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Abstract—Nonnegative and compartmental dynamical sys- Lyapunov-Krasovskii functional leads toreew Lyapunov-
tem models are derived from mass and energy balance like equation for examining stability of time delay non-
considerations and involve the exchange of nonnegative quan- negative dynamical systems. The motivation for using a
tities between subsystems or compartments. These models lineéar Lyapunov-Krasovskii functional follows from the
are widespread in biological and physical sciences and play fact that the (infinite-dimensional) state of a retarded non-

a key role in understanding these processes. A key phys- Negative dynamical system is nonnegative and hence a
ical limitation of such systems is that transfers between lin€ar LyapunOV-Kg(a.chvsk". funlctlonal Is a Va“g ?and'date
compartments is not instantaneous and realistic models for Lyapunov-lKrasovs " I.unctlona. For a time k§ ]‘?y c_om-l
capturing the dynamics of such systems should account for Psarst[]no?/\r/]rt]atosycs:toerrrg’saolr?deat[)L%/r?é)l{ggflr(r:gggvgf”thléng“g?gm
material in transit between compartments. In this paper we ; ; p : St
resent necessary and sufficient conditions for stability of at a _given time plus the integral of the mass flow in
p y Y transit between compartments over the time intervals it

nonnegative and compartmental dynamical systems with time  taxeg for the mass to flow through the intercompartmental
delay. Specifically, asymptotic stability conditions for linear -gnnections.

and nonlinear as well as continuous-time and discrete-time
nonnegative dynamical systems with time delay are established
using linear Lyapunov-Krasovskii functionals.

The contents of the paper are as follows. In Section Il we
establish definitions, notation, and review some basic results
on nonnegative dynamical systems. In Section Il we show
that for a nonnegative continuous function specifying the
initial state of a retarded nonnegative system, time delay
nonnegative and compartmental systems are confined to a

|. INTRODUCTION nonnegative state space. Furthermore, we give necessary

) and sufficient conditions for asymptotic stability for linear
_ Nonnegative and compartmental models_play a key roléme delay nonnegative systems using a linear Lyapunov-
in understandin man%/ processes in biological and medicktasovskii functional and a new Lyapunov-like equation.
sciences [1]—[6f Such models are composed of homog®ve then turn our attention to nonlinear nonnegative sys-
neous interconnected subsystems (or compartments) whigms with time delay and present sufficient conditions for
exchange variable nonnegative quantities of material withsymptotic stability. In Section IV we present a discrete-
conservation laws describing transfer, accumulation, arttne analog of the results developed in Section Ill. Finally,
outflows between compartments and the environment. Theée draw conclusions in Section V.
range of applications of nonnegative and compartmental
systems is not limited to biological and medical systems.

eir usage includes chemical reaction systems, queuing I
systems, ecological systems, economic systems, telecom-

munication systems, transportation systems, and I;i)ower SYS1n this section we introduce notation, several definitions,

tems, to cite but a few examples. A key physical limitation, ; s d :
of such systems is that transfers between compartments g‘rjni(S;S{"seys'}g}’nsre[sﬁ!tsfsfo{‘scfirl'&g trl:gte%rren?lgggggg\r/e fg¥

not instantaneous and realistic models for capturing the dy . . -2
namics of sich systems Should account or materal, energgYelopNg e, Al suls of s paper, Spceial
or information in transit between compartments [3]. Hence, - 15> ic 2 _dimensional linear vector space over the
to accurately describe the evolution of the aforemention s with th . dul pact b
systems, it is necessary to include in any mathematic§als with the maximum modulus norrp- || given by
model of the system dynamics some information of the past:|| = maxi—i __n |2, = € R". Forz € R™ we write
system states.” This of course leads to (|nf|n|te-d|men5|onazr)f22_ 0 (resp.,z >> 0) to indicate that every component
delay dynamical systems [7]-[9]. of x is nonnegative (resp., positive). In thiS case we say

