . . . , n, and
x ∈ Rn

+.

Proposition 3.2:Consider the nonlinear time delay dy-
namical systemG given by (15). Ifφ(·) ∈ C+, A ∈ Rn×n is
essentially nonnegative, andfd : Rn → Rn is nonnegative,
thenG is nonnegative.

Proof. It follows from Lagrange’s formula that the solu-
tion to (15) is given by

x(t) = eAtx(0) +
∫ t

0

eA(t−θ)fd(x(θ − τ))dθ

= eAtφ(0) +
∫ t−τ

−τ

eA(t−τ−θ)fd(x(θ))dθ. (16)

Now, if A is essentially nonnegative it follows from Lemma
2.1 that eAt ≥≥ 0, t ≥ 0, and if φ(·) ∈ C+ and fd is
nonnegative it follows that

x(t) = eAtφ(0) +
∫ t−τ

−τ

eA(t−τ−θ)fd(φ(θ))dθ ≥≥ 0,

t ∈ [0, τ). (17)

Alternatively, for all τ < t,

x(t) = eAτx(t− τ) +
∫ τ

0

eA(τ−θ)fd(x(t + θ − 2τ))dθ,

and hence, sincex(t) ≥≥ 0, t ∈ [−τ, τ), it follows that
x(t) ≥≥ 0, τ ≤ t < 2τ . Repeating this procedure iteratively
it follows that x(t) ≥≥ 0, t ≥ 0.

Next, we present sufficient conditions for asymptotic
stability for nonlinear nonnegative dynamical systems given
by (15).

Theorem 3.2:Consider the nonlinear nonnegative time
delay dynamical systemG given (15) whereA ∈ Rn×n

is essentially nonnegative,fd : Rn → Rn is nonnegative,
and fd(x) ≤≤ γx, x ∈ Rn

+, whereγ > 0. If there exist
p, r ∈ Rn such thatp >> 0 andr >> 0 satisfy

0 = (A + γIn)Tp + r, (18)

thenG is asymptotically stable for allτ ∈ [0,∞).
Proof. Assume that (18) holds and consider the candidate

Lyapunov-Krasovskii functionalV : C+ → R given by

V (ψ) = pTψ(0) +
∫ 0

−τ

pTfd(ψ(θ))dθ, ψ(·) ∈ C+.

Now, note thatV (ψ) ≥ pTψ(0) ≥ α‖ψ(0)‖, whereα
4=

mini∈{1,2,...,n} pi > 0. Next, using (18), it follows that
the Lyapunov-Krasovskii directional derivative along the
trajectories of (15) is given by

V̇ (xt) = pTẋ(t) + pT[fd(x(t))− fd(x(t− τ))]
= pT(Ax(t) + fd(x(t)))
≤ pTAx(t) + γpTx(t)
= −rTx(t)
≤ −β‖x(t)‖,

where β
4= mini∈{1,2,...,n} ri > 0. Now, it follows from

Corollary 3.1 of [7, p. 143] that the nonlinear nonnegative
time delay dynamical systemG is asymptotically stable for
all τ ∈ [0,∞).

Remark 3.2:The structural constraintfd(x) ≤≤ γx,
x ∈ Rn

+, whereγ > 0, in the statement of Theorem 3.2 is
naturally satisfied for many compartmental dynamical sys-
tems. For example, in nonlinear pharmacokinetic models the
transport across biological membranes may be facilitated
by carrier molecules with the flux described by a saturable
from fdi(xi, xj) = φmax[(xα

i /(xα
i + β) − (xα

j /(xα
j + β)],

where xi, xj are the concentrations of theith and jth
compartments andφmax, α, and β are model parameters.
This nonlinear intercompartmental flow model satisfies the
structural constraint of Theorem 3.2.

IV. STABILITY THEORY FORDISCRETE-TIME

NONNEGATIVE DYNAMICAL SYSTEMS WITH TIME

DELAY

In this section we present a discrete-time analog to the
results developed in Section III. Specifically, we consider
discrete-time dynamical systemsG of the form

x(k + 1) = Ax(k) + Adx(k − κ),
x(θ) = φ(θ), −κ ≤ θ ≤ 0, k ∈ N , (19)

wherex(k) ∈ Rn, k ∈ N , A ∈ Rn×n, Ad ∈ Rn×n, κ ∈
N , φ(·) ∈ C = C({−κ, · · · , 0},Rn) is a vector sequence
specifying the initial state of the system, andC denotes
the space of all sequences mapping{−κ, · · · , 0} into Rn

with norm |||φ||| = maxk∈{−κ,··· ,0} ‖φ(k)‖. The following
definition is needed for the main results of this section.



