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Abstract—Two new output feedback adaptive control asymptotic tracking, i.e. in the sense that the tracking error
schemes based on Model Reference Adaptive Control (MRAC) asymptotically approaches zero. State feedback MRAC was
and adaptive laws for updating the controller parameters investigated in [9], [10]
are developed for a class of linear multi-input multi-output ' '

(MIMO) systems with state delay. A controller structure estab- Recently a new approach, [11]'_ [12], was devglopeq for
lished on a new error equation parametrization is proposed to  the output model reference adaptive control of single input
achieve tracking with the error tending to zero asymptotically.  (u(t) € R) single output ¥(t) € R) linear continuous-time

To achieve exact asymptotical tracking, we introduce, in the plants with state delay described by equations, suitably
standard MRAC structure for plants without delay, a new initialized. of the form

additional adaptive feedforward control component as an '
output of a dynamical system driven by the reference signal.
Adaptive laws are developed using the SPR-Lyapunov design
approach and two assumptions regarding the prior knowledge . . . .
of the high-frequency matrix Kp. This work is the first with unknownA, A;, b andc of appropriate dimensions and

asymptotic exact zero tracking results for this class of systems Known time delayr. The main idea is to treat the state delay

X(t) =AX(t) + Ax(t — ) +bu(t),  y(t)=c'x(t)

in the framework of the certainty equivalence approach. element not as a part of the plant but rather as the input to
the systemAp(s) = ¢ (Is—A)~1b and then decompose the
. INTRODUCTION control law into two components. The first base component

: . is designed by a standard MRAC procedure, [13]-[15], as
Many physical systems can be modeled by delay dn"ferer?-r a pg:ant Wi)t/hout delab(s) but papplied o [the] tEme]-

tial equations. In these models, time delays are often used 10

represent the effect of e.g. transmission, and transportationelay.plant‘ T_he second cqmponent IS formechlospec_lal
: ST aptively adjusted dynamic systélfs, 0¢¢) as a function
Often time delays can be used as an approximation gfj . . . :
complex models. Much effort has been devoted to providinOf the reference signal(t). This makes it possible to use
' e well-understood MRAC design technique.

a theory for the control of such systems. Interesting and . - . .
y 4 g The main contribution of the present paper is the design

important results in many directions are found, see, e.g dati trol sch hich i h
the 141 references in the recent survey paper [1]. Howev: I a new agaplive control scheme which generalizes the
rgsults in [12] as follows:

less attention has been given to the topic of output adaptiv

control of continuous-time state delay systems, and only ! the class of systems is enlarged to a class of multi-
a few results deal with model reference adaptive output input u(t) € R™ multi-outputy(t) € R™ systems.
feedback controbf systems with state delays. i we construct two different types of prefilters

Adaptive stabilizing controllers were synthesized in [2], P(s, 61), which issue the feedforward component
[3] for output feedback linear state delay systems, and in [4] utf whose function is to counteract the state delay.
for state feedback linear systems with state delays, subjectii ~ the adaptation algorithms are synthesized using
to uncertainties with unknown bounds and known functional the SPR-Lyapunov design approach for two cases
properties. All these stabilizing controllers guarantee that of prior knowledge of the high-frequency matrix
all closed loop solutions converge to a some bounded Kp.

residual set. An adaptive discontinuous output feedback The structure of the paper is as follows. In Section Il
controller was considered in [5] to achieve exact asymptotiwe formulate the MIMO adaptive control problem. In
regulation for a class of single-input, single-output systemSection Ill we suggest the new parametrization for the
described by nonlinear functional differential equations. Seerror equation, which leads to a new controller structure.
also the recent paper for the MIMO case [6]. Subsequentlit, is developed in Section IV. In Sections V and VI we
adaptive tracking control was considered for the same cladevelop two adaptive designs for asymptotic output tracking
of systems in [7], using a continuous feedback on onehen we use two different assumptions concerning the prior
hand, and discontinuous feedback on the other hand. Usikgowledge of the high-frequency matrig,: the symmetry
continuous feedback, [7] achieved only practical tracking assumption of [15], or the assumption on the signs of the
i.e. convergence to some bounded residual set. Discontieading principal minors ok, [16], respectively. Some final
uous feedback enabled [7], as well as [8] to achieve exatmarks are found in Section VI.
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Il. PROBLEM STATEMENT where