In this paper we develop necessary and sufficient con OIlhat x IS nonnegativeor positive respectively. Likewise,
nxm j i it I
tions for time-delay nonnegative and compartmental dyna € R Is nonnegativeor positiveif every entry of A

ical systems. Specifically, usitigear Lyapunov-Krasovskii S nonnegative or positive, r(_aspecnveil% which T'LS written as
functionals we develop necessary and sufficient conditiond == 0 or A >> 0, respectively. LefR, andR” denote
for asymptotic stability of linear nonnegative dynamicathe nonnegative and positive orthantsitf; that is, if x €
systems with time delay. The consideration of a linear” thenz < @1 andz € R are equivalent, respectively,
to z >> 0 andz >> 0. Finally, C([a, ], R™) denotes a
This research was supported in part by NSF under Grants ECS-94962B@nach space of continuous functions mapping the interval
and ECS-0133038 and AFOSR under Grant F49620-0-01-0095. [a,b] into R™ with the topology of uniform convergence.
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For a given real number > 0 if [a,b] = [—7,0] we let Note that the state of (2) at tintés thepiece of trajectories

C = C([-,0],R") and designate the norm of an elementr between —7 andt, or, equivalently, thelementr, in the

¢ in C by [|¢]l = suppe_,qllo(0)]. If a,8 € R and space of continuous functions defined on the intefrval 0]

z € C(Ja—7,a+fG],R"), then for evenyt € [a,a+ 3], we and taking values ilk"; that s, z, € C([-7,0],R™). Hence,

let 2, € C be defined byr,(6) = z(t+96), 6 € [-7,0]. The z4(0) = z(t+0), 0 € [—,0]. Furthermore, since for a given

following definition introduces the notion of a nonnegativelime ¢ the piece of the trajectories, is defined on—, 0],

function. the uniform normj|z[| = supge(_, o) lz(t+0)| is used for
Definition 2.1: Let T > 0. A real functionu :JO’ T] — the definitions of Lyapunov and asymptotic stability of (2).

m : i N For further details see [7], [9]. Finally, note that singe)
I(%esé)s. 3&?T§gatlgﬁrt?1$ep'ih%g?\l/tzli\ll[g f;fct|on|f u(t) 220 is continuous it follows grom Theorem 2.1 of [7, p. 14] that

KA ) . there exists a unique solutiar({¢) defined on—7, o) that
The next definition introduces the notion of essentiallyoincides withg on [—7,0] and satisfies (2) fot > 0. The
nonnegative matrices. following definition is needed for the main results of this

Definition 2.2 ( [10]): Let A € R™*". A is essentially ~Section.
nonnegativef Ag; ;) >0,4,j=1,...,n,1# j. Definition 3.1: The linear time delay dynamical system

Next, we present a key result for linear nonnegativé given by (2) isnonnegativef for every ¢(-) € C.., where
dynamical systems Cy ={¢()eC: (@) >>0, 0 € [-7,0]}, the solution

) z(t), t > 0, to (2) is nonnegative.

t) = Ax(t 0) = t>0 1 " . . .

#(?) z(t), 2(0) = o, =7 (3) Proposition 3.1: The linear time delay dynamical system
wherez(t) € R", t > 0, and A € R"*" is essentially G given by (2) is nonnegative if and only il € R"*" is
nonnegative. The solution to (1) is standard and is giveessentially nonnegative and; € R"*" is nonnegative.
by z(t) = e**z(0), ¢ > 0. The following lemma proven in  proof, It follows from Lagrange’s formula that the solu-
[5] (see also [6]) shows that is essentially nonnegative if tion to (2) is given by
and only if the state transition matrix!’ is nonnegative on
[0, 00).

