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Abstract– In this paper we present a new algorithm
to synchronize two nonlinear systems. The systems may
differ in structure, parameter values, and have structural
uncertainties; therefore, the algorithm is robust in this
sense. The conditions on the systems for applying this
algorithm are the following: They must have the same
order, and be in integrator chain form. Furthermore, we
must know the bounds on the parametric uncertainties and
on additional terms due to non modeled dynamics. The
algorithm is based on the master/slave synchronization
scheme. The coupling signal is designed through the sliding
mode control technique. The results are illustrated with an
experiment where a Duffing circuit and a simple pendulum
are synchronized; both systems exhibit a chaotic attractor
when they are not coupled.
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I. INTRODUCTION

Synchronization, in its most general interpretation
means correlated or corresponding in-time behavior of
two or more processes [2]. In some situations the synchro-
nization is a natural phenomenon; however, in other cases
we must add an interconnection system to obtain this
phenomenon, or to improve its transitory characteristic.
In this situation the synchronization becomes a control
objective and it is called controlled synchronization. In
this sense, some algorithms have been proposed to obtain
controlled synchronization using a feedback signal. These
algorithms can be classified in two schemes: the mas-
ter/slave or unidirectional scheme and the bi-directional
scheme. In the unidirectional scheme, the master system
dominates the slave system. Thus, the synchronization
is based on the behavior of the master system. In the
bi-directional scheme the synchronization is a result from
interaction of all systems involved.
In the last years there has been an increasing attention

to the synchronization of chaotic systems. The synchro-
nization of this class of systems is a special problem
because these systems exhibit a complex, oscillatory, non
periodic steady state, althougth their motion is bounded.
The state trajectories are sensitive to initial conditions;
therefore, it does not seem possible to synchronize them.
In 1991 Pecora and Carroll [9] showed that, under

certain conditions, some parts of a chaotic system can
be reproduced so that these parts and their duplicates
exhibit identical chaotic behavior when they are driven

by the same input. Since then, many synchronization
algorithms for chaotic systems have been proposed.
Among others, we can mention the linear feedback
control [10], [7], the adaptive and sliding mode control
[4], [14] and observed-based synchronization [5], [11].
The synchronization of chaotic systems has interesting
applications in several fields of science and technology;
for example, the encriptment of information for private
communications systems [3].

There are two very important problems in the con-
trolled synchronization: 1)to ensure its stability, and 2)
to guarantee its robustness with respect to parametric
and structural uncertainties.

Based on the master/slave scheme, in this paper we
propose an algorithm to synchronize two nonlinear sys-
tems that can display chaotic behavior. The systems may
differ in structure, parameter values and have structural
uncertainties; therefore, the algorithm is robust in this
sense. The conditions on the systems for applying this
algorithm are the following: They must have the same
order, and be in integrator chain form. Furthermore, we
must know the bounds on the parametric uncertainties
and on additional terms due to non modeled dynamics.
The proposed algorithm is based on a sliding control
technique. It can be applied to piecewise smooth systems.
Furthermore, it is easier to design and implement than
others reported elsewere (for example [14]).

The paper is organized as follows. The synchronization
algorithm is developed in section II. In section III, the
proposed algorithm is illustrated with an experiment
where two chaotic systems are synchronized. Finally, the
conclusions are given in section IV.

II. SYNCHRONIZATION BASED ON A SLIDING
MODE CONTROL DESIGN

Consider two dynamical systems in normal form; the
master is given by

ẋmi = xmi+1 , (i = 1, . . . , n− 1) (1)

ẋmn = fm (t, xm) ,

where xm ∈ <n is the state vector, dxi/dt ≡ ẋi, fm :
<+×<n → < is a piecewise smooth function and t ∈ <+.



In the same form it is defined the slave system

ẋsi = xsi+1 , (i = 1, . . . , n− 1) (2)

ẋsn = fs (t, xs) + g (t, xs)u (t, xm, xs) ,

where xs ∈ <n is the state vector, fs : <+ ×<n → < is
a piecewise smooth function and g : <+ ×<n → <n is a
continuous function that is not zero for all xs and t ≥ 0.
In this case, u (·) ∈ < is a control input.
The functions fm (·) and fs (·) can be structurally

different and at the same time they can have parametric
and structural uncertainties.
The objective is to design a control signal u (·) so that

the slave system is synchronized with the master system.
The synchronization criterion is given by

lim
t→∞ kxm(t)− xs(t)k = 0.

