
Nonlinear Control for Maneuvering
Multiple Flexible Mode Systems

Chanat La-orpacharapan and Lucy Y. Pao

Abstract— This paper derives closed-loop control laws using
a phase-plane approach for flexible structures having two
flexible modes. The flexible modes are addressed by using
multi-mode input shapers to shape the time-optimal control
for the rigid body portion of the system, and then the altered
rigid body phase-plane trajectories resulting from this shaping
are solved and used to determine a closed-loop controller. Both
“convolution” and “simultaneous” method multi-mode input
shapers are considered. Simulations show that the derived
control laws applied to a disk drive system yield near time-
optimal performance without unwanted residual vibrations.

I. INTRODUCTION

In many applications, to achieve fast response to set-
point changes, the moving part is made of lighter material.
However, this can lead to flexible dynamics that are difficult
to regulate or suppress [1], [3].

While proximate time-optimal servomechanisms (PTOS)
and extended PTOS (XPTOS) have been used successfully
in many flexible servo systems [2], [8]-[10], [15], these
techniques take into account the flexible dynamics of the
systems only when the closed-loop systems approach the
final settling point. When the flexible dynamics of systems
become more significant the control laws need to address
the flexible dynamics for the entire slewing motion.

We recently developed a feedback phase-plane con-
trol approach called shaped time-optimal servomechanism
(STOS) control [4]-[7], [11]. The basic idea of this approach
is to address the rigid body and the flexible body separately.
It starts off with the time-optimal control command that
drives the rigid body portion of the system from rest to rest.
Applying this control command to the system would yield
vibrations. To address the flexible modes, input shaping [13]
is used to alter the phase-plane trajectory due to the time-
optimal control profiles. By following these shaped phase-
plane trajectories, the derived STOS control drives the
closed-loop system from rest to rest in near time-optimal
performance with no vibration at the end of the maneuver.

In [11], we derived the STOS control laws for systems
consisting of a pure rigid body and one flexible mode with
extensions to account for damping in the flexible mode,
different acceleration and deceleration rates, and maximum
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velocity limits. We have also extended the STOS approach
for different types of rigid body dynamics. For example,
in disk drive systems, taking into account the effect of
back electromotive force (EMF) leads to systems having
a second-order rigid body with damping and taking into
account the effects of back EMF as well as coil inductance
leads to systems having a third-order rigid body [4]-[6].
For systems consisting of a pure rigid body or a second-
order rigid body with damping, the STOS control laws can
be derived analytically in closed form, whereas the STOS
control laws for systems with a third-order rigid body have
to be numerically derived.

In this paper, we further extend the STOS approach
to address systems having multiple flexible modes. Input
shaping for multiple flexible modes can be derived by
several methods [12], [14]. STOS control laws using both
the “convolution” and “simultaneous” method shapers for
systems having a pure rigid body with two flexible modes
are detailed in Section II. For systems having more than
two flexible modes, the STOS control can be derived using
a similar procedure as detailed in this paper [7]. Discussion
and simulation results of the STOS control laws derived in
Section II applied to a model of a disk drive system are
then given in Section III. Finally, concluding remarks are
provided in Section IV.

II. SHAPED PHASE-PLANE CONTROL

A servomechanism consisting of a pure rigid body and
multiple flexible modes can be modeled using a state space
differential equation as follows:
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ẋf1

· · · xfM
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The state x represents positions, xr and xfi, and velocities,
ẋr and ẋfi, where rigid body and flexible body are denoted
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Fig. 1. Convolution of the bang-bang input with the four impulses of the convolution method shaper for two damped flexible modes yields the shaped
bang-bang input, where T1 = π/ωd1, T2 = π/ωd2, A1 = a1a3, A2 = a2a3, A3 = a1a4, and A4 = a2a4 .

by the subscripts r and f , respectively, and M is the number
of the flexible modes. ωni is the natural frequency and ζi

is the damping of the ith flexible mode.
For a maneuver in the “positive” direction (X > 0), the

bang-bang input as shown in Fig. 1(a) that drives the rigid
body portion of the system (1) from rest to rest in minimum
time is
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

















+U, 0 ≤ t ≤ t1 =

√

|X |

Ub2

−U,

√

|X |

Ub2
≤ t ≤ t2 = 2

√

|X |

Ub2

,

(2)
where U is the actuator limit and |X | is the move distance.
For maneuvers in the “negative” direction (X < 0), the
signs of the two pulses are reversed, with the negative pulse
first followed by the positive pulse.