In this section we formulate the control problem, includ- X1 =Hm(s)[u1] X1 € RV (6)
ing the state delay plant model and the reference model, x, =Hm(s)[y] X2 e RMv=1) (7)
assumptions and control objective. The uncertain multi- MiernS” 2 .- TeemS hvern] T
input (U(t)) multi-output §/(t)) linear continuous-time plant Hm(s) = AGS) Hm(s) € RMY-1>m
with state delay is of the form ®)

X(t) =AX(t) + Ax(t — 7) +Bu(t), x(t) € R" 65,605 € RMv-1xm  gic RMxM g c RMM A(s) =
y(t) =Cx(t), y(t) eR™ (1) s 14... 4+ Ams+ Ao is @ monic Hurwitz polynomial, and

Imxm € R™M is the identity matrix.

wherex(t) € R", y(t) € R™ andu(t) € R™ are, respectively, With the definition ofA(s), Hn(s) andW(s) in (3), there
the state, output and control input. The constant matricéist 6; =K%, 63, 6; and6; [13], [15] such that
A, A; and B of appropriate dimensions have unknown -1 _
elements. The time-delay is assumed to be known. It is - - Or\We (S)\g()(s) N
also assumed that the states are not accessible and only 'm<m—6e’ Hm(S) — 61" Hm(s)Wo(s) — 6, Wo(s)  (9)
input-output measurements are available. When applying (5) to the actual plant (1), then from (1) and

It is a specification that all signals of the closed loog9) and for anyu, the tracking erroe=y—y; is given by
system remain bounded and that the plant outy(t} . T T . T
asymptotically exact follows the outpyit(t) of a reference &=V (S)Kp|U— ey — 61 X1 — 6 X2 — 6T + A X(t — 7)
model with the transfer function — 0 THm(9ATX(t — 7). (10)

Vi (1) =W (s)r(t) (2) To find a suitable error equation parametrization, we ma-
nipulate the last term of (10). Firstly, we introduce a new
whereW (s) € R™ M is a stable rational transfer matrix, anddynamical system
r(t) e RMis a bounded reference input signal. Asymptotic oT T T
tracking is demanded, i.e. lim., ||e(t)|| = 0. 2(t) =61 Hm(9)[A x(t—7)] =6, z(t)  (11)

The following assumptions are made on the plant (1) anghere 6;7 = [6;TA:T, 0;2TAIT .. 91‘<"—1)TA;T] and
the reference model (2JA1) When there is no term with
state delay, the plant (1) can be described by 2(t) =Hn(s)[X(t — 7)] (12)
InxnS” 2, ..., InxnS, Inxn]"
y=Wo(s)u Wh(s) =C(Is—A)"IBeR™™  (3) Hn(s) = n<n <0, Incn) (13)

A(S)

where W(s) is the transfer matrix associated with anHereA, € R™V-1, z e R"V-1  Hy(s) € R"V-1*" and

undelayed plant{A2) the observability index of Wy(s) is  Inxn IS thenx n identity matrix.

known; (A3) the transmission zeros W (s) have negative ~ Remark 1:The transfer function matrikin(s) from (13)

real parts;(A4) Wo(s) is strictly proper, full rank, and has has the same structure as the transfer matits) from (8),

vector relative degree 1(A5) A; = BA:T; (A6) in view only instead of the identity matrikn.m in the numerator
of the assumption (A4) and without loss of generality, #f (8) we have the identity matrikn.

diagonal SPR reference model is defined, as in [16], Secondly we decompose the signalsin (12) into two
componenty(t) = z(t) + z(t) where
WR(s) = diag |:S+ ar_] ai >0i=1...m (4 Ze(t) =Hn(s) [ex(t — 7)]  z(t) =Hn(5) [X (t—7)]
' et — 1) =X(t — 7) — X (t — 7) (14)

For the high frequency gain matri, = lims ... SWo(S) We \yparex (1)  R" is the state of the reference model (4) with
consider the following two caseA7.1) there is a known o oiata space tripleA,, By, ).

i _ T
matrix S, € R™™ such that<pS, = (KpSp) ', or (A7.2) the Then, using (11) and (14) from (10) we obtain thesic
signs of the leading principal minors of the high frequency,, equation

gain matrixKp are known.
6ft) =V (9)Kp |u(t) — 05e(t) — 6T xa(t) — 63 Talt) — 67 (1)