To solve this problem, define the synchronization error
variables

ei = xmi − xsi . (i = 1, . . . , n)

Then the following system describes the dynamics of the
synchronization error

ėi = ei, (i = 1, . . . , n− 1) (3)

ėn = fm (t, xm)− fs (t, xs)
−g (t, xs)u (t, xm, xs) .

Now we design the control signal u (·) based on the sliding
mode control design.
Consider a discontinuity surface S = 0 defined by

S =
nX
i=1

γiei, (4)

where γi ∈ <, i = 1, . . . , n are positive constants. On
the other hand, we define a control u (·) given by

u (t, xm, xs) = F (t, xm, xs) sign (S) ,

where F (·) : <+×<n×<n → < is, in general, a piecewise
smooth function. In the following subsections we present
how to design the surface S and the control u (·) so that
the problem will be solved.

A. Design of the sliding surface

The sliding surface must be designed such that, when
the trajectories arrived to the discontinuity surface de-
fined by S, they must be directed to the origin of the
state space of the error variables; i.e., a sliding mode is
presented.
One way to define the behavior of system (3) when its

trajectories are in the surface S is through the equivalent
control ueq. It can be seen as the average control when
the trajectories of the system are in the surface S [12].

The value of ueq is found from the equation Ṡ = 0,
which from equation (3) has the form

Ṡ =
nX
i=2

γi−1ei + γnfm (t, xm)

− γnfs (t, xs)− γng (t, xs)ueq = 0.

If γn = 1, the equivalent control is given by

ueq =

Ã
nX
i=2

γi−1ei + fm (t, xm)− fs (t, xs)
!
/g (t, xs) .

Substituting ueq into (3) gives

ėi = ei, (i = 1, . . . , n− 1) (5)

ėn = −
nX
i=2

γi−1ei.

The last n−1 equations form a linear uncoupled system
from e1 with the form

.ee= Aee, (6)

where

ee = [e2, e3, . . . , en]T
and

A =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 0 1
−γ1 −γ2 −γ3 · · · −γn−2 −γn−1


System (6) has a unique equilibrium point at the

origin of the error space and is exponentially stable if
the constants γi−1 > 0 for i = 2, .., n are chosen such
that matrix A is strictly Hurwitz. Thus, the trajectories
in the discontinuity surface will go to the origin of the
error space.
Now, we will find the conditions so that the discon-

tinuity surface will be a sliding surface; i.e., to find the
conditions on u (·) such that the trajectories out of the
surface S go to this surface in a finite time.

B. Conditions for the existence of a sliding mode

Consider the following criterion given in [12]
If

SṠ < 0 ∀S 6= 0 and ∀t ≥ 0,
then the surface S is a sliding surface.
In our case, we have the following

SṠ = S

Ã
nX
i=2

γi−1ei + fm (t, xm)− fs (t, xs)
!
(7)

−Sg (t, xs)F (t, xm, xs) sign (S)



if g (t, xs) 6= 0 for all xs and t ≥ 0, we propose F (·) of
the form

F (t, xm, xs) = g (t, xs)
−1
h (t, xm, xs) , (8)

where h (t, xm, xs) > 0 for all xm, xs and t ≥ 0. Replacing
(8) in (7) we obtain

SṠ = S

Ã
nX
i=2

γi−1ei + fm (t, xm)− fs (t, xs)
!

−h (t, xm, xs) |S| ≤ Γ |S| ,
where

Γ =
nX
i=2

γi−1 |ei|+ |fm (t, xm)|

+ |fs (t, xs)|− h (t, xm, xs) .
The problem is solved if we find a function h (t, xm, xs)
such that

h (t, xm, xs) ≥
nX
i=2

γi−1 |ei| (9)

+ |fm (t, xm)|+ |fs (t, xs)|
∀ e, xm, xs and ∀t ≥ 0.
In the design of the function h (·) it is not necessary

to know the functions fm (·) and fs (·) in exact form.
Therefore, this algorithm is robust to parametric and
structural uncertainties.

