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Abstract − This paper presents a new algorithm for 

translating Mixed Logical and Dynamical (MLD) systems 
into PieceWise Affine (PWA) systems. The presented 
algorithm uses an enumeration technique and solves several 
linear programming problems in order to obtain the 
equivalence. The obtained model is equivalent to the MLD 
model meaning that given an initial state and an input 
sequence, the trajectory of the state vector and output vector 
are the same. The technique is applied to three  examples. 
The computation time and the simulation results for these 
examples are given. 

 
I. INTRODUCTION 

Mixed and Logical Dynamical (MLD) models 
introduced by Bemporad and Morari in [2] arise as a 
suitable representation for Hybrid Dynamical Systems 
(HDS), in particular for solving control-oriented problems. 
MLD models can be used for solving a model predictive 
control (MPC) problem of a particular class of HDS and it 
is proved that MLD models are equivalent to PieceWise 
Affine Models in [6]. In the paper by Heemels and co-
workers, the equivalencies among PieceWise Affine (PWA) 
Systems, Mixed Logical and Dynamical (MLD) systems, 
Linear Complementarity (LC) systems, Extended Linear 
Complementarity (ELC) systems and Max-Min-Plus-
Scaling (MMPS)  systems are proved, these relations are 
transcribed here in Fig. 1. 

This equivalences are based on some propositions (see 
[6] for details) 

 

 
Fig. 1. Equivalence relation between hybrid systems 
 
Every well-posed PWA system can be re-written as an 

MLD system assuming that the feasible states and inputs 
are bounded [6, proposition 4*]. 
A completely well-posed MLD system can be rewritten as a 
PWA system [6, proposition 5*]. 

A more formal proof can be found in [3], where an 
efficient technique for obtaining a PWA representation of a 
MLD model is proposed.  

The technique in [3] describes a methodology for 
obtaining, in an efficient form, a partition of the state-input 
space. The algorithm in [3] uses some tools from polytopes 
theory in order to avoid the enumeration of the all possible 
combinations of the integer variables contained in the MLD 
model. However, the technique does not describe the form 
to obtain a suitable choice of the PWA model, even though 
this part is introduced in the implementation provided by 
the author in [4]. The objective of this paper is to propose 
an algorithm of the suitable choice of the PWA description 
and use the PWA description for obtaining some analysis 
and control of  Hybrid Dynamical Systems. 
 

II. MLD SYSTEMS AND PWA SYSTEMS 

A. Mixed and Logical Dynamical (MLD) Systems 
The idea in the MLD framework is to represent logical 

propositions as equivalent integer expressions. MLD form 
is obtained by three basic steps [5]. The first step is to 
associate a binary variable δ ∈{0,1} with a proposition S, 
that may be true or false. δ is 1 if and only if proposition S 
is true. A composed proposition of elementary propositions 
S1,…,Sq combined using the boolean operators like 
AND(^), OR (∨), NOT(~) may be expressed like integer 
inequalities over corresponding binary variables δi, 
i=1,…,q.  

The second step is to replace the products of linear 
functions and logic variables by a new auxiliary variable z = 
δaTx where aT is a constant vector. The z value is obtained 
by mixed linear inequalities evaluation. 

The third step is to describe the dynamical system, 
binary variables and auxiliary variables in a linear time 
invariant (LTI) system.  

A hybrid system MLD described in general form is 
represented by  (1). 
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binary states, u u  are the inputs, 
the outputs, and  , , 

represent the binary and continuous auxiliary variables, 
respectively. The constraints over state, input, output, z and 
δ variables are included in the third term in  (1). 
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B. PieceWise Affine Systems 

A particular class of hybrid dynamical systems is the 
system described as follows, 

 (2) 

where I is a set of indexes, Xi is a sub-space of the real 

space Rn, and R+ is the set of positive real numbers 

including the zero element.  
In addition to this equation it is necessary to define the 

form as the system switches among its several modes. This 
equation is affine in the state space x and the systems 
described in this form are called PieceWise Affine Systems 
(PWA). In the literature of hybrid dynamical systems the 
systems described by the autonomous version of this 
representation are called Switched Systems.  

