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Abstract—A relationship between the modes in a relay 

feedback system and the asymptotic properties of the locus of 
a perturbed relay system is analyzed. Also, the known 
relationship between the relative degree of the plant transfer 
function and a possibility of the first order sliding mode, 
second order sliding mode or oscillations to occur is proven. 
Examples of analysis are given. 

O 
I. INTRODUCTION 

SC
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ILLATIONS as well as sliding modes in relay 
edback systems have been a subject of analysis in 

numerous works over the last fifty years. It has been shown 
in [1] that a sliding mode (SM) can occur in a relay 
feedback system (with an ideal relay) if the plant has the 
relative degree one or two. Some recent proofs of this result 
can be found in [2,3]. Relative degree of the plant is also 
important for the possibility of some other types of 
complex motion in relay systems to occur [4]. This 
property is extremely important for the SM control theory. 
It depends on the relative degree whether the classical first 
order SM [5], the second order SM [6-9] or the chattering 
[9-10] occurs. However, the proof is based either on the 
Lyapunov method (for first and second order systems) or 
on the describing function (DF) method. For that reason, 
the existing proofs cannot be considered ether wide enough 
or rigorous as being based upon the approximate method. In 
respect to the latter, the problem is in a fundamental 
limitation of the DF method – the filter hypothesis that 
must hold. If we, for example, analyze a system of relative 
degree one the harmonic balance condition cannot be 
fulfilled which is the basis of the DF method. As a result, it 
is impossible to prove the existence of sliding mode staying 
within the framework of the DF method.  

The above-mentioned property can be proved if analyzed 
with the use of the locus of a perturbed relay system 
(LPRS) approach [11], which is an exact method and can 
overcome the respective drawback of the DF method. 

The paper is organized as follows. At first, some basics 
of the LPRS are considered. After that the relationship 
between the relative degree of the transfer function and the 
location of the high-frequency segment of the LPRS is 
established. On the basis of this property, the relationship 
between the relative degree of the transfer function of the 
plant and a possibility of the oscillations to occur is proven. 
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II. PROBLEM STATEMENT AND METHOD OF ANALYSIS 
The class of SISO relay feedback systems to be 

considered in this paper can be described by the following 
equations: 
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where , fnnnn R,R,R ××× ∈∈∈ 11 CBA 0 is a constant input 
to the system, σ is the error signal, 2b is the hysteresis of 
the relay function, A is nonsingular. The plant can also be 
described by the transfer function Wl(s)=C(sI-A)-1B. The 
above description corresponds to the following block 
diagram (Fig. 1).  

 
Fig.1.  Relay feedback system. 

Our main purpose is to analyze possible periodic 
solutions in this system having an ideal relay (b=0). 
However, the hysteresis relay will be used for the purpose 
of obtaining a proof too. Also, we will consider below only 
the autonomous case when the system input is zero (f0≡0) 
and only unimodal limit cycles. 

For the introduction of the LPRS method, let us assume 
that a constant non-zero input f0 is applied to the system 
Fig. 1, and a unimodal limit cycle with unequally spaced 
switching occurs in the system. The LPRS J(ω) was 
defined in [11] as follows: 
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where t=0 is the time of the switch of the relay from "-c" to 
"+c", f0 is the constant input, ω is the frequency of the self-
excited oscillations varied  by  changing the hysteresis 2b 
while all other parameters of the system are considered 
constant. σ0, u0 are average (over the period of the 
oscillations) values of the error signal and of the control 
respectively. σ0, u0 and y(t)t=0 are, therefore, functions of 
ω. Thus, J(ω) is a characteristic of the response of the 
linear plant to its non-symmetric pulse waveform input u(t) 



subject to f0→0 as the frequency ω  is varied. The real part 
of J(ω) contains information about the transfer properties of 
the relay in respect to the averaged on the period error 
signal, and the imaginary part of J(ω) comprises the 
condition of the switching of the relay. Two formulas of the 
LPRS were derived in [11]: 
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and in [12]: 
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In formula (9), m=0 for non-integrating plants and m=1 
for integrating plants (LPRS for an integrating plant is 
considered in details in [12]).  With the LPRS computed, 
finding a periodic solution becomes an easy task. The point 
of the intersection of the LPRS and of the straight line 
which lies at the distance πb/(4c) below the horizontal axis 
and parallel to it (the straight line "-πb/(4c)") provides the 
frequency of the oscillations and of the equivalent gain kn 
of the relay with respect to the averaged on the period error 
signal (Fig. 2).  According to (3), the frequency Ω of the 
oscillations can be found from the following equation: 
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(i.e. y(0)=-b  is the condition of the switching instant) and  
the gain kn can be computed as: 
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which is a result of the definition of J(ω). 