Lemma 2.1:Let A € R"*". Then A is essentially
nonnegative if and only it is nonnegative for alt > 0. t—
Furthermore, ifA is esSentially nonnegative ang >> 0, = ™¢(0) +/ A== A 2(0)do. (3)
thenz(t) >> 0, t > 0, wherez(t), t > 0, denotes the

solution to (1). o . L
Next, we consider a subclass of nonnegative syste o W’hlfAlet essentially nonnegdatlfve It fOIIOéN S frocrin /I( emma
J 51 >> > nd i . n i
namely, compartmental systems. nonrgegtaetiveﬁTol(l)(’)V\is_thgf a ¢() € Ct a d 1S

Definition 2.3: Let A € R™*™. A is a compartmental

t

() = eMx(0)+ / A0 4 12(0 — 7)d0
0

-7

Al g ‘ n e —r
;nitr{xg .Ié.l.lsne.ssentlally nonnegative and,”, A ;) <0, 2(t) = eAt(0) +/ AU=T=0) A 6(0)d0 >> 0,
If A is a compartmental matrix, then the nonnegative - te0,7). (4

sglstem 1) is called aimflow-closed compartmental system

[3], [4], [6]. Recall that an inflow-closed compartmental Sysaternatively, for all + < ¢

tem possesses a dissipation property and hence is Lyapunov ' '

stable since the total mass in the system given by the sum T

of all components of the state(t), t > 0, is nonincréasing  x(t) = e*"a(t — 7) +/ AT Agx(t + 0 — 27)d0,
along the Tforward trajectories of (1).T In particular, with 0

Vi) = e wheree = [1,1,---,1]7, it follows that ang hence, since(t) >> 0, t € [, 7), it follows that
V(eg) = el Az = Y0 [0 Ayl oy <0, 2 € Ry, (1) >> 0,7 < t < 27. Repeating this procedure iteratively
Furthermore, since irdl) < 1, where indA) denotes it follows thatz(t) >> 0, t > 0.

the index of A4, it follows that A is semistable; that is, Conversely, assumé is nonnegative and supposad

lim;_, ., et exists. Hence, all solutions of inflow-closed ; f
!inearo?:ompartmental systems are convergent. Of cours%tglér(él;(gt‘? '3 réohes;enua% njpr;én3gastl|1v0% Ihhaatztéllsy sugpose
if det A # 0, where detA denotes the determinant of, J AR ' (1,J)

then A i totically stable. F tails of th . Now, let¢(-) € C4 be such thap(d) =0, —7 <6 <0
fagg Se'§ [%?y[gf otically stable. For details of the abO\légmd #(0) = es, wherer > 0 ande; € R" is a vector of

zeros with one in the/th entry. Next, it follows from (3)

that
_ At
I1l. STABILITY THEORY FORCONTINUOUS-TIME x(t)=eTes,  0<t<T
NONNEGATIVE DYNAMICAL SYSTEMS WITH TIME Hence, for sufficiently small’ > 0, M(; ;) < 0, where
DELAY '

M = AT, which implies thatz;(T) < 0 which is a
In the first part of this paper we consider a linear timgontradiction. Now, supposed absurdumA, is not non-

delay dvnamical svster@ of the form hegative, that is, there exigt J € {1,2,...,n} such that
y dy ysterg Aa(r,7y < 0. Next, let{v, };2, C C; denote a sequence of
@(t) = Az(t) + Aax(t — 1), functions such thalim,, . v, (8) = e;6(8+n—7), where

z(0)=¢0), —-7<6<0, t>0, 2) O0<n<r andé(f-) denotes the Dirac delta function. In this
- - case, it follows from (3) that
wherez(t) € R*, t > 0, A € R"*", Ay € R"*", 7 >

0, and¢(-) € C = C([-7,0],R™) is a continuous vector i _ A K A(n—0) _
valued function specifying the |)nitial state of the system. n(n) = e™vn (0) + 0 e Aqu(9 — 7)df,
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which implies thatz(n) = lim, . xnin. = eAMA4e;.
Now, by choosingn sufficiently small it follows that

xr(n) < 0 which is a contradiction. O

aj;z;(t), T

/\
ith Subsystem jth Subsystem
@i (t) ~ @ (t)