If the system vanishes when x brings near to zero, i.e. ai 
and bi are zero, then the representation is called PieceWise 
Linear (PWL) system. 

The discrete-time version of this equation will be used in 
this work and can be described as follows, 

 (3) 

where I is a set of indexes,  Xi is a sub-space of the real 

space Rn. 

 
III. MLD SYSTEMS INTO PWA SYSTEMS 

The MLD framework is a powerful structure for 
representing hybrid systems in an integrated form. 
Although E1, E2, E3, E4 and E5 matrices are, in general, 
large matrices, they can be obtained automatically. An 
example is the  HYSDEL compiler [10].  

However, some analysis of the system with the MLD 
representation are computationally more expensive with 
respect to some tools developed for PWA representations. 
Exploiting the MLD and PWA equivalencies, it is possible 
to obtain analysis and control of a system using this 
equivalent representations. Nevertheless, as it is underlined 
in [3], this procedure is more complex with respect to the 
PWA into MLD conversion, and there exist more 
assumptions. To our knowledge, the only previous 
approach has been proposed by Bemporad [3]. We propose 
then a new approach of translating MLD into PWA 
systems. 

The MLD structure can be rewritten as follows, 
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Here, the binary inputs are distinguished from the 
continuous inputs, because they induce switching modes in 
the system, in general.  

Supposing that the system is well posed, z(k) has only 
one possible value for a given x(k) and  u(k), and can be 
rewritten as: 
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Replacing this value in the original equations the system 
can be represented as, 
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If an enumeration technique is used for generating all the 
feasible binary states of the [ul

T δT]T vector, the first 
problem is to find a value of [xT uT]T feasible for the 
problem, that can be obtained solving the linear 
programming problem, 
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The solution is a feasible value [x*T u*T]T. The next 
problem is to find k1, k2 and k3. 

The inequalities can be rewritten as, 

3 4 1 1 2 5 4 1 1 2 5c c l l c cE z E x E u E u E E E k x E k u E kδ≤ + + − + = + + 3 (8) 

where 5E  includes every constant in the problem, i.e. ul 
and δ. On the other hand, the E3 matrix reflects the 
interaction among the z variables, and we can write: 

1 2F z k x k u k3× ≤ + +   (9) 

The matrix F represents the interaction among the z 
variables, if the system is well posed F-1 should exist. 

With this last equation, for finding 3k the next linear 
programming problem is solved, 
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The solution to this problem is 3k , in this case we 
assume that all components in 5E are the maximum and 
minimum values of z and the only solution for the problem 
is 3k . With 3k  we can obtain the other matrices. 

For obtaining 1k  it is necessary to solve nx, i.e. the 



length of the state vector, linear programming problems,  
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where E4i represents the column i of the E4 matrix and 
1i ik k= − 3k is the column i of the matrix 1k .  

For obtaining 2k  it is necessary to solve nu, i.e. the 
length of the continuous input vector, linear programming 
problems,  
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where E1ci represents the column i of the E1c matrix and 
2i ik k k= − 3 is the column i of the matrix 2k . 

The matrix F should be found solving nz, i.e. the length 
of the z vector, linear programming problems,  
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where E3i represents the column i of the E3 matrix and 
3i iF k k= − is the column i of the matrix . F

Finally, k1, k2, and k3, can be computed as, 
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With these equations, the algorithm for translating the 
MLD model into PWA model is given as follows, 
 
Algorithm 1 
1. Find a feasible point for the binary vector, 

composed by the binary inputs and binary 
auxiliary variables. 

2. Compute  3k  using Eq. (10). 
3. Compute 1k , 2k and F using Eq. (11), (12) and 

(13). 
4. Compute k1, k2, and k3  using  Eq. (14). 
5. Using Eq. (6), compute Ai, Bi, fi, Ci, Di and gi and 

the valid region for this representation. 
6. If there exists another feasible point go to 

step 1. 
7. End. 

Some gains in the algorithm performance can be 
obtained if the vector z is evaluated after step one, using a 
linear program for finding the maximum and the minimum 
in z, if the zmin and zmax solutions are the same, it is not 
necessary to calculate steps 3, and 4, and z = zmin = zmax can 
be assigned directly. 