For one flexible mode with natural frequency ωn and
damping ζ, the two impulses of the simplest zero vibration
(ZV) shaper have the amplitudes of a1 and a2 and spacing
of T which can be described as follows [13]:

T =
π

ωd

, a1 =
1

1 + K
, a2 =

K

1 + K
, (3)

where

K = e
−

ζπ
√

1 − ζ2
,

and ωd = ωn

√

1 − ζ2 is the damped natural frequency.

A. Convolution Method Shaper

An input shaper for multiple flexible modes can be
obtained by designing the shaper from (3) for each flex-
ible mode separately and then convolving the shapers
together [12], [13]. For two flexible modes with damped
frequencies ωd1 and ωd2, the input shaper, as shown in
Fig. 1(b), consists of four impulses occurring at times 0,
T1 = π/ωd1, T2 = π/ωd2, and T2 + T1 = π/ωd1 + π/ωd2,
respectively. The amplitudes of the impulses are A1 = a1a3,

A2 = a2a3, A3 = a1a4, and A4 = a2a4, where a2i−1 and
a2i are the amplitudes of the shaper for the ith flexible
mode.

Using the input shaper as detailed above to shape the
unshaped time-optimal input (2), we obtain the shaped time-
optimal input, shown in Fig. 1(c), as follows:
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(4)
The expression for this shaped input is derived assuming
that T1 + T2 = π/ωd1 + π/ωd2 <

√

|X | / (Ub2) or |X | >

(π/ωd1 + π/ωd2)
2 Ub2 which holds for relatively high res-

onance frequencies or large maneuvers. In other words, the
length of the shaper in this case is less than the length of
each of the bang-bang pulses. Otherwise, the convolution
of the impulses with the bang-bang input will lead to a
different shaped profile. For different shaped profiles

(

such

as when
√

|X | / (Ub2) < π/ωd1+π/ωd2 < 2
√

|X | / (Ub2)

or when π/ωd1 + π/ωd2 > 2
√

|X | / (Ub2)
)

, the STOS
control law still can be derived using a similar procedure
as detailed below for the particular shaped profile of (4).
However, as discussed in [11], the STOS control laws for
different shaped profiles might have to use a different phase-
plane than the (xr , ẋr) phase-plane used in this paper.



Normally, the flexible modes in disk drive systems have
relatively high frequencies (2 to 6 kHz) which leads to
the shaper length being very small, and the assumption
|X | > (π/ωd1 + π/ωd2)

2
Ub2 holds for the majority of

maneuvers. Indeed, in disk drive systems, maneuver sizes
such that |X | < (π/ωd1 + π/ωd2)

2
Ub2 are so small that

they generally do not fall into the “seek” motion range,
and a different type of controller (a “settling” controller) is
usually used for this different mode of operation.

Applying the shaped input (4) into the system (1) yields
the (xr , ẋr) phase-plane trajectories as shown in Fig. 2 for
several maneuver sizes |X |. The states xr and ẋr at the
switching times 0, T1, T2, T1 + T2, t1, t1 + T1, t1 + T2,
t1 + T1 + T2, t2, t2 + T1, t2 + T2, and t2 + T1 + T2 can be
analytically determined as follows:
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Fig. 2. Phase-plane trajectories (solid) and switching curves (dashed) re-
sulting from the shaped time-optimal control derived from the convolution
method shaper for two damped flexible modes.
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For maneuvers in the “positive” direction, the input has
eleven different levels in (4) and therefore quadrant 2 of
the phase-plane can be divided into eleven regions based
on the shaped time-optimal input that should be applied to
the plant.