For the remainder of this section, we assume thas a;izi(0), T
essentially nonnegative andl; is nonnegative so that for
every¢(-) € Cy, the linear time delay dynamical systegn
given by (2) is nonne?atlve. Next, we present necessary ap.d _ . .
sufficient conditions for asymptotic stability for the linear-'9: 1. Linear compartmental interconnected subsystem model with time
time delay nonnegative dynamical system (2). Note that féie'ay-

addressing the stability of the zero solution of a time delay

F(inneggtlvebsyslterﬁ,l the L(stfuatlj stability delflnltlonts) Iglven in

7] need to be slightly modified. In particular, stability no- xn i i

fions for nonnegative dynamical systems need to be definéffere #(1) € R*, ¢ > 0, A ¢ R**" is essentially

aiizi(t) ajjz;(t)

with respect to relatively open subsets Eﬁ’ containing
the equilibrium solutionz; = 0. For a similar definition

see [6]. In this case, standard Lyapunov-Krasovskii stabilit
theorems for nonlinear time delay systems [7] can be used
directly with the required sufficient conditions verified on

Cy.

Theorem 3.1:Consider the linear nonnegative time delay

dynamical systeng given by (2) whereA € R™*" is
essentially nonnegative and; € R™*™ is nonnegative.
Then G is asymptotically stable for att € [0, 00) if and
only if there existp, r € R™ such thatp >> 0 andr >> 0
satisfy

0=(A+A40)Tp+r. (5)

Proof. To prove necessity, assume that the linear tim

delay dynamical systerg given by (2) is asymptotically
stable for allz € [0, 00). In this case, it follows that the
linear nonnegative dynamical system

i(t) = (A+ Ag)z(t), z(0)=z9€R}, t>0, (6)
or, equivalently, (2) withr = 0, is asymptotically stable.

Now, it follows from Theorem 3.2 of [6] that there exists
p >> 0 andr >> 0 such that (5) is satisfied. Conversely,

to prove sufficiency, assume that (5) holds and consider t
cand|d6';1te Lyapunov-Krasovskii functiond : C; — R
given by

¥(-) € Ca.

Now, note thatV(y) > pTw(0) > alv(0)|, where

a = minjcpo, .y pi > 0. Next, using (5), it follows

0
V@) = T (0) + / P Aq(6)do,

-7

nonnegative, Aq; € R™"*", ¢ = 1,...,nq, iS Nonnegative,
T = maX;e(1,... n,} Ti» ANAde(-) € {¥(-) € C([-7,0[,R") :
9(0) >>0, 6 € [-7,0]}. In this case, (5) becomes

nq
0=(A+> Ax)Tp+r,
i=1

(8)

v_vhicr|1 is associated with the Lyapunov-Krasovskii func-
tiona

nd 0
V) =pT )+ > [ pTAuv(0)d.  (9)
i=1"v T
gimilar remarks hold for the nonlinear extension presented
elow and the discrete-time results presented in Section IV.

Next, we show that inflow-closed, linear compartmental
d%/namlc;al systems with time dela)(s [3] are a special case
of the linear nonnegative time delay systems (2). To see
this, fori = 1,...,n, let z;(¢), t > 0, denote the mass
and (hence a nonnegative quantity) of thie subsystem of
the compartmental s%/f_st_em shown in Figure 1,dgt> 0
denote the loss coefficient of thih subsystem, and let

,i(t — 7), i # j, denote the net mass flow (or flux)
rom the jth subsystem to theéth subsystem given by
¢ij(t — T) = ai;z;(t — 7) — aj;xi(t), where the transfer
coefficienta;; > 0, 1 # j, and7 is the fixed time it takes
for the mass to flow from thgth subsystem to théth
subsystem. For simplicity of exposition we have assumed
that all transfer times between compartments are given by
7. The more general multiple delay case can be addressed
as shown in Remark 3.1. Now, a mass balance for the whole
compartmental system yields

that the Lyapunov-Krasovskii directional derivative along

the trajectories of (2) is given by
V() pla(t) +p" Aala(t) — a(t — 7))
pT(A+ Ag)x(t)
—rTa(t)