 
Fig.2.  The LPRS and oscillations analysis. 

To prove the existence of the ideal SM in the relay 
system we shall prove three statements: (a) that a periodic 
solution exists at finite values of hysteresis b; (b) that the 
frequency of this periodic solution tends to infinity if the 

hysteresis b tends to zero; (c) that the periodic solution is 
orbitally asymptotically stable in the vicinity of the infinite 
frequency solution (at small values b). We shall also refer 
to the ideal sliding mode as to oscillations of infinite 
frequency, implying the above considerations. 

III. THE LPRS OF TYPICAL DYNAMIC ELEMENTS 
Before we turn to the analysis of the systems of an 

arbitrary order, it would be helpful to consider the LPRS of 
typical dynamic elements of first and second order and 
periodic solutions of respective relay feedback systems. 
The applicability of this analysis is based on the fact that 
the high-frequency segments of the LPRS of systems of 
first and second relative degree are identical to the high-
frequency segments of the LPRS of the first and second 
order typical dynamic elements. The formulas of the LPRS 
of the typical elements were derived in [11]. For the first 
order element with the transfer function W(s)=K/(Ts+1) the 
LPRS formula can be written as follows: 
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The plot of the LPRS for K=1, T=1 is given in Fig 3. The 
whole plot is totally located in the 4th quadrant. The point 
(0.5K;-jπ/4K) corresponds to the frequency ω=0 and the 
point (0;j0) corresponds to the frequency ω=∞. The high-
frequency segment of the LPRS has an asymptote being the 
imaginary axis. 

 
Fig. 3.  The LPRS of first order element. 

Now, with the LPRS formula available, we can 
rigorously prove that at finite values of the hysteresis b, the 
periodic solution of the relay feedback system with the 
plant being the first order dynamic element exists, that in 
the case of the ideal relay, the frequency of the oscillations 
tends to infinity, and that the periodic solution is orbitally 
asymptotically stable. The LPRS is a continuous function 
of the frequency and for every hysteresis value from the 
range b∈[0;cK] there exists a periodic solution of the 
frequency that can be determined from (6), (8), which is: 
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It is easy to show that if the hysteresis b tends to zero or 
to cK then the frequency of the periodic solution is 
determined by the following equalities (respectively): 
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From (8), we can see that the imaginary part of the LPRS 
is a monotone function of the frequency.  Therefore, the 
condition of the existence of a finite frequency periodic 
solution holds for any non-zero hysteresis value from the 
specified range and the limit for b→0 exists and 
corresponds to infinite frequency. It can be easily shown 
that there exists only one eigenvalue of the Jacobian of the 
Poincare mapping, and this eigenvalue is equal to zero. 
Therefore, the periodic motions are stable. This completes 
the proof. 

Now we shall carry out a similar analysis for the second 
order plant. Let the matrix A be: A=[0 1; -a1 –a2]. Here, 
consider a few cases, all with a1>0, a2>0. 

A. Let a2
2-4a1<0. Then the plant transfer function can be 

written as:  W(s)=K/(T2s2+2ξTs+1), and the LPRS formula 
is given as [11]: 
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where α=πξ/ωT,  β=π(1−ξ2)1/2/ωT,   γ=α/β, 
g=α cosβ shα +β sinβ chα, 
h=α sinβ chα -β cosβ shα 

The plots of the LPRS for K=1, T=1 and different values 
of ξ are given in Fig 4 (#1 – ξ=1, #2 – ξ=0.85, #3 –  ξ=0.7, 
#4 – ξ=0.55, #5 – ξ=0.4). The high-frequency segment of 
the LPRS of the second order plant has an asymptote being 
the real axis. 

 
Fig. 4.  The LPRS of second order element. 