In the first region, the input is a1a3U and switches to
a3U at the switching time T1. From (6), the state ẋr at the
switching time T1 is independent of the move distance |X |.
Thus, the first switching curve is

S1 = a1a3Ub2
π

ωd1
. (7)

In the second through third and the ninth through eleventh
regions, the inputs are a3U , (a1 +a2a3)U , −(a2a3 +a4)U ,
−a4U , and −a2a4U , respectively. Similarly, the duration
of these shaped input pulses is independent of the move
distance |X | and is only a function of the natural frequen-
cies ωd1 and ωd2. Therefore the switching curves are the
ẋr states at the corresponding switching times and are as



follows:
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To solve for the fourth switching curve, we need to
eliminate the move distance variable |X | from the states xr

and ẋr at the switching time t1. After some algebraic
manipulations, we obtain the fourth switching curve xr in
terms of ẋr as follows:
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In a similar manner as solving for the fourth switching
curve, we can obtain the switching curves S5 through S7

as follows:
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Ideally, the trajectory does not go beyond the switching
curve S7. However, in practice, overshoot will likely occur
due to discrete sampling times or other implementation
issues. Thus, we assign the input −U for the region to the
right of the switching curve S7.

The switching curves for the fourth quadrant (for maneu-
vers in the “negative” direction) can be derived similarly as
done above for the second quadrant. In fact, the switching

curves for the fourth quadrant are anti-symmetric to the
switching curves for the second quadrant.

For rest-to-rest motions, the first and third quadrants
ideally are never entered. However, in practice, disturbances
or non-ideal behavior may cause the state of the system to
move into either the first or third quadrant. Hence, control
values of −U and +U are assigned to the first and third
quadrants, respectively, so that the system will be caused
to move into the second or fourth quadrant as quickly as
possible, and the goal is that the control action in the second
and fourth quadrants brings the system to the origin in the
respective quadrant.

The STOS closed-loop control law for all four quadrants
for systems with two damped flexible modes derived by
using the convolution method shaper can be expressed as a
logic expression as follows:
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where

f1(·) = UD sgn(D + 1)
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and
A = sgn(ẋr − S1), B = sgn(ẋr − S2),

C = sgn(ẋr − S3), Q = sgn(ẋr − S8),

R = sgn(ẋr − S9), S = sgn(ẋr − S10),
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Fig. 3. Convolution of the bang-bang input with three impulses of the simultaneous method shaper for two damped flexible modes yields the shaped
bang-bang input.

D = sgn(S4(ẋr) − xe), E = sgn(S5(ẋr) − xe),

G = sgn(S6(ẋr) − xe), H = sgn(S7(ẋr) − xe),

and xe = xr−|X | is the distance of the rigid body position
from the destination and the switching curves S1 through
S10 are described in (7) - (9), (13) - (16), and (10) - (12),
respectively. The factor 1 − sgn (|xe|) determines whether
the state of the system is on the ẋr axis of the phase-plane.
Similarly, the term 1 − sgn (|ẋr|) determines if the state
is on the xe axis. f1 (·) is the switching function for the
second quadrant and f2 (·) is the switching function for the
fourth quadrant which can be described as

f2 (xe, ẋr) = −f1 (−xe,−ẋr) . (19)

B. Simultaneous Method Shaper

In some applications, it is preferable to have a smaller
number of times that the command input changes its value.
For M flexible modes, instead of solving for the input
shaper with the convolution method, we can reduce the
number of the impulses of the multi-mode input shaper
from 2M to M + 1 by solving for the input shaper with
the “simultaneous” method.