—Bll=@ll,

wheres = minjey o, ny 7 > 0 anda, (0) = 2(t+96), 0 €

IA

[—7,0], denotes the (infinite-dimensional) state of the time
delay df/namlcal syster§i. Now, it follows from Corolla(;yI
elay

n

Bi(t) = —(ai+ Y au)zs(t)
=Lz
n
+ Z aijfljj(t—T),
=it

or, equivalently,
z(t) = Ax(t) + Aqz(t — 1),

3.1 of [7, p. 143] that the linear nonnegative time
flynagnical systent; is asymptotically stable for alk z(0) =¢(0), —-7<0<0, t=>0,(11)
0, c0). O B T
Remark 3.1:The results presented in Proposition 3']y7_tvhe:re1x(t) n [21.(8), sz 8], #() € C4 and for
and Theorem 3.1 can be easily extended to systems wi 4 e
multiple delays of the form —S agi, Q=]
na Adig) :{ 0. it 12)
z(t) = Az(t) + Z Aqiz(t — 1),
i=1 _ 0, =7
2(0) = 6(0), —T<0<0, t>0, (7) Aaig) —{ a. 14 (13)
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Note thatA is essentially nonnegative ant} is nonnega- and hence, since(t) >> 0, ¢t € [—7,7), it follows that
tive. Furthermore A + A4 is a compartmental matrix and x(¢) >> 0, 7 < t < 27. Repeating this procedure iteratively
hence it follows from Lemma 2.2 of [5] that R® < 0 it follows thatz(t) >> 0, t > 0. O

or A = 0, where \ is an eigenvalue ofA + A4. Now, S . .
it follows from Theorem 3.2 of [6] and Theorem 3.1 that  Next, we present sufficient conditions for asymptotic
the zero solutionz(t) = 0 to (11) is asymptotically stable stab|I|t3/ for nonlinear nonnegative dynamical systems given

for all 7 € [0,00) if and only if A + Aq is Hurwitz. PY (15 _ _ o
Alternatively, asymptotic stability of (11) for alt € Lo, ) Theorem 3.2:Consider the nonlinear nonnegative time
can be deduced using the Lyapunov-Krasovskii functionatlelay dynamical systerng given (15) whereA € R"*"
o is essentially nonnegatlqu : R® — R™ is nonnegative,
V() = eLa(0 +/ T A (0 de, NV EeCy, and fa(x) << vz, € R, wherey > 0. If there exist
(¥) = e 1(0) e ay(0) ¥() +(14) p,r € R such thaty >> 0 andr >> 0 satisfy
which captures the total mass of the system-at0 plus the 0=(A+~L) p+r, (18)

integral of the mass flow in transit between compartment?] . .
over the intervals it takes for the mass to flow throughheng is asymptotically stable for alt € [0, c0).
the intercompartmental connections. In this case, it follows pygof. Assume that (18) holds and consider the candidate
that V(z,) < —g|z(t)||, where § = mingeqy... ,3a;  Lyapunov-Krasovskii functional” : C;. — R given by
and z:(0) = m(tf+ 9),_9ﬂ € [TT, Ogj This result isI not 0
surprising, since for an inflow-closed compartmental system — 7T T )
the law of conservation of mass eliminates the possibility V(W) =p 9(0) + P~ Ja(¥(6))de, w() €Cy.
of unbounded solutions.
Next, we present a nonlinear extension of Proposition 3Mow, note thatV (1)) > pTv(0) > ozllil}éo)ll_, wherea =
and Theorem 3.1. Specifically, we consider nonlinear timein;c(i 2.,y pi > 0. Next, using (18), it follows that
delay dynamical system@ of the form the LyapunO\f/-Klgaspvskii di{)ectional derivative along the
. trajectories o is given
() = Aa(t) + falo(t - 7)), e (15) s given by