— 0 Tx (1) — 0T (t—7) — e;Tz,(t)}
Let us assume that all the parameters of (1) are known, T T
and let us defines; as the standard matching control [13], —W(S)Kp [07 &(t—7)+6; Ze(t)} (15)
[15] for the plant without delay (3) where8; = —A; and 6; = cle;l.
. i} T T X Remark 2:Note thatey(t) andz(t) are not available for
U (t) =6ey(t) + 61 xa(t) + 6, X2(t) +6r7(t)  (5)  measurement and we shall use them only for analysis.
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IV. PROPOSEDADAPTIVE CONTROLLER STRUCTURE V. ADAPTIVE CONTROLLER ASSUMPTION(A7.1)

The error parametrization (15) motivates the following Introducing the parameter errof (t) and ¢ (t) and

controller structure using the adaptive control (17) — (19), the basic tracking
error equation (15) can be expressed as
u(t) =6e(t)e(t) + 67 (t)xa(t) + 67 ()xe(t) + 6 (r (1) -
—l—@x-l;(t)xr(t)—l—e;r(t)xr(t—‘C)—I—B;r(t)zr(t) (16) e(t) :VVr(S)KP 05 (t)wf(t)+9ff(t)wff(t)

—0:Te(t— 1) — 65Tzt 20
where 61, 92 c Rm(vfl)xm Be, erv 9 c RMxm T 3(( ) z Ze( ) ( )
exr (t)ve‘t( ) e R™m ande € Rn(v 1)xm are the adaptauon where Gf( ) = 0% (t) — 67 éff(t) = fo(t) — 67 0; =

. m(v—1) fr ffr Ut
gain matrices,x; = Hn(s)[u] € R , and X2, Hm(s) 0: 0:T 9T 9*]T and 6. — [Q*T o:T Q*T]T_
taken from (7)-(8). et 2 i Lx T 2

For clarity, we shall decomposgt) as the sum of the
two componentsis (t) andugs (t),

To design the mechanism of updating the controller ma-
trices, the usual way of MRAC for the delay free systems is
used, see, e.g. [16]. The augmented vegrtoy = [x x x|
is introduced, and the state of the corresponding nonmin-
imal realizationC(sl — A)~1B of W is denoted byxt).
Then we can write the following state space representation

U(t) = Uf(t)+Uff(t) (17)

which will be defined in the next subsections IV-A and V-

B. for (20)
dé(t) T
A. The standard control component with output feedback dt Ae( )+BKp {6 (D)o (t )+9”( Jort (1)
«T(T *T~ 5

The first componentis (t) contains the output feedback —6: 178t —1) -6, CeZ(t)
control component, dZs(t) BTat

Ut (t) = B.e(t) + 67 xq (1) + 61 x2(t) + 6,1 (t) = 6] @ (18) i A BE

f e ( 17 2 2( ' - (): 26() I [|n><n Onxm(vfl) Onxm(vfl)]T
with 6; = [6e 6] 6] 6]7 € R*™*™ and @& = e(t) =y(t) -y (t) = C&(t) (21)
[e" x] xJ rT]T € R2™. u(t) is the “classical” model

matchmg adaptlve control version of (5) which is W|derWhere the triple(Ae, Be,Ce) is @ minimal state space real-

used in MIMO MRAC for plants without time-delays, see!2ation for the stable transfer matrbin(s) from (14), and

e.g. the textbooks [13]-[15], with the modification that inOnxm(v—1) 1S & zeroni< m(v — 1) matrix. PSR
(5), e=y—y; is used instead of. Because(sl — A)"1B=W(s) is SPR, the tripldA B,C)

satisfies the following equations given by the matrix version

B. The additional dynamical feedforward control compoOf KY Lemma, see, e.g. [14], [16],

nent ATP+PA+Q=0 PB=CT (22)

The second component defines additional feedforward. whereP = BT >0 and® = &7 > 0. SinceAe in (21) is

us(t) :O;I;Xr t)+ 91-‘_|—Xr (t—1)+ G;I—Zr(t) — QL orr (19) stable, it also holds that
T
P+ P, =0 23
with 6¢¢(t) = [QXTr 6] 6J]7 € RNVFDXM and ¢ (t) = AePr+PA+Q, (23)