Input shapers for M multiple flexible modes can be
derived by directly solving the impulse amplitudes ai and
times ti from the following 2M + 1 constraint equa-
tions [12], [13]:

N
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1 − ζ2
j

)

= 0,

N
∑

i=1

aie
−ζjωnj

(tN−ti) cos
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√
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j

)

= 0,

N
∑

i=1

ai = 1,(20)

for j = 1, 2, ..., M.
The simultaneous method shaper for two flexible modes

consists of three impulses with spacings T1 and T2 and the
amplitudes of a1, a2, and a3 as shown in Fig. 3(b). As-
suming that each pulse width of the time-optimal input (2)

is longer than the shaper length T1 + T2 then the shaped
time-optimal input, as illustrated in Fig. 3(c), is as follows:

u(t) =
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a1U, 0≤ t ≤ T1

(a1 + a2)U, T1 ≤ t ≤ T1 + T2

U, T1 + T2 ≤ t ≤ t1

(1 − 2a1)U, t1 ≤ t ≤ t1 + T1

(2a3 − 1)U, t1 + T1 ≤ t ≤ t1 + T1 + T2

−U, t1 + T1 + T2 ≤ t ≤ t2

−(a2 + a3)U, t2 ≤ t ≤ t2 + T1

−a3U, t2 + T1 ≤ t ≤ t2 + T1 + T2

.

(21)
Through a similar procedure as solving for the STOS

control law using the convolution method shaper, the STOS
control law for two damped flexible mode systems resulting
from the simultaneous method shaper is as in (17) and (19),
where f1(·) is

f1(·) = UC sgn(C + 1)
[

(a2 + a3) AE sgn(A − 1)

× sgn(E + 1) + (a1 + a2) BE sgn(A + 1)sgn(B − 1)

× sgn(E + 1) + sgn(B + 1)
]

+ UG sgn(G + 1)

×
[

(2a1 − 1)DE sgn(C − 1)sgn(D + 1)sgn(E + 1)

+ (1 − 2a3) E sgn(D − 1)sgn(E + 1) + sgn(E − 1)
]

+ UE sgn(E − 1)
[

(a2 + a3) H sgn(G − 1)sgn(H + 1)

+ a3 sgn(H − 1)
]

, (22)

where

A = sgn(ẋr − S1), B = sgn(ẋr − S2),

G = sgn(ẋr − S6), H = sgn(ẋr − S7),

C = sgn(S3(ẋr) − xe), D = sgn(S4(ẋr) − xe),

E = sgn(S5(ẋr) − xe),

and the switching curves S1 through S7, as shown in Fig. 4,
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Fig. 4. Phase-plane trajectories (solid) and switching curves (dashed) due
to the shaped time-optimal control derived by the simultaneous shaper for
two damped flexible modes.

are as follows:

S1 = a1Ub2T1,

S2 = a1Ub2T1 + (a1 + a2) Ub2T2,

S3(ẋr) = −
1

2Ub2
ẋr + 2

[

(a1 − 1) T1 − a3T2

]

ẋr

+
1

2
(a1 − 1) (2 − 3a1) Ub2T

2
1

+
1

2
a3 (1 − 3a3) Ub2T

2
2 + a3 (3a1 − 2) Ub2T1T2,

S4(ẋr) = −
1

2Ub2
ẋ2

r − 2a3T2ẋr +
1

2
a1 (a1 − 1)Ub2T

2
1

+
1

2
a3 (1 − 3a3) Ub2T

2
2 − a1a3Ub2T1T2,

S5(ẋr) = −
1

2Ub2
ẋ2

r +
1

2
a1 (a1 − 1)Ub2T

2
1

−
1

2
a3 (a1 + a2) Ub2T

2
2 − a1a3Ub2T1T2,

S6 = (1 − a1) Ub2T1 + a3Ub2T2,

S7 = a3Ub2T2.

III. SIMULATION RESULTS AND DISCUSSION

The derived STOS control is a feedback control law
which automatically handles some set point changes without
having to re-compute the shaped feedforward command.
The length of the STOS control is longer than the time-
optimal control by at most the length of the input shaper.
For systems having M modes, the length of the convolution
method shaper is equal to

∑M

i=1 π/ωdi which is longer than
the length of the simultaneous shaper. While the STOS
control is slightly longer than the time-optimal control,

Σ
volt

∑M

i=1

b4i

s2 + 2ζiωnis + ω2
ni

1

R
Kt

1

J

1

s +

+

pos

1

s

Fig. 5. Block diagram of a structure with M flexible modes driven by
a voice coil motor. R, Kt, and J are coil resistance, torque constant, and
motor inertia, respectively.

solving for the time-optimal control for the sixth- or higher-
order system is very difficult.