2(0) =¢(6), —T<6<0, t20,(15)  V(w) = p &) +p" [fa(@®) ~ falz(t 7))

wherez(t) € R*, t > 0, A € R™", fq : R* — R" is P (Ax(t) + fa(x(t)))
locally Lipschitz andf4(0) = 0, 7 > 0, and¢(-) € C. Once T T
again, sincep(-) is continuous, existence and uniqueness p ’;m(t) +ap ()
of solutions to (15) follow from Theorem 2.3 of [7, E 44]5 —r-x(t)
Y o) —Bllz®)l

—T

IN

IA

Nonlinear time delay systems of the form given

ansle in thle study of physiolpglcgl and _blomedlceﬂ systems,

ecological systems, population dynamics, as well as neur, a _ .

Hopfield networks. For the nonlinear time dela dynamlca@hereﬂ = nlllie L) r; > 0. Now, it follows from
systemélS), the definition of nonnegativity holds with (2)¢orollary 3.1 of [7, p. 143] that the nonlinear nonnegative
replaced by (15). The following definition is needed for ougﬂ‘e delay dynamical systeg is asymptotically stable for

next result. 7 € [0,00). O
Definition 3.2: Let fq = [fa1, --, fan]® : D — R", Remark 3.2:The structural constrainfy(z) << vz,
whereD is an open subset @&&” that containsR';. Then = € R, wherey > 0, in the statement of Theorem 3.2 is
fa is nonnegative iffy;(x) > 0, for alli = 1,...,n, and natura ly satisfied for many compartmental dynamical sys-
r" - ’ tems. For example, in nonlinear pharmacokinetic models the
rTeElR,. transport across biological membranes may be facilitated

Proposition 3.2: Consider the nonlinear time delay dy-by carrier molecules with the flux described by a saturable

namical systeng given by (15). If¢(-) € Cy, A € R™*™is = from fa;(zs,25) = bmax[(2f /(2 + B) — (x¢/(x§ + 0],
essentially nonnegative, anfd : R” — R”™ is nonnegative, where z;, =; are the concentrations of thigh ‘and jth
then g is nonnegative. _cl_cr)]mpartr{]ents and,,.x, «, and g ﬂ(le modeé p;arar_n;:gters.h
; _ This nonlinear intercompartmental flow model satisfies the
tiol;r%o%ll‘rt))f(i)sllcavi\(/se;r%@ Lagrange’s formula that the solu structural constraint of Theorem 3.2.
t
z(t) = eAtﬂf(O)Jr/ M0 fy(x(6 — 7))do IV. STABILITY THEORY FORDISCRETETIME
Ot_T NONNEGATIVE DYNAMICAL SYSTEMS WITH TIME
= Mp(0) + / eAt=T=0 £1(x(9))d0. (16) DELAY

o , . In this section we present a discrete-time analog to the
Now, if A is essentially nonnegative it follows from Lemmaresults developed in Section IIl. Specifically, we consider
2.1 thate* >> 0, t > 0, and if #(-) € C, and fq is discrete-time dynamical systergsof the form

nonnegative it follows that a(k+1) = Az(k) + Aqz(k — k),

t—T1

.I‘(t) — oAt (0) +/ €A(t_T_0)fd(¢(9))d9 >> 0, 33‘(9) = (25(9), -£<0<0, kelN, (19)
-7 wherez(k) €e R", k e N, A € R™", A4y € R"*", k €
tel0,7). A7) N, ¢(-) € C = C({-r,---,0},R") is a vector sequence
Alternatively, for all+ < ¢ specifying the initial state of the system, adddenotes
' ' the space of all sequences mappifigs, - -- ,0} into R™