On the other hand, the condition about the conver-
gence to the surface S in a finite time is also satisfied
with the control input given by (8) and (9). We can prove
the last statement by using the following criterion given
in [12].

If

lim
S→0−

Ṡ > 0 (10)

lim
S→0+

Ṡ < 0

then the convergence to the surface S is in a finite time.

For this case, Ṡ is given by

Ṡ =
nX
i=2

γi−1ei + fm (t, xm)− fs (t, xs)

−h (t, xm, xs) sign (S)
and by design of h (t, xm, xs) (equation (9)) both con-
ditions in (10) are satisfied in global or local form, this
depends on the function h (t, xm, xs) .

In the next section we illustrate this synchronization
algorithm for chaotic systems through an example where
a Duffing circuit and a pendulum are synchronized.

III. EXPERIMENTAL ILLUSTRATION OF THE
PROPOSED ALGORITHM

A. The pendulum model

Consider a forced simple pendulum with viscous and
Coulomb friction,¡
I +ml2c

¢ ..
θ +ρθ̇ + αsign

³
θ̇
´
+mglc sin (θ) = τ (t) ,

(11)

where I =0.0085 [kg· m2] represents the inertia,
m =1.6365 [kg] is the mass of the pendulum, lc =0.0762
[m] is the center of masses, ρ =0.00054 [Nm] is the viscous
frictional coefficient, α =0.05492 [Nm] is the Coulomb
frictional coefficient, g is the gravity coefficient, τ (t) is
the applied torque, and sign(·) is the signum function
defined by

sign (x) =

 1, x > 0
[−1, 1], x = 0
−1, x < 0

.

These parameter values correspond to a pendubot manu-
factured by Mechatronic Systems Inc [8]. The state space
form of system (11) is given by

ẋ1 = x2,

ẋ2 = −k1x2 − k2sign (x2)− k3 sin (x1) + k4τ (t) ,
where k1 = 2.9996−2, k2 = 3.0507, k3 = 67.912 and
k4 = 55.549. If

τ (t) = A sin(ωt)

it has been shown that it exhibits a chaotic behavior for
some values of A and ω [1].

B. The Duffing circuit

Duffing’s system is defined by the following equations

ẋ1 = x2, (12)

ẋ2 = x1 − x31 − ax2 + b sin (wt) ,
with a = 0.25, b = 0.3 and w = 1 it presents a chaotic
atractor [6].
We made a time scaling to facilitate the implementa-

tion of the circuit. We define a new time variable τ = t/α;
if α = 6.43 then the equation (12) can be written in the
following form

ż1 = z2, (13)

ż2 = 41. 345z1 − 41. 345z31 − 1. 6075z2
+12. 403 sin (6.43t) ,

these equations define the master system in the synchro-
nization scheme.
The Duffing circuit is shown in figure 1.
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Fig. 1. The Duffing circuit.

C. Synchronization of a pendulum and a Duffing circuit

Consider the Duffing circuit (13) and the pendulum
model given by

ẋ1 = x2, (14)

ẋ2 = − (k1 +∆1)x2 − (k2 +∆2) sign (x2)
− (k3 +∆3) sin (x1) + (k4 +∆4) (τ + u (x, z)) ,

where ∆i, i = 1, ..., 4, are possible parametric variations
due to parametric uncertainties; they are not known, but
we know their maximum bounds given by1.

|∆1| ≤ δ1 = 1. 3768× 10−2,
|∆2| ≤ δ2 = 1. 6241,

|∆3| ≤ δ3 = 9. 368,

|∆4| ≤ δ4 = 23. 576.

The error dynamics betwen the master and slave
system is given by

ė1 = e2, (15)

ė2 = 41. 345z1 − 41. 345z31 − 1. 6075z2
+12. 403 sin (6.43t) + (k1 +∆1)x2

+(k2 +∆2) sign (x2) + (k3 +∆3) sin (x1)

− (k4 +∆4) τ − (k4 +∆4)u (x, z) .
Now, we define the discontinuity surface S by

S = me1 + e2.