 
IV. EXAMPLES 

A. The Three-Tank Benchmark Problem 
The three-tank benchmark problem has been proposed as 

an interesting hybrid dynamical system. This Benchmark 
was proposed in [7] and [8]. See [13] and references there 
in for some control results using MLD framework in this 
system. The algorithm described in the last section is used 
for obtaining a PWA representation of this system. 

This system has three tanks each of them interconnected 
with another as depicted in Fig. 2. 

 
Fig. 2. Three Tank System 

 
The model is written using binary variables (δi) and 

relational expressions, 
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The simulation of the system using the MLD framework 
and a Mixed Integer Quadratic Programming MIQP 
algorithm running in an Intel Celeron 2GHz processor and 
256MB of RAM was 592.2s, using the PWA representation 
the same simulation was 1.33s. The time for obtaining the 
PWA model using the technique described in this work is 
72.90s and the algorithm found 128 regions. Using the 
algorithm in [4] the computation time of the PWA form was 
93.88s and the total regions found was 100 and the 
simulation took 5.89s. These results are summarized in 
Table I.  

Where Computation Time is the time taken by the 
computer for computing the PWA model based in the MLD 
model, and Simulation Time is the time taken by the 



computer for computing a trajectory given a model, an 
initial state and an input sequence. 

 
Table I. Computation and Simulation Times 

 
Representation Computation  

Time (s.) 
Simulation 
 Time (s.) 

MLD - 592.20
PWA-[4] 93.88 5.89

PWA-This work 72.90 1.33
 
The simulation results with MLD model and the error 

between PWA simulation results and MLD simulation 
results,  for the same input are shown in Fig. 3, 

    
(a) MLD Model  (b) Error between MLD and PWA [4] 

 
(C) Error between MLD and PWA– This Work 

Fig. 3. Simulation Results for the Three-Tank System 
 
In this case, at t=30s, the simulation with the PWA system 
in the Figure 3.b produces a switching  to an invalid 
operation mode. 
 
B. Car with Robotized Manual Gear Shift 

The example of a Hybrid Model of a Car with Robotized 
Manual Gear Shift was reported in [9] and is used in [3] as 
example.  The car dynamics is driven by the following 
equation, 

e bmx F F xβ= − −    (15) 
where m is the car mass, x  and x  is the car speed and 

acceleration, respectively, Fe is the traction force, Fb is the 
brake force and β is the friction coefficient. The 
Transmission Kinematics are given by, 
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where ω is the engine speed, M the engine torque and i is 
the gear position. 

The engine torque M is restricted to belongs between the 
minimum engine torque C and the maximum engine 
torque C . 

( )e ω−

( )e ω+

The model has two continuous states, position and 
velocity of car, two continuous inputs, engine torque and 
breaking force, and six binary inputs, the gear positions. 
The MLD model was obtained using the HYSDEL tool.  

The translation of the MLD model took 155.73 s and the 
PWA model found 30 sub-models, using the algorithm 
proposed in this work, and the PWA model using the 
algorithm proposed in [3] took 115.52 s and contains 18 
sub-models. The simulation time with MLD model and a 
MIQP algorithm for 250 iterations took 296.25s, using the 
PWA model obtained with the algorithm proposed here 
took 0.17s, and using the PWA model obtained using the 
algorithm in [4] the simulation took 0.35s. These results are 
summarized in Table II, 

 
Table II. Computation and Simulation Times 

 
Representation Computation 

Time (s.) 
Simulation 

Time (s.) 
MLD - 296.25

PWA-[4] 115.52 0.35
PWA-This work 155.73 0.17

 
The simulation results with MLD model and the error 

between PWA simulation results and MLD simulation 
results,  for the same input are shown in Fig. 4, 

 

 
(a) MLD Model  (b) Error between MLD and PWA [4] 

 
(c) Error between MLD and PWA– This Work 

 
Fig. 4. Simulation results for robotized gear shift 

 



C. The Drinking Water Treatment Plant 
The example of a Drinking Water Treatment Plant has 

been reported in [11] and [12]. This plant was modeled 
using identification techniques for hybrid dynamical 
systems, and  its behavior includes autonomous jumps.  