X (t) X (t—7) Z (1)]T € R"D is the output of a dy- whereP,=P] >0 andQ,=QJ > 0.
namical system with the reference sigmahs the input.  \We are now ready to state the main result of this section.
In addition to the usual memoryless feedforward term Theorem 1:Consider system (1) and the reference model
6 (t)r(t) with the adjusted gair; (t) contained inu(t), (4). Suppose that assumptions (A1) to (A7.1) hold. Then the
see (18),utf(t) includes terms with the adjusted matrixadaptive control (17)_(19) with update laws
gains 6y, (t), 6:(t) and 6,(t). uss(t) is hence formed by a
special adaptively adjusted dynamic systasna function Of (t) = — Spe(t) @7 (1)
of the reference signal. Thidynamic feedforward system 07 (t) = — Spe(t) o (1) (24)
constitutes the main contribution of our approach

In the next two sections we will design adaptive laws foguarantee that all the closed loop signals are bounded and
the two distinct assumptions, given in section Il, about ththe tracking errore(t) = y(t) — y;(t) converges to zero
high frequency gain matriXp. First we use the symmetry asymptotically, i.e. lim_.. [|€(t)|| =0
conditions of K, [15] (Assumption A7.1), and then the To proof this theorem we will use the standard MRAC
assumption on the signs of the leading principal minors analysis technique for delay free plants, e.g. [13], [15],
Kp [16] (Assumption A7.2). [16], but instead of using the standard quadratic Lyapunov
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function, an appropriate Lyapunov Krasovskii functional is Becausee(t) = X(t) — % (t) and % (t) € Lo, it holds

added as in [12], that X(t)=[x"(t), x] (t),x} (1)]" € Lw, which implies that
A T t oo . X(t),x1(t),%2(t) and y(t) € Lo. Since r(t) is uniformly
V =€ Pe+ 7 PZe + /tire (s)Qe(s)ds bounded and the transfer matiik(s) from (14) is stable,

B — RO (B¢ — R\T +tr(B¢+T 67 or = [e" x] x} rT]T and o1 () = [ (1) X' (t—7) 77 (1)]"
FU(0r —Ko)Mp(6r —Ka)" +(0reTo011). - (25)  qre pounded. Consequentlyt) = u(t) + uf(t) is also
whereQe=Ql >0, Mp= Kg%l wherein the known matrix bounded. Therefore, all the signals in the closed-loop sys-

Sp satisfies Assumption A7.1, tem are bounded. From (25) and (30) we establisheftat ~
. R and therefore(t) € Lo. Furthermore, using(f), Z(t), 6+(t),
Ki=—3Ky" 000, (26) g4 (1), @5 (1), 01 (1) € Lo in (21) we have thag(t),&(t)

andr is an as yet unspecified positive constant. Lo. Henceg€ Lo Lw, ande(t) € L, which by Barkalat's

With this definition of Ky, using (21), (22), (24) Lemma [15] implies thafie(t)[| — 0 ast — .
and Assumption (A7.1) we have [Kul,6]] =
—L&(t)TPBBTP&(t). Then some simple computations VI. ADAPTIVE CONTROLLER ASSUMPTION(A7.2)
using (22), (24) and (26) witf) = Q+Qe, Q= Q" >0

To avoid the quite restrictive Assumption (A7.1), we will
lead to the derivative o¥ along the solution of (21), q P ( )

use in this section the recent results for multivariable MRAC
\-/|(21) — — & (1)Q8(t) — ré(t) T PBBT Pa(t) — 27 (1)Q,2(1) _design (ijn [1?%;0531‘%? \_/vitr;[l_out[igllayfst.hThr? dhefsign in [16]
R R T BSYy asT (T A is based on actorization of the high frequenc
—e'(t- f)AQee(t — 1) — 26T (1)PBKy6; T TTe(t 1) gain matrixKp, with the assumption the signsgof theqleadi)rllg
— 267 (t)PBKp6; " CeZe(t) principal minors ofK, are known. Such an assumptions is
+ 22g (t)pZBefT &t—1) (27) less restrictive than the symmetry condition in Assumption
(A7.1). The following preliminary lemmas are needed.
Lemma 1 [16]: Every nx m matrix K, with nonzero
leading principal minord\y, ... Ay, can be factored as K=
SDU where S is symmetric positive definite, D is diagonal,
U is unity upper triangular.
his factorization ofK, is convenient because of the