Fig. 6 shows the responses of the STOS control laws for
two damped flexible modes derived using the convolution
and simultaneous method shapers. A model of a disk drive
system as shown in Fig. 5 with parameter values given in
Table I is used. The flexible modes have frequencies and
damping ratios of fn1 = 2.0 × 103 Hz, ζ1 = 0.01, fn2 =
3.0×103 Hz, and ζ2 = 0.01. The input shaper derived using
the convolution method for these two flexible modes has
four impulses with the amplitudes of A1 = a1a3 = 0.2579,
A2 = a2a3 = 0.2499, A3 = a1a4 = 0.2499, and A4 =
a2a4 = 0.2422 and occur at times 0 s, 1.6668 × 10−4 s,
2.5001 × 10−4 s, and 4.1669 × 10−4 s. The input shaper
derived from the simultaneous method for these two damped
flexible modes has three impulses with the amplitudes of
a1 = 0.2848, a2 = 0.4471, and a3 = 0.2681 and occur at
times 0 s, 2.0135×10−4 s, and 4.0461×10−4 s, respectively.
Fig. 6 shows that the derived STOS control laws lead to
rest-to-rest motion without unwanted residual vibration.

It can be seen that the length of the simultaneous method
shaper is shorter than the convolution method shaper, lead-
ing to the STOS control derived from the simultaneous
method shaper being shorter than that derived from the
convolution method shaper by 1.208 × 10−5 s or 2.9%.
However, the STOS control derived using the simultaneous
method shaper, as described in (22), consists of the ampli-
tude and spacing variables of the impulses of the shaper
a1, a2, a3, T1, T2, and T3 that need to be computed for the
flexible system. Solving for the amplitudes and spacings of
the impulses of the simultaneous method shaper from the
non-linear constraint equations in (20) requires a complex
numerical method [12] while convolution method shapers
are easily determined analytically.

For systems having three or more flexible modes, the
STOS control law can be derived using a similar procedure
as detailed in Section II [7]. The trade-off between the
STOS control derived using the simultaneous method shaper
over the convolution method shaper is that the STOS control
law derived using the simultaneous method shaper has
shorter maneuver times and fewer switching times, but it
requires complex numerical computations to solve the non-
linear constraint equations (20) for the input shaper.

The computation of the convolution method shaper for
multiple flexible modes is simple and has a closed-form



TABLE I

VOICE COIL MOTOR AND FLEXIBLE STRUCTURE PARAMETER VALUES.

FOR THESE PARAMETER VALUES IN THE STATE-SPACE MODEL OF (1),

b2 = −b4i = 2.7 × 103 /(V S2).

Parameter Disk Drive Value

Kt 9.8 × 10−2 N · m/A

R 7.25 Ω

J 5 × 10−6 kg · m · m

U 11 V

solution. However, the number of impulses in an M -mode
convolution input shaper is 2M which leads to the STOS
control having 3× 2M − 1 levels. Hence, the STOS control
law derived using the convolution method shaper is practical
for applications that have only a few unwanted dominant
flexible modes.

Future work will include deriving a STOS control with
a finite switching slope as well as transitioning the STOS
control to a linear control when state trajectories approach
the destination to further improve performance in the pres-
ence of modeling errors, disturbances, and discrete sampling
times.

IV. CONCLUSIONS

Shaped time-optimal closed-loop control laws using a
phase-plane approach for systems with two flexible modes
have been derived. Both convolution and simultaneous
method shapers are used to shape the time-optimal phase-
plane trajectories of the rigid body portion of the system
to address the flexible dynamics. The shaped time-optimal
control laws derived by using the simultaneous method
shaper yield faster time responses and fewer switches than
using the convolution method shaper. However, numerical
methods are required for solving simultaneous method
shapers.
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