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Abstract

We present a methodology to detect changes in qual-
ity of information (QoI) of data received by an au-
tonomous entity. QoI is defined as the inverse of the
expected Kullback-Leibler distance between a refer-
ence probability distribution and the conditional dis-
tribution associated with the data. When the under-
lying dynamic process that generates the data is real-
valued, the interacting multiple model Kalman fil-
ter (IMM-KF) can be used to compute QoI. For the
case of discrete-event dynamics, we present an IMM
Bayes filter to detect changes in QoI. Numerical ex-
amples are provided to illustrate the methodology.

1 Introduction

Consider a random variable x and two sensors la-
beled A and B providing information about x as
shown in Figure 1. Intuitively, we say that a sen-
sor provides high quality information if its distribu-
tion is close to the true distribution. For example, in
Figure 1, sensor A provides higher quality informa-
tion than sensor B even though sensor A has a higher
variance. This intuitive notion of quality of informa-
tion can be made precise as follows.

Let f , fA and fB be the probability density functions
of x, sensor A and sensor B. Define quality of infor-
mation (QoI) for sensor A as:

QoI (f, fA) =

[∫

f(x) log

(

f(x)

fA(x)

)

dx

]−1

(1)
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Figure 1: Sensor A gives information of better qual-
ity than Sensor B

i.e, the inverse of the Kullback-Leibler distance [4]
from f to fA, and similarly define QoI (f, fB) for
sensor B. We say that sensor A provides higher
QoI than sensor B if and only if QoI (f, fA) ≥

QoI (f, fB). The Kullback-Leibler distance, though
not a metric, has some nice properties. It is always
greater than or equal to zero and is equal to zero if
and only if the two distributions being compared are
equal. Moreover, from the definition of QoI, we have
that QoI (f, fA) ≥ QoI (f, fB) if and only if

∫

f(x) log

(

fA(x)

fB(x)

)

dx ≥ 0

where the integrand is the logarithm of likelihoods
in favor of sensor A against sensor B, and the in-
tegral is the mean information for discrimination in
favor of sensor A against sensor B (though not quite
in the sense used by Kullback). Thus, many proper-
ties desirable in a measure of quality of information
are captured by the definition (1). It should be noted
that there is a large family of measures known as the
Csiszar divergence measures [3], Kullback-Leibler



2

being a special case, that can be used to define QoI
measures.

This paper explores the use of QoI measures for
autonomous decision making in a networked envi-
ronment. Specifically, we consider a group of un-
manned air vehicles (UAVs) that collect and process
heterogenous data (eg. MTE/SAR for target recogni-
tion, INS/GPS for flight control), and communicate
both real-valued and discrete-valued variables to ac-
complish mission objectives. As a means to guard
against faults and malicious tampering of data, each
UAV should determine the QoI of received data and,
if the QoI is above a threshold, use the data to carry
out its mission. This situation is different from the
comparison between sensors made earlier. First, the
QoI definition given by (1) cannot be used directly
because the true probability distribution is unknown.
Second, transmitted data such as UAV’s position and
target type are generated by non-stationary random
processes as opposed to a random variable. Finally,
the received data may be corrupted by faults at the
source and by changes in the channel characteristics.
The UAV may know the set of faults and channel
models, but not necessarily the current fault or chan-
nel model. A consequence of these differences is that
we can only provide a relative measure of QoI with
which changes in QoI can be detected.

The paper is organized as follows. The next section
gives details of QoI for dynamical systems. For the
case of real-valued data and known Markov jump
models, the interacting multiple model-Kalman fil-
ter (IMM-KF) may be used to compute QoI. For the
case of discrete-valued data and known Markov jump
models, we derive an IMM-Bayes filter to compute
QoI. Section 3 presents numerical results to illustrate
the defintion and computations. Section 4 presents
conclusions.