Now, with the LPRS formula available, like in the case 
of the first order plant we can prove that the periodic 
solution of the relay feedback system with the plant being 
the second order dynamic element exists, that in the case of 
the ideal relay it is the oscillations of infinite frequency, 
and that at small values of the hysteresis b the periodic 
solutions are stable. Consider two limits of J(ω) that can be 
obtained from (10). 
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They describe the two points of the LPRS. A detail 
analysis of function (10) shows that it does not have an 

intersection with the real axis except the point of origin of 
the coordinates. Since J(ω) is a continuous function of the 
frequency ω (that follows from formula (10)) a solution of 
equation (6) exists for any b∈(0;cK). This means that a 
periodic solution of finite frequency exists for the 
considered second order system for every value of b within 
the specified range, and there is a periodic solution of 
infinite frequency for b=0. Now prove the stability of the 
periodic solutions. The stability of a periodic solution is 
usually verified via finding eigenvalues of the Jacobian of 
the corresponding Poincare map [13]: 

ωπ /A

C
CIΦ e
v

v




 −= , (11) 

where . If all eigenvalues of the 
matrix Φ have magnitudes smaller than one the periodic 
motion is orbitally asymptotically stable. For the second 
order system, we can obtain analytical formulas of the 
matrix Φ eigenvalues: 
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From (12), we can find the limit corresponding to the 

infinite frequency oscillations: . Therefore, the 

periodic solution of infinite frequency is stable. This 
completes the proof. 
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B. If a2
2-4a1=0 we can use formula (10) for the LPRS 

computing with ξ→1. The LPRS for this case is given in 
Fig. 5 (#1). All subsequent analysis and conclusions are the 
same as in case A. 

C. Assume that a2
2-4a1>0. Then the transfer function can 

be expanded into two partial fractions, and the LPRS can be 
computed via formula (8). The subsequent analysis is 
similar to the previous one. 

D. Assume that a1=0. Then the transfer function is 
W(s)=K/[s(Ts+1)]. For this plant the LPRS is given by the 
following formula, which can be obtained via partial 
fraction expansion of the transfer function expression and 
application of the LPRS formulas of the typical elements 
[11]: 
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The plots of the LPRS for K=1, T=1 is given in Fig 5. 
The whole plot is totally located in the 3rd quadrant. The 
point (0.5K;-j∞) corresponds to the frequency ω=0 and the 
point (0;j0) corresponds to the frequency ω=∞. The high-



frequency segment of the LPRS has an asymptote being the 
real axis. 

 
Fig. 5.  The LPRS of integrating second order plant. 

Again, with the LPRS formula available and applying the 
same approach, we can prove that the periodic solution of 
the relay feedback system with the plant being the second 
order dynamic element exists, that in the case of the ideal 
relay it is the oscillations of infinite frequency, and that the 
periodic solution is orbitally asymptotically stable. 

IV. LOCATION OF HIGH-FREQUENCY SEGMENT OF THE 
LPRS 

Now we shall consider the location of the high-frequency 
segments of the LPRS of an arbitrary order linear plant. Let 
the transfer function Wl(s) of the linear plant be given as a 
quotient of two polynomials of degrees n and m: 

0
1

1

0
1

1

)(
)()(

asasa
bsbsb

sA
sBsW n

n
n

n

m
m

m
m

n

m
l +++

+++
== −

−

−
−

K

K  (14) 

The relative degree of the transfer function Wl(s) is (n-m). 
Then the following statement is true (given without proof 
as it is rather straightforward; moreover this is a reflection 
of the well known fact concerning the Nyquist plot having 
the real or imaginary axis as an asymptote). 

Lemma 1. If the transfer function Wl(s) is strictly proper 
(n>m) there exists ω∗ corresponding to any given ε>0 such 
that for every ω≥ω∗: 
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This lemma means that at frequency ω ≥ ω∗ : 

mn
n

m
l sa

bsW −≈)(  

Lemma 2 (monotonicity of high-frequency segment of the 
LPRS). If Re Wl(jω) and Im Wl(jω) are monotone functions 
of the frequency ω and  Re Wl(jω)  and  Im Wl(jω) are 
decreasing functions of the frequency ω for every ω≥ω∗ 
then the real and imaginary parts of the LPRS J(ω) 
corresponding to that transfer function are monotone 

functions of the frequency ω and magnitudes of the real and 
imaginary parts are also monotone functions of the 
frequency ω  within the range ω≥ω∗. The proof can be 
based on formula (5). If for example, the given frequency is 
ω= η ω∗ then the series (5) at the frequency ω becomes a 
dominated series (with a scaling factor η) in respect to the 
series at the frequency ω∗. In other words, the LPRS 
converges with ω even faster than the corresponding 
transfer function. 

Taking account of the above lemmas address the 
following statement. 

Theorem 1.  If the transfer function Wl(s) is a quotient of 
two polynomials Bm(s) and An(s) of degrees m and n 
respectively (14) then the high-frequency segment (where 
the above Lemma 1 holds) of the LPRS Jl(ω) 
corresponding to the transfer function Wl(s) is located in the 
same quadrant of the complex plane where the high-
frequency segment of the Nyquist plot of Wl(s) is located 
with either the real axis (if the relative degree (n-m) is 
even) or the imaginary axis (if the relative degree (n-m) is 
odd) being an asymptote of the LPRS. 