The plant modeled is based in the current operation of 
drinking water plant Francisco Wiesner situated at the 
periphery of Bogotá D.C. city (Colombia), which treats on 
average 12m3/s. The volume of water produced by this 
plant is near to 60% of consumption by the Colombian 
capital. In this plant, there exist two water sources: 
Chingaza and San Rafael reservoirs which can provide till 
22m3/s of water. 

The process mixes inlet water with a chemical solution in 
order to generate aggregated particles that can be caught in 
a filter. The dynamic of the filter is governed by the 
differential pressure across the filter and the outlet water 
turbidity. An automaton associated to the filter executes a 
back-washing operation when the filter performance is 
degraded.  Because of process non-linearity, the behavior of 
the system is different with two water sources, that is the 
case for the particular plant modeled.   

The model for each water source includes a dynamic for 
the aggregation particle process which dynamical variable 
is called Streaming Current (SC) and is modeled using two 
state variables, a dynamic for the differential pressure called 
Head Loss (HL) with only one state variable, a dynamic for 
the outlet turbidity (To) with two state variables.  

The  identified model  consists of four affine models, 
two for each water source in normal operation, one model 
in maintenance operation, one model representing the jump 
produced at the end of the maintenance operation. 
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where water source is an input variables, maintenance 
operation is executed if  outlet turbidity (To) is greater than 
a predefined threshold, or, Head Loss (HL) is greater than a 
predefined threshold, or, operation time is greater than a 
predefined threshold. 

The MLD model has 7 continuous states (including two 
variables for two timers in the automaton), 4 continuous 
inputs (dosage, water flow, inlet turbidity and pH), 3 binary 
inputs (water source, back-washing operation and normal 
operation), 8 auxiliary binary variables, and 51 auxiliary 
variables. The complete model can be obtained by mail 
from the corresponding authors.  

The translation from the MLD model into PWA model 

took 572.19 s, with the algorithm proposed here, generating 
127 sub-models. The translation into PWA model took 
137.37s, with the algorithm in [3], generating 14 sub-
models. The simulation time for 300 iterations with the 
MLD model and a MIQP algorithm took 4249.301s, the 
same simulation with the PWA model obtained with the 
algorithm proposed here took 0.14s, and the same 
simulation with the PWA model obtained using the 
algorithm in [4] took 0.31s. These results are summarized in 
Table III, 

 
Table III. Computation and Simulation Times. 

 
Representation Computation 

Time (s.) 
Simulation 

Time (s.)
MLD - 4249.30

PWA-[4] 137.37 0.31
PWA-This work 572.20 0.14

 
The simulation results for the same input are shown in 

Fig. 5, 
 

 
(a) MLD Model  (b) Error between MLD and PWA [4] 
 

 
(c) Error between MLD and PWA– This Work 

Fig. 5. Simulation results for a water plant model. 
 

In this case, at t=168min, the simulation with the PWA 
system in the Figure 5.b is not valid because there exist no 
mode in the PWA representation that belongs to the state-
input vector reached in this point. Some other results can be 
found in [14].  
 

V. CONCLUSIONS 
This work presents new algorithm for obtaining a 

suitable choice of the PWA description from a MLD 
representation. The results are applied to the three-tank 



benchmark problem, to a car with robotized gear shift and 
to a drinking water plant, the three examples have been 
reported in the literature as examples of hybrid dynamical 
systems modeled with MLD formalism. The simulation 
results show that the PWA models obtained have the same 
behavior with respect to the MLD models. However in 
some cases the obtained PWA model does not have a valid 
solution for some state-input sub-spaces. 
As a consequence of the enumeration procedure, our PWA 
models have more submodels/regions than the algorithm in 
[3], however we show that the procedure does not spent 
much more computation time because of the simplicity in 
its formulation, and it ensures the covering of all regions 
included in the original MLD model. 

Ongoing work concerns the analysis of MLD Systems 
with some results from PWA systems. 
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