2 Main Results

2.1 QoI Definition

Consider the dynamical system over (W,M,X ,Y):

x(k + 1) = f(x(k), w(k),m(k)) (2a)

y(k) = h(x(k), w(k),m(k)) (2b)

where w(k), m(k), x(k) and y(k) are the exogenous
input, the system mode, the state vector and the mea-

surement at time k respectively, f : X ×W ×M →

X and h : X × W × M → Y . We assume that the
set of system modes M is a finite ordered set:

M = {m1,m2 · · · ,mnm
}

and that the system mode process m = {m(k)}

is a Markov chain with transition probability matrix
P = [pij ] where pij is the probability of transition-
ing from mode j to mode i. We shall further assume
that the exogenous input process is independent and
identically distributed, and independent of the system
mode process. Throughout this paper, we consider
two cases: (i) W=IRnw , X=IRnx and Y=IRny and,
(ii) W , X and Y are non-empty finite sets. The first
case corresponds to a standard discrete-time real-
valued dynamical system, whereas the second case
corresponds to an input-output automaton. When the
system (2) is an input-output automaton, we order the
sets X , W and Y:

X = {x1, x2, · · · , xnx
}

W = {w1, w2, · · · , wnw
}

Y =
{

y1, y2, · · · , yny

}

and denote by p(x(k)) the (column) vector whose jth
entry is the probability of x(k) = xj . Fix time k, a
system mode m(k) = mi and an exogenous input
w(k) = wj . Then, the state transition indicated in
(2a) can be written in matrix form as:

p(x(k + 1)) = Fmi,wj
p(x(k))

where Fmi,wj
is a stochastic matrix. Similarly, the

measurement equation (2b) can be written in matrix
form.

We only give the definition for real-valued dynamical
systems; the case of automata is analogous. Let Yk

denote the set of measurements upto and including
time k and p (x(k) |Yk ) be the probability density
of state x at time k conditioned on Yk. Let us also
denote by S a subset of IRnx .

Definition 2.1 (QoI) Consider the dynamical sys-
tem (2). The expected quality of information supplied
by y at time k relative to the density qk on S is:

(

E

[∫

S
qk(x) log

(

qk(x)

p (x(k) |Yk )

)

dx

])−1

(3)

where the expectation is taken over all Yk.
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The quantity being integrated over S in the above
definition is a function of the measurement sample
set Yk; it is a random variable. The integrated value
is then inverted to get a stochastic QoI whose mean
value is referred to as the expected QoI. Our notation
for QoI does not explicitly show its dependence on
S and qk. We take S to be the entire state space and
qk to be a posterior density function in most cases.
It should also be noted that the definition is valid for
certain pairs of qk and p (x(k) |Yk ) only.
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Figure 2: QoI supplied by measurement process for
different noise levels compared to V = 1

As an illustration, consider the system:

x(k + 1) = (99/100)x(k) + w(k)

y(k) = x(k) + v(k)

where w and v are scalar white noise processes with
covariances 1 and V respectively. Intuitively, the
QoI supplied by the measurement process y should
degrade as the measurement noise covariance in-
creases. To check if this is true, let S = IRnx and
qk be the conditional state density function at time k

with V = 1. Figure 2 shows expected QoI for mea-
surement noise covariances of V = 10, 100, 1000

compared to V = 1. In this simple example, the
conditional density functions can be calculated using
a linear Kalman filter and the QoI formula can be
evaluated analytically. As the figure shows, the QoI
supplied by y degrades with measurement noise.

We shall now focus on the computation of
p (x(k) |Yk ) which is the conditional state density
function for (2). For linear dynamics with Markov
mode jumps, the interacting multiple model Kalman
filter (IMM-KF) [1, 2] is a recursive procedure for
calculating p (x(k) |Yk ). The exact computation of
p (x(k) |Yk ) for real-valued nonlinear dynamics is

not practical and, often approximate schemes are em-
ployed. The next section gives an IMM-Bayes filter
for the automaton case.

2.2 Interacting Multiple Model(IMM)-
Bayes Filter for Automaton

The derivation is not included in the paper due to
page limitations. It suffices to say that the IMM-
Bayes algorithm given below follows from the total
probability theorem and the Bayes theorem. For no-
tational convenience, define:

Xik = p (x(k) |Yk,m(k) = mi )

X−
ik = p (x(k) |Yk−1,m(k) = mi )

Yik = p (y(k) |Yk,m(k) = mi )

Y −
ik = p (y(k) |Yk−1,m(k) = mi )

Initialization: Initial distribution functions for state
p(x(0)) and system mode λ0 = [λi0]. Set
p (x(0) |Y0 ) = p(x(0)) and k = 1.

Loop over time: Note that p (x(k − 1) |Yk−1 ),
λi(k−1) and yk are known at time k. The following
steps give p (x(k) |Yk ) and λik:

1. For each 1 ≤ i ≤ nm, run the Bayes filter

p(x(k)) =





nw
∑

j=1

Fmi,wj
Xi(k−1)



 /nw (4a)

Xik = 1
γ p (y(k) |x(k))p(x(k)), (4b)

where γ is the normalization factor, for one step.