Definition 4.1: The discrete-time, linear time delay dy-
namical systemG given by (19) is nonnegativeif for
every φ(·) ∈ C+, where C+

4= {ψ(·) ∈ C : ψ(θ) ≥≥
0, θ ∈ {−κ, · · · , 0}}, the solutionx(k), k ∈ N , to (19) is
nonnegative.

Proposition 4.1:The discrete-time, linear time delay dy-
namical systemG given by (19) is nonnegative if and only
if A ∈ Rn×n andAd ∈ Rn×n are nonnegative.

Proof. It follows from Lagrange’s formula that the solu-
tion to (19) is given by

x(k) = Akx(0) +
k−1∑

θ=0

Ak−θ−1Adx(θ − κ)

= Akφ(0) +
k−κ−1∑

θ=−κ

Ak−κ−θ−1Adx(θ). (20)

Now, if A is nonnegative it follows thatAk ≥≥ 0, k ∈ N ,
and if φ(·) ∈ C+ andAd is nonnegative it follows that

x(k) = Akφ(0) +
k−κ−1∑

θ=−κ

Ak−κ−θ−1Adφ(θ) ≥≥ 0,

k ∈ {0, · · · , κ}. (21)

Alternatively, for allκ < k,

x(k) = Aκx(k − κ) +
κ−1∑

θ=0

Aκ−θ−1Adx(k + θ − 2τ),

and hence, sincex(k) ≥≥ 0, k ∈ {−κ, · · · , κ}, it follows
that x(k) ≥≥ 0, κ ≤ k < 2κ. Repeating this procedure
iteratively it follows thatx(k) ≥≥ 0, k ∈ N .

Conversely, assumeG is nonnegative and suppose,ad
absurdum, A is not nonnegative. That is, suppose there
exist I, J ∈ {1, 2, . . . , n} such thatA(I,J) < 0. Now,
let φ(·) ∈ C+ be such thatφ(−κ) = 0 and φ(0) = eJ .
Next, it follows from (20) thatx(1) = AeJ , which implies
that xI(1) = A(I,J) < 0 which is a contradiction. Now,
suppose,ad absurdum, Ad is not nonnegative, that is, there
exist I, J ∈ {1, 2, . . . , n} such thatAd(I,J) < 0. Next, let
φ ∈ C+ be such thatφ(−κ) = eJ andφ(0) = 0. In this case,
it follows from (20) thatx(1) = Adx(−κ), which implies
that x(1) = AdeJ andxJ (1) < 0 which is a contradiction.

For the remainder of this section, we assume thatA and
Ad are nonnegative so that the discrete-time, linear time
delay dynamical systemG given by (19) is nonnegative.
Next, we present necessary and sufficient conditions for
asymptotic stability for the discrete-time linear time delay
nonnegative dynamical system (19).

Theorem 4.1:Consider the discrete-time, linear nonneg-
ative time delay dynamical systemG given by (19) where
A ∈ Rn×n andAd ∈ Rn×n are nonnegative, and letκ̄ > 0.
ThenG is asymptotically stable for allκ ∈ N if and only if
there existp, r ∈ Rn such thatp >> 0 andr >> 0 satisfy

p = (A + Ad)Tp + r. (22)
Proof. To prove necessity, assume that the discrete-time,

linear time delay dynamical systemG given by (19) is
asymptotically stable for allκ ∈ N . In this case, it follows
that the discrete-time linear nonnegative dynamical system

x(k + 1) = (A + Ad)x(k), x(0) = x0 ∈ Rn

+, k ∈ N ,
(23)

or, equivalently, (19) withκ = 0, is asymptotically stable.
Now, it follows from Theorem 1 of [11] that there exists
p >> 0 andr >> 0 such that (22) is satisfied. Conversely,
to prove sufficiency, assume that (22) holds and consider
the candidate Lyapunov-Krasovskii functionalV : C+ → R
given by

V (ψ) = pTψ(0) +
−1∑

θ=−κ

pTAdψ(θ), ψ(·) ∈ C+.