Prove the above theorem for the relative degree n-m=1.  
Take magnitudes of differences of real and imaginary parts 
of the LPRS Jl(ω) and of the LPRS of the integrator Jint(ω) 
(corresponds to transfer function of an integrator Wint(s) = 
bm /( an ⋅s) ).  The LPRS of the integrator is given by the 
following formula [11]: 

Jint(ω)=0-jπ2 bm /( an8ω) (17) 

Using formulas (9), (17) and (18), let us derive the 
following inequalities: 
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 Therefore, for all ω ≥ω∗ each point of the LPRS Jl(ω) is 
located inside a rectangle (2ln2 ε ω∗/ω)  by (0.25π2 ε ω∗/ω) 
having the center at (0, -0.125jπ 2 bm/(anω)).  The real part 
of Jl(ω) at ω ≥ω∗ is positive if the high-frequency segment 
of the Nyquist plot is located in quadrant 4 and negative if 
the Nyquist plot is located in quadrant 3.   The property of 
the imaginary axis being an asymptote of the LPRS in those 
both cases follows from the monotonicity and fixed sign of 
the high-frequency segments of the LPRS (Lemma 2). 

The proof of the Theorem 1 for other values of (n-m) can 



also be based on formula (5) - similar to the proof above.  
In accordance with formula (5), the LPRS for transfer 
functions W(s)=K/sn-m coincide with one of the axes the 
complex plane: the real axis if (n-m) is even and the 
imaginary axis if (n-m) is odd because either Re W(jω) or 
Im W(jω) is zero at all frequencies, and consequently either 
Re J(ω) or Im J(ω) is identically equal to zero. This 
completes the proof. 

Lemma 3. If the transfer function Wl(s) is strictly proper 
and is a quotient of two polynomials Bm(s) and An(s) of 
degrees m and n respectively then for every given arbitrary 
small ε>0 there exists ω* such that for every ω≥ω* the 
response y(t) of the plant to the symmetric square-wave 
input of frequency ω the following inequality holds: 
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where y*(t) is the response of the plant of order (n-m), 
having the transfer function Wl*(s), to the same square-
wave input, 
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The proof can be based on the following consideration. If 
we divide both: the numerator and the denominator of Wl(s) 
by sn and consider the input signal being the Fourier 
expansion of the square-wave into a series, then for every 
harmonic, assuming that s=jω and ω→∞, the responses of 
Wl(s) and of Wl*(s) are identical. Therefore, the responses 
to the square-wave signal are also identical. Thus, there 
always exists a certain frequency ω*, for which (and all 
frequencies above it) the responses of the two transfer 
functions differ by a given accuracy ε. From here, we can 
conclude that if a high-frequency periodic motion in the 
relay system with the plant Wl*(s) exists, then in the relay 
system with the plant Wl(s), a high-frequency periodic 
motion is also possible in a vicinity of the solution of 
infinite frequency. 

Now we can prove the existence of periodic motions 
either of finite frequency or of infinite frequency. 

Theorem 2. If the transfer function Wl(s) is a quotient of 
two polynomials Bm(s) and An(s) of degrees m and n 
respectively then the equality of the relative degree (n-m) to 
one or two and fitting of the high-frequency segment of the 
corresponding LPRS to the pattern of the first or second 
order dynamic elements (approaching the origin of the 
coordinates from below with the frequency approaching 
infinity) are necessary and sufficient conditions of the 
existence of a periodic motion of infinite frequency in the 
relay feedback system with the plant being Wl(s). 
In accordance with Theorem 1, the high-frequency segment 
of the LPRS of the system has the same location and the 
same asymptote as the corresponding Nyquist plot. For the 
first and second relative degrees it is identical to the 
location of the first or second order typical elements, for 

which the existence of the infinite frequency oscillations 
has been proven above. If the LPRS approaches the origin 
of the coordinates from below there exists a finite 
frequency periodic solution for at least sufficiently small 
positive values of the hysteresis (within the range of 
monotonicity of the high-frequency segment of the LPRS). 
Consequently, similar to the case of first and second order 
elements, a periodic solution of finite frequency exists at 
small values of hysteresis b, and the frequency of this 
periodic solution tends to infinity with the hysteresis b 
approaching zero. The stability of this possible periodic 
motion follows from Lemma 3. If the LPRS does not have 
any other intersections with the real axis the infinite 
frequency periodic solution will be the only one possible 
and the SM occurs. 