For convenience, let us define the matriQes= (Qe1 + qe2 +
0e3)l, Qz = (g +0x)l, and the scalar =rq +r,, where
Qei, Oz andr, (i=1,...) are positive constants. Note that
these constants are only used in the process of the proof
not used in the control design, and hence we can suppose,

that they take arbitrary positive values. - .
Combining the second and fifth, second and sixth an%'sunCt rple played by each of its factos DA andU._The
. : r%Ie of Sis to assure th#\ (s)Sis SPR. Thedle of D is to
third and seventh terms of (27), completing the squares an | iahtf . fth .
dropping negative terms we obtain enable a straig torward_ extension of the SISQ assumption
about the sign of the high-frequency gain. Tligerof U

V1) < — €' (1)Q&(t) — 22d (t)2(t) — e’ (t— 7)&(t —7) s to allow its absorption by the controller parametrization

T 1 A [16].
—€é (t—1 | — =W |&t—7

AT( ){Ge ri 7] E ) Lemma 2 [16]: For any Ws) from (4) a positive
— € (t—17) [l — g Wro] &t — 7) definite S= ST exists such that Ws)S is SPR.
—Zl(t)[qzz—%wz] 2(t) (28) Substituting theSDU factorization of K, in the basic

error equation (15), and using the decompositidn =

where U— (Imxm—U) as in [16], we obtain

W1 =0:KIKp0; 1T Wep = BIPPBT

W, =CI 6;KTKp0;TCo 29) e(t) =V\/r(s)SD[u(t) — (I =U)u(t) —UBze(t) —UB; Txy(t)
. *T - * o *T o *T o
Let us select the values of,ry, g andgx such that the U62 %(t) U8 T (t) U x (1) ~UB: x(t—1)
following inequalities are satisfied, fUBZ*Tzr(t)}
rL> q%llmaX[qul] Oz > élmax{q’ﬂ] r2 > ékmax{wﬂ —W(S)SD|UB; Tey(t — 1) +U 65T z(t) (31)
whereAma(W) is the maximum eigenvalue &. Then, we A A AT T AT T A
obtain from (28) By defining 6; = U6q, QlT =Ui 91T' 92T = U9T 'ﬁrT =
_ o . U6, 6; = (Imm—U)u, 6,7 =U8T, 6;T =U8;T, ;7 =
Vi@y < —€ (1)Q&(t) — a7 (t)Z(t) Ue;T, and6;T =U6;T, we obtain from (31)
— g€ (t—7)&(t—7) <0 (30)

. _p* =T _ pxT
Thislmplies [17] thal and, thereforeg(t), e(t), Z(t), Oy, &) _V\/r(s)SD{u(t) Beelt) — 61 xa(t) = 6 x(t)

Of, O¢, Ot € L. This fact is central to the remainder of —6r(t) - 8u— 6% (1) — 6; "X (t— 1) — 6; Tz (t)
the stability analysis, which follows directly using the steps AT -
in [15]. — (95| O Tex(t — 1)+ &; () (32)
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We can rewrite (32) as by x(t). Then we can write the following state space
representation of (38)
eft) =W (9SD]ut) - K{T (O (1) — OFF i (1)

(& ~ T .
A A 5(t) =BD| (O1TQL...0KTQK...omTQM) o7, (t ¢
*VVr(S)SD[G:Tek(t*T)+9;Tze(t)} (33) e(t) {( [ f 425 f f) i) oss( )}

- E?D[éfrf &t—1)+ é;Tcez—e(t)}
where

(1) —AcZe(t) + B T&t — 7)
_[é* é*T é*T é* é*]T ?f — [e;(krT e*T G*T] , ( ):Ceze(t) B
=" x] X rTu"]T, o =[x () X (t—1) Z (1)]T. e(t) =y(t) —yr(t) =Ceft) (39)

1p _ . .
In order to remove the zero entries from the abov%—ec@—s C(Sl A) B =W (s)S is SPR [16], the triple

parametrization oK;, we introduce, as in [16], the new A,B,C) satisfies the following equations, as in (22),
parameter vector®X via the identity ATP+PA+Q =0 PB=C' (40)

5_ pT o
[@*flTQ:]I(. LOT QK. _.G?mTQrp]T — K@ (34) whereP = P'>0andQ=Q.+Q. _
To design the update laws, we use the functional