Now, note thatV (ψ) ≥ pTψ(0) ≥ α‖ψ(0)‖, whereα
4=

mini∈{1,2,...,n} pi > 0. Next, using (22), it follows that
the Lyapunov-Krasovskii difference along the trajectories
of (19) is given by

∆V (xk) = pT[x(k + 1)− x(k)] + pTAd[x(k)
−x(k − κ)]

= pT(A + Ad − I)x(k)
= −rTx(k)
≤ −β‖x(k)‖,

whereβ
4= mini∈{1,2,...,n} ri > 0 and xk(θ) = x(k + θ),

θ ∈ {−κ, · · · , 0}, denotes the state of the time delay dy-
namical systemG. Now, it follows from standard Lyapunov
theorems for discrete-time systems evolving on Banach
spaces that the discrete-time, linear nonnegative time delay
dynamical systemG is asymptotically stable for allκ ∈ N .

Next, we present a nonlinear extension of Proposition 4.1
and Theorem 4.1. Specifically, we consider nonlinear time
delay dynamical systemsG of the form

x(k + 1) = Ax(k) + fd(x(k − κ)),
x(θ) = φ(θ), −κ ≤ θ ≤ 0, k ∈ N , (24)

where x(k) ∈ Rn, k ∈ N , A ∈ Rn×n, fd : Rn → Rn

is continuous andfd(0) = 0, κ ≥ 0, and φ(·) ∈ C.
Note that Definition 4.1 also holds for the nonlinear time
delay dynamical systemG given by (24) with appropriate
modifications.

Proposition 4.2:Consider the discrete-time, nonlinear
time delay dynamical systemG given by (24). If φ(·) ∈
C+, A ∈ Rn×n is nonnegative, andfd : Rn → Rn is
nonnegative, thenG is nonnegative.

Proof. It follows from Lagrange’s formula that the solu-
tion to (24) is given by

x(k) = Akx(0) +
k−1∑

θ=0

Ak−θ−1fd(x(θ − κ))

= Akφ(0) +
k−κ−1∑

θ=−κ

Ak−κ−θ−1fd(x(θ)). (25)

Now, if A is nonnegative it follows from thatAk ≥≥ 0,
k ∈ N , and if φ(·) ∈ C+ and fd is nonnegative it follows
that

x(k) = Akφ(0) +
k−κ−1∑

θ=−κ

Ak−κ−θ−1fd(φ(θ)) ≥≥ 0,

k ∈ {0, · · · , κ}. (26)



Alternatively, for allκ < k,

x(k) = Aκx(k − κ) +
κ−1∑

θ=0

Aκ−θ−1fd(x(k + θ − 2κ)),

and hence, sincex(k) ≥≥ 0, k ∈ {−κ, · · · , κ}, it follows
that x(k) ≥≥ 0, κ ≤ k < 2κ. Repeating this procedure
iteratively it follows thatx(k) ≥≥ 0, k ∈ N .

Finally, we present sufficient conditions for asymptotic
stability for discrete-time, nonlinear nonnegative dynamical
systems given by (24).

Theorem 4.2:Consider the discrete-time, nonlinear non-
negative time delay dynamical systemG given (24) where
A ∈ Rn×n is nonnegative,fd : Rn → Rn is nonnegative,
and fd(x) ≤≤ γx, x ∈ Rn

+, whereγ > 0. If there exist
p, r ∈ Rn such thatp >> 0 andr >> 0 satisfy

p = (A + γIn)Tp + r, (27)

thenG is asymptotically stable for allκ ∈ N .
Proof. Assume that (27) holds and consider the candidate

Lyapunov-Krasovskii functionalV : C+ → R given by

V (ψ) = pTψ(0) +
−1∑

θ=−κ

pTfd(ψ(θ)), ψ(·) ∈ C+.

Now, note thatV (ψ) ≥ pTψ(0) ≥ α‖ψ(0)‖, whereα
4=

mini∈{1,2,...,n} pi > 0. Next, using (27), it follows that
the Lyapunov-Krasovskii difference along the trajectories
of (24) is given by

∆V (xk) = pT[x(k + 1)− x(k)] + pT[fd(x(k))
−fd(x(k − κ))]

= pT(Ax(k)− x(k) + fd(x(k)))
≤ pTAx(k)− pTx(k) + γpTx(k)
= −rTx(k)
≤ −β‖x(k)‖,

where β
4= mini∈{1,2,...,n} ri > 0. Now, it follows

from standard Lyapunov theorems for discrete-time systems
evolving on Banach spaces that the discrete-time, nonlinear
nonnegative time delay dynamical systemG is asymptoti-
cally stable for allκ ∈ N .

V. CONCLUSION

In this paper, necessary and sufficient conditions for
asymptotic stability of linear nonnegative dynamical sys-
tems with time delay were given. Nonlinear as well as
discrete-time extensions were also considered.
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