The necessity of the plant having the relative degree one 
or two implies that if the plant has relative degree three and 
higher the infinite frequency oscillations cannot occur. The 
above reasoning is applicable here too. If the plant has 
relative degree three its LPRS has the high-frequency 
segment coinciding with the high-frequency segment of the 
third order plant, which is in turn similar to the location of 
the Nyquist plot. To prove that the solution of infinite 
frequency is unstable we can turn to the property that was 
proved in [14] and in terms of the LPRS can be interpreted 
as a proper direction of intersecting by the LPRS the line 
“-πb/4c”. It was proved in [14] that for the periodic solution 
of the relay system to be orbitally asymptotically stable it is 
necessary (interpretation in terms of the LPRS) that the 
LPRS should intersect the line “-πb/4c” from below. We 
can apply this property to the infinite frequency solution. 
From this property, it follows that the periodic solutions 
corresponding to descending segment of the LPRS, 
including the infinite frequency, cannot be stable. This is 
also justified by the observation that the solution of infinite 
frequency does not contain vicinity corresponding to 
positive values of the hysteresis b. 

V. EXAMPLES OF ANALYSIS 
Let us consider a few examples of analysis of the relative 

degree of the plant transfer function along with the LPRS 
analysis and the modes that occur in a relay feedback 
system. In many cases, the analysis of the relative degree 
would be sufficient for making a conclusion about the 
mode in a relay system. However, the combination of the 
relative degree analysis and the LPRS analysis provides 
more reliable results. 

Example 1. Let the plant transfer function be given as: 
W(s)=(0.5s+1)/[(0.05s+1)(s+1)] 

The relative degree of the transfer function is one and the 
LPRS fits the pattern of the first order system. As a result, a 
first order SM occurs in the relay feedback system. 

Example 2. Let the plant transfer function be given in one 
case as: 

W1(s)=1/(s2+s+1) 



and in another case be given as: 
W2(s)=(0.005s+1)/[(0.1s+1)(s2+s+1)] 

Both transfer function are of relative degree two. 
However, the LPRS corresponding to the first one does not 
have intersections with the real axis at finite frequencies 
(Fig. 6, plot #1) but the second LPRS has a point of 
intersection with the real axis at ω=3.29s-1  (Fig. 6, plot 
#2). A zoomed picture of the high-frequency segments 
would show that both LPRS have an asymptote, which is 
the real axis, but the second LPRS approaches the origin of 
the coordinates from the second quadrant. As a result, a 
second order SM occurs in the first case and finite 
frequency oscillations in the second one. A SM cannot 
occur in the second system because the high-frequency 
segment of its LPRS does not fit the pattern of the first or 
second order system. The simulations totally confirm this 
conclusion. 

 

 
Fig. 6.  The LPRS of Example 2. 

 

Example 3. Let the plant transfer function be given as: 
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Obviously the transfer function is of relative degree two. 
It also has a phase-lag-phase-lead element. As a result, the 
LPRS intersects the real axis from below, then returns to 
the lower half-plane and finally approaches the point of 
origin of the coordinates from below having the real axis as 
an asymptote. The two points of the intersection are: at the 
frequency Ω1=3.75s-1 and at the frequency Ω2=91.42s-1 
(Fig. 7). Obviously, there is one more periodic solution: 
Ω3=∞. The frequency Ω2 is an unstable periodic solution. 
However, both other frequencies Ω1 and Ω3 are locally 
orbitally asymptotically stable solutions with their domains 
of attraction. If the initial conditions are large the process 
converges to the slower periodic process with the frequency 
Ω1. If the initial conditions are sufficiently small the 
process converges to infinite frequency periodic process. 
Although the proposed approach does not allow 
determination of domains of attraction, it allows prediction 
of the existence of two possible periodic motions. The 
simulations totally confirm that. 

 
Fig. 7.  The LPRS of Example 3 (qualitative behavior). 

VI. CONCLUSIONS 
The relationship between the relative degree of the plant 

transfer function and a possibility for the SM to occur is 
analyzed in the paper. Necessary and sufficient conditions 
of the existence of infinite frequency periodic solution are 
obtained with the use of the LPRS approach. These are the 
relative degree of the plant being one or two and the 
necessity for the LPRS of the plant to fit the pattern of the 
first or second order dynamic elements (to approach the 
point of origin of the coordinates from below when the 
frequency tends to infinity). If the relative degree of the 
plant transfer function is higher than two a finite frequency 
periodic motion occurs. A number of examples proving 
those conclusions are given. 
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