In addition to the concatenatddth rows of the matrices

6z, 65, 63, 6;, each row vecto®’T includes the unknown =e' +ZePZZe+/ (9)Qels)ds+tr(B4F DB )
entries of thek-th rows ofe* The strictly upper-trianglarity
of 67 ensures that the “control signal is implementable Z ( ) |d4(©f - KI)T (8 —K}) (41)
without singularity. k=1 B
The corresponding regressor vectors are where yk >0, T =TT >0, D = diag{|d?|...|d¥|...|d™}
whereindX are the entries ob, and

Ql(t) =[®@! uz U3...Um_1 Um]"
K ikl T
Q0 (T ... s 0] KE=—r(d)~1, 0,..., O, (42)

The vectorskX have the same dimension &%, andr is
: n “artificial” gain parameter whose value will be specified
Qf(n) =(@7 " (35) later.
Let the adaptation algorithm be
This new parametrization motives the following controller K
structure instead of (17)-(19) 0; = —Ysignd)Qked, k=1,...,m

T .
ut) =[e¥"at...ekTak...ofTQT " + 6l wrr,  (36) Oy = —SignD)re(t) of(t), (43)

, : o where SigiiD) = diag{sign(d?),...,sign(d™)}
and gives the following error equation instead of (33) With this adaptation algorithm, the time derivative of (41)

e}T (t)Q}(t) @}*T (t)Q%(t) along the trajectories of the error system (39) becomes
e(t) =W (9)SD| : - : V| (ag) = — & (t)Qelt) — Feft) T PBBT Pelt) — 2{ (t) Qzze(t)
OFT(HQT() OPT(H)QT(t) — & (t - 7)Qef(t — 7) — 26" (1)PBDA; T &t — 1)
+ 67 o1 (1) ~ O M ore (1) — 26" (t)PBD; T CeZe(t) + 227 (1) PBol &t — 7)
—W(s)SD|8:Te (t — 1) + 6T z(1)] . 37 Using the same arguments as in Section V above, after
HS) [ e & )+ 6.z )] (37) the choice ofr1,r, e and gy satisfying the inequalities

Introducing the parameter erro (t) = @K(t) — @3 k= r; > : 1Armax[l'prl} G > ; lmax[%g] ro > Amax[lvz]
1,...,m and O (t) = 6;;(t) — ©%;, the equation for the

_ h
tracking error follows from (37), where

W =16:D%6;TIT W, =BIPPBT W,=Cl6;D%6;TCe
we obtain

N+T nxT . N
~W(9)SD|0;ex(t 1) + 6T ze(t). (38) V|39 < — &' (1)Q&(t) — 422 (1) 2(t)
— qege (t—1)ét—1)<0. (44)

~ ~ T ~
ef(t) =W (s)SD| (&7t - BTk - 07TaT) +6Fwy]

As in Section V, the augmented vectdt) = [xx X" is
introduced, and the state of the corresponding non-minim8ly applying the same arguments as in Theorem 1 it can be
realizationC(sl — A) 1B of W;(s)S, (CB =9 is denoted shown that lin_.., ||e(t)|| =
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All this leads to the main result of this section:

Theorem 2:Consider the closed-loop system defined by
the plant in (1), the controller in (36), and the updating[gl
algorithms in (43) with Assumption 7.2. Then the following

two properties hold:

9]
() all signals of the closed-loop system are boundedI

(i) limeole(t)| =0.

CONCLUSION

Two new output feedback adaptive control schemes based
on Model Reference Adaptive Control (MRAC) and adap-
tive laws for updating the controller parameters are devel:2]
oped for a class of linear multi-input multi-output (MIMO)
systems with state delay. An effective controller structure
established on a new error equation parametrization (3]
proposed to achieveracking with asymptotical zero error
To achieve exact asymptotical tracking, we introduce,
the standard MRAC structure for the plants without delay15]
a new adaptive feedforward control component as an outp
of a dynamical system driven by the reference signal.
The feedforward prefilter design procedure is developed to
determine the necessary feedforward dynamic system whit!
satisfies design conditions for two different assumptiongg;

about the prior knowledge of the high-frequency makjx

the symmetry assumption of [15], and the assumption on

the signs of the leading principal minors & [16], re-

spectively. The proposed adaptive control law constructions
make economical use of known results of MIMO model

reference adaptive control to the considered class of de-
layed system. Adaptive laws are developed using the SPR-
Lyapunov design approach. This work is the first asymptotic
exact zero tracking results for this class of systems in the

framework of the certainty equivalence approach.
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