_ Arg, T AG—0) g B with norm [|¢|| = maxye ... o} [[@(k)|. The following
z(t) = e™a(t — ) Jr/0 € fa(x(t+0—27))d0,  gefinition is needed for the main results of this section.
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Definition 4.1: The discrete-time, linear time delay dy-or, equivalently, (19) withx = 0, is asymptotically stable.
namical systemG given by (19) isnonnegativeif for = Now, it fol!jows from Trrl]eohrenzzlz)qf [11] tfha(tj tgere eX|s'|[s
) 2 ) . p >> 0 andr >> 0 such that is satisfied. Conversely,
gveeryeqb{(_) /f_ F* ’O}Y\ih?ﬁicszlutioﬁab:%lz) Ek(é N %9()192)?5 to prove sufficiency, assume that (22) holds and consider
’ oD ' ' the candidate Lyapunov-Krasovskii functiordal: C; — R

nonnegat?ye. _ . _ _ given by
Proposition 4.1: The discrete-time, linear time delay d?/-
namical systeng given by (19) is nonnegative if and only -1
if AeR"*™ andAy € R™*™ are nonnegative. V() =pTp(0) + Z pLAq(6), ¥(-) € Cy.
_ Proof. It follows from Lagrange’s formula that the solu- —
tion to (19) is given by
k-1 Now, note thatV (1)) > pTe(0) > a||1/2§0)||, wherea =
a(k) = Akx(0)+ZAk‘9‘1Adx(9—m) min;eq1,2,..,y 2i > 0. Next, using (22), it follows that
o the Iga_pun_ov-Krasovskii difference along the trajectories
=0 of (19) is given by
k—r—1
= Akgb(()) + Z Ak—n—‘g—lAdx(Q), (20) AV(zp) = pT[a:(k:—i- 1) —l‘(k)] —‘y—pTAd[l‘(kJ)
- )
Now, if A is nonnegative it follows that* >> 0, k € \, _ T _
and if ¢(-) € C; and A4 is nonnegative it follows that - P (TA + Ao — Da(k)
k—r—1 = T x(k)
(k) = ARG(0) + S AP0 A40(6) >> 0, < —Bl=®;
0=—k

where 3 = minjcr1 0.7 > 0 and zy,(0) = z(k + 0),
0 e€{—kK,- ,%, denotes the state of the time delay dy-
namical systeng;. Now, it follows from standard Lyapunov

ke{0,-- .k} (21)

Alternatively, for allk < k, 3 [ ;
theorems for discrete-time systems evolving on Banach

Rl 01 spaces that the discrete-time, linear nonnegative time delay
(k) =A"x(k —r) + Z AR Aga(k + 6 — 27), dynamical systeng is asymptotically stable for alt € A/.
0=0 [l
and hence, since(k) >> 0, k € {—«,--- ,x}, it follows
that (k) >> 0, » < k < 2x. Repeating this procedure Next, we present a nonlinear extension of Proposition 4.1
iteratively it follows thatz(k) >> 0, k € V. and Theorem 4.1. Specmcallﬁ, we consider nonlinear time
bCorgjverssquy,_ assumg is nonneg@ll_tri]ve and supposedh delay dynamical systems of the form
absurdum A" is not nonnegative. That is, suppose there _
exist I,J € {1,2,...,n} such thatA; , < 0. Now, w(k +1) = Az(k) + fa(z(k — #)),
let ¢(-) € C, be such thaip(—x) = 0 and ¢(0) = ej. z(0) =¢(0), —k<0<0, keN, (24)

Next, it follows from (20) that:(1) = Ae;, which implies . nxn n N
that z;(1) = A¢; 5 < 0 which is a contradiction. Now, Wherexz(k) € R", k € N, A € R™", fqg : R* — R
supposead absurdumAy is not nonnegative, that is, thereis continuous andfq(0) = 0, x > 0, and ¢(-) € C.
existl,J € {1,2,...,n} such thatAq.; ,, < 0. Next, let Note that Definition 4.1 also holds for the nonlinear time

( , ) . . . .
# € C, be such thap(—k) = ey andg(0) = 0. In this case, Fneolgﬁiggt?grqgllcal systerg given by (24) with appropriate

it follows from (20) thatz(1) = Aqz(—r), which implies Proposition 4.2: Consider the discrete-time, nonlinear
thatz(1) = Aqe; andz ;(1) < 0 which is a contradiction. time delay dynérﬁical systerd given by (24), if 6() €
U ¢,, A € R™ is nonnegative, andy : R" — R is
. ' ' nonnegative, the@ is nonnegative.