1We consider variations of ±20% from the nominal values of the
parameters.

Thus, the equivalent control ueq is given by

ueq (x, z) =
Φ

(k4 +∆4)
,

where

Φ = me2 + 41. 345z1 − 41. 345z31
−1. 6075z2 + (k1 +∆1)x2

+12. 403 sin (6.43t)
+ (k2 +∆2) sign (x2)

+ (k3 +∆3) sin (x1)− (k4 +∆4) τ.
Replacing ueq in (15) we obtain

ė1 = e2, (16)

ė2 = −me2.
If m > 0 we obtain a sliding mode.
Now, we propose an input control u given by

u = (k4 −∆4max)F (x, z) sign (s) (17)

= a1 |e2|+ a2 |z1|+ a3
¯̄
z31
¯̄

+a4 |z2|+ a5 |x2|+ a6
where a1 > m/31. 973, a2 > 1. 2931, a3 > 1. 2931, a4 >
0.050277, a5 > 0.00136, a6 > 4. 2132. This input control
satisfies the conditions (8) and (9); therefore, the problem
is solved.
Some numerical results are presented in figures 2

and 3. The control parameters are the following: a1 =
(m/31.973)1.2, a2 = 1.3, a3 = 1.3, a4 = 0.1, a5 = 0.01,
a6 = 4.4 and m = 30. As we can see in figure 3,
the synchronization algorithm is robust. We applied
variations of 0, 10 and 20 percent in all parameters of
the pendulum, the error between state variables of the
master and slave systems for each case are practically
the same.

D. Experimental results

By security, in the first stage of experiments to illus-
trate the proposed synchronization algorithm, we did not
include the real mechanical system; it has been emulated
in a RT card. In the following experiment stage, we will
use the real mechanical system.
The experiment was made in the following form.

The pendulum’s equations and the input control were
designed in Simulink and were loaded in the real time
card of the DSpace development system. With the same
card and program were acquired the state variables of
the Duffing circuit to close the control loop.
The results are the following. The behavior of the

master and slave systems with no control input is
shown in figure 4. As we can see,there is not natural
synchronization; their corresponding behavior is very
different.
Figures 5 and 6 show the results when the input control

(17) is applied to the slave system. As we can see, in
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Fig. 2. State trajectories of the master and slave systems of the
controlled case (Simulated).

this case the error variables e1 and e2 have values near
to zero but they do not stay at zero. This is due to the
chattering in the control input, a natural phenomenon
when the sliding mode control is applied. Therefore, we
can say that the systems are approximately synchronized
[2], i.e.

lim
t→∞ kxm(t)− xs(t)k ≤ ε.

for a sufficiently small ε > 0. In this case, ε is the
magnitude of the chattering in the error state, which
in general, is directly related with unmodelled dynamics
in the closed loop system and with the magnitude of
the control input [13]. In our example, the unmodelled
dynamics are delays in the real time card and the
magnitude of the control input is directly related with
function h (·). However, in many applications these errors
can be permisible and the synchronization algorithm can
be applied.

IV. CONCLUSIONS

In this paper we have proposed a new algorithm to
synchronize two nonlinear systems with same relative
degree, and minimum phase. This algorithm is based on
the master/slave synchronization scheme. The systems
involved may differ in structure, parameter values and
have structural uncertainties; therefore, the algorithm is
robust in this sense. We note that, with the proposed
algorithm, the problem of controlled synchronization is
solved; that is, to find a feedback control input u as a
function of the states and the time. If we do not have
full access to the state, we need to design an observer
to estimate the unknown states. On the other hand,
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Fig. 3. Synchronization errors for different cases for variations in
the pendulum parameters (Simulated).

due to using the sliding mode control technique the
control input produces a small synchronization error;
therefore, we obtain approximate synchronization. How-
ever, this synchronization error may be permissible in
some applications. The algorithm has been illustrated
through synchronization of a Duffing circuit (master
system) and a simple pendulum (slave system), both
systems exhibiting chaotic behavior. In this experiment
were considered only the uncertainties in the slave
system; however, they can be also considered in the
master system. Finally, the algorithm proposed can be
straightforward extended to synchronize multi-systems
under the master/slave synchronization scheme.
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