For the remainder of this section, we assume thaind . proof, It follows from Lagrange’s formula that the solu-
Aq are nonnegative so that the discrete-time, linear timgyn to (24) is given by
delay dynamical systeng given by (19) is nonnegative.
Next, we present necessary and sufficient conditions for

. b A - 1 . k—1
asymptotic stability for the discrete-time linear time delay , _o—
nonnegative dynamical system (19). w(k) = AF(0)+ > AR fa(z(0 — k)
Theorem 4.1:Consider the discrete-time, linear nonneg- 6=0
ative time delay dynamical systeg given by (19) where k—r-1
A e R™*™ and A4 € R"*™ are nonnegative, and I&t> 0. = AF(0)+ Y AP fa(x(0)). (25)
Theng is asymptotically stable for alt € A/ if and only if P
there existp,r € R™ such thatp >> 0 andr >> 0 satisfy
p=(A+ Ad)Tp+r. (22) Now, if A is nonnegative it follows from tha#t* >> 0,

) ) ke N,and if¢(-) € C; and fy is nonnegative it follows
_ Proof. To prove necessity, assume that the discrete-timghat
linear time delay dynamical systeii given by &19) is
asymptotically stable for alk € V. In this case, it follows k—r—1
that the discrete-time linear nonnegative dynamical system () — Akg(0) + S AF=5=0=1f,(4(9)) > 0,

2k +1) = (A+ Ag)z(k), =(0)=z0 R}, keWN, O0=—r
(23) ke{0,--,k}. (26)
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Alternatively, for allk < k, [6]
k—1
a(k) = Arz(k — k) + Y A7 fa(a(k + 0 — 2k)),
0=0 [7]
and hence, since(k) >> 0, k € {—k,--- ,k}, it follows  [g]
that z(k) >> 0, k < k < 2k. Repeating this procedure
iteratively it follows thatz(k) >> 0, k € N. )
Finally, we present sufficient conditions for asymptotic,
stability for discrete-time, nonlinear nonnegative dynamic I1
systems given by (24). [11]

Theorem 4.2:Consider the discrete-time, nonlinear non-
negative time delay dynamical systefngiven (24) where
A e R™™is nonnegativeﬁfd : R™ — R™ is nonnegative,
and fq(z) << vz, + € R, wherey > 0. If there exist
p,r € R™ such thatp >> 0 andr >> 0 satisfy

p=(A+~L) " p+r,

then G is asymptotically stable for ak € V.

Proof. Assume that (27) holds and consider the candidate
Lyapunov-Krasovskii functional” : C;. — R given by

(27)

-1
V() =pTp0)+ Y p'fa((9)),

0=—k

Now, note thatV (1)) > pTv(0) > a||1/)$0)||, wherea =
min;eq1,2,..,y pi > 0. Next, using (27), it follows that
the Iilapun_ov-Krasovskii difference along the trajectories
of (24) is given by

¥(-) €Cq.

AV(zg) = plla(k+1) — (k)] +p"[fa(x(k)
—fa(z(k — k)]
= p'(Az(k) = 2 (k) + fa(z(k)))
< plAx(k) —pTa(k) +p (k)
= —TT;v(k)
< =Bllak)],
where 3 = minjeq12,..,37 > 0. Now, it follows

from standard Lyapunov theorems for discrete-time systems
evolving on Banach spaces that the discrete-time, nonlinear
nonnegative time dela% dynamical syst&s asymptoti-
cally stable for allx € . O

V. CONCLUSION

In this paper, necessary and sufficient conditions for
asymptotic stability of linear nonne(i]\latlve dynamical sys-
tems with time delay were given. Nonlinear as well as
discrete-time extensions were also considered.
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