2. Form HX−
ik = Hp(x(k)).

3. For each 1 ≤ i ≤ nm, update the mode probabili-
ties λi(k−1) to λik using:

λik =
Y −

ik

∑M
j=1 pijλj(k−1)

∑M
j=1

[

Y −
ik

(

∑M
l=1 pjlλl(k−1)

)]

where p (yk |Yk−1,m(k) = i) is the distribution of
yk conditioned on the past measurements and the
mode i. It can be computed by applying the nonlinear
transformation (2b) with m(k) = i to the conditional
state distribution function p (xk |Yk−1,m(k) = i).

4. Calculate the conditional distribution p (x(k) |Yk )

using:

p (x(k) |Yk ) =
nm
∑

i=1

Xikp (m(k) = mi |Yk ) (5)

Set k = k + 1 and go to Step 1.
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3 Numerical Examples

We present two examples arising in autonomous con-
trol of UAVs. The first example given in Section 3.1
deals with QoI of relative position updates received
through a randomly-varying channel. Precision plat-
form control as well as collision avoidance requires
position updates of good quality. The second ex-
ample given in Section 3.2 deals with a discrete-
valued variable called Combat ID that is calculated
on-board a vehicle and then transmitted to another.
These examples demonstrate the range of applicabil-
ity and limitations of our QoI methodology.

3.1 QoI of Received UAV Relative Position

Figure 3 shows UAV 1 transmitting its position
through a channel to UAV 2. The data y(k) received
by UAV 2 satisfies:

x(k + 1) = Aλx(k) + Bλ (s(k) + nt(k))

y(k) = Cλx(k) + Dλnr(k)

where s(k) is the signal (UAV 1’s position), nt and
nr are transmitter and receiver noises, x denotes
channel state and λ denotes mode switching process
that takes values in {1, · · · ,M}. The channel dy-
namics in mode λ = i linear time-invariant and is
given by the state space matrices (Ai, Bi, Ci,Di).
The mode switching process λ is assumed to be
Markov with a known transition probability matrix.

UAV 1 UAV 2

Model 1

Model M

Channel

+

+

+

+

Noise
ReceiverTransmitter

Noise

Figure 3: UAV 1 sends its position to UAV 2 through
a noisy randomly-varying channel.

UAV 2 can reconstruct the signal using IMM-Kalman
filter [1, 2] given the channel dynamics, signal statis-
tics and noise statistics. Suppose that the channel un-
dergoes a change to a case where the received sig-
nal has more noise than before. For example, set
D2 = 10D1 (no other difference between modes)
and consider a switch from mode 1 to mode 2. With

the model switching, the UAV 1’s position recon-
structed by UAV 2 may have more noise and, when
used for platform control, may cause control perfor-
mance degradation. UAV 2 will need a procedure
to quickly detect changes in QoI and determine if it
should seek other sources of UAV 1’s position. This
is the motivation behind QoI definition. For numeri-
cal simulations, we assume three modes for channel,
i.e, λ ∈ {1, 2, 3}. In each mode, the channel dy-
namics is given by an IIR stable transfer function of
degree 3. The poles, zeros and dc-gain of the transfer
function models are different. UAV 1 is assumed to
move at constant speed and heading relative to UAV
2, and is at the same altitude as UAV 2.
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Figure 4: QoI change due to channel model switch-
ing at t = 100 second.

Figure 4 shows results of simulation where the chan-
nel dynamics undergoes an abrupt change at t = 100

second. The new mode has low signal to noise ra-
tio. The plot on top shows the true x position and its
estimate calculated by UAV 2 from the received po-
sition data. The middle plot shows y position and its
estimate. The bottom plot is the expected Kullback-
Liebler distance of the received data whose inverse
is the expected QoI. The distance measure is calcu-
lated relative to the true density function of UAV 1’s
position. The plot shows that the channel change is
quickly detected and the QoI of received data is low-
ered.
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3.2 QoI of Received Combat ID

Consider a tactical ISR (intelligence, surveil-
lance, reconnaissance) platform that collects
MTE/SAR/EO-IR data as well as human intelligence
data, fuses them and builds up its confidence level
on a binary-valued Combat ID ∈ {E,F}. When the
confidence level passes some threshold, either E or
F is transmitted (a sequence of E’s or a sequence
of F’s may be transmitted for reliability) to another
entity for continuing the overall mission. After
transmitting, the tactical ISR platform continues
to collect data, updates Combat ID and transmits
again. We may model this sequence of operations as
as automaton:

Combat ID(k + 1) = f (Combat ID(k), w(k)) (6)

where f is a random transition map, w is a random
process taking values in a finite set W . Here, w and f

are abstract representations of data collection and fu-
sion algorithms used to determine Combat ID. For
numerical simulations, we take the set of possible
data types to be:

W = {SARe, SARf , AOCe, AOCf}

= {a, b, c, d}

where SAR and AOC denote respectively data col-
lected by the platform using its sensors and data re-
ceived from air operations command (AOC), and the
subscripts indicate the state of Combat ID that they
are likely to support. For simplicity, we use the let-
ters a, b, c and d to denote the four data types.

We assume that the true value of Combat ID is F .
Recall that (6) can be written equivalently in terms
of Markov transition matrices. The normal operation
of tactical ISR upon receiving SAR data is given by:

Fa =

[

1 p

0 1 − p

]

Fb =

[

q 0

1 − q 1

]

where the states are ordered as {E,F} (i.e, the first
row corresponds to transition to E and the second
row corresponds to transition to F ). For numerical
simulations, we take p = 0.1 and q = 0.05. Simi-
larly, upon receiving AOC data, the tactical ISR up-
dates probability of Combat ID according to:

Fc =

[

1 p

0 1 − p

]

Fd =

[

q 0

1 − q 1

]

with p = 0.05 and q = 0.05. We will also consider
an abnormal operation in which the sensed data pro-
cessing changes. This abnormal operation is given
by:

F̂a =

[

1 0.4

0 0.6

]

F̂b =

[

0.6 0

0.4 1

]

The SAR and AOC data types are generated stochas-
tically.

Figure 5 shows the simulation of a tactical ISR (ISR
1) that remains in the normal mode of operation
throughout the simulation. The plot on top left hand
corner is the sequence of data received by the ISR;
plot on top right is the probability of Combat ID

computed from the data using ATR and fusion algo-
rithms encoded by the stochastic automaton (6). The
Combat ID is transmitted when (a) the probability is
above a threshold level (0.85), and (b) if a transmis-
sion slot is available. We use a time division multiple
access (TDMA) network for communication. The
strike UAV which receives Combat ID from ISR 1
reconstructs the probability of Combat ID by run-
ning the IMM-Bayes filter (in this case a Bayes filter)
given earlier. The results are in the bottom right plot.
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Figure 5: ISR 1 simulation

Figure 6 shows a second tactical ISR (ISR 2) that is
also collecting data and transmitting Combat ID to
the strike UAV. This ISR remains normal for some-
time and then undergoes a change to an abnormal
mode where the sensed data is not collected properly.
The top right hand plot clearly shows the change in
operational mode. Its effect on Combat ID transmis-
sion is no transmission since the probability thresh-
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Figure 6: ISR 2 simulation

old level is not reached. The strike UAV reconstructs
probability of Combat ID using the IMM-Bayes fil-
ter with two modes of operation.

We computed QoI of ISR 2 relative to ISR 1 for two
cases. In case 1, both ISRs transmit the probabil-
ity of Combat ID so that the strike UAV can directly
compute QoI. In case 2, both ISRs transmit the most
likely Combat ID symbol (E or F ) and the strike
UAV reconstructs the probabilities using an IMM-
Bayes filter. Figure 7 shows the QoIs computed for
both cases. The top plot shows the case when prob-
abilities are transmitted; while the bottom plot is for
case 2. In both cases, QoI shows a change, but the
detection is delayed due to the fact that no data is re-
ceived (see the plots on bottom left in Figures 5-6).
As we would expect, transmiting probability has ad-
vantages over transmiting symbols in terms of faster
detection and stronger indication of QoI change.

4 Conclusions

This paper presented a methodology to define and
detect changes in QoI of data received by an au-
tonomous entity. QoI is defined as the inverse of the
expected Kullback-Leibler distance between a refer-
ence probability distribution and the conditional dis-
tribution associated with the data. The interacting
multiple model Bayes filter can be used for comput-
ing the expected QoI. We presented an IMM Bayes
filter for the case of discrete-event dynamical system.
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Figure 7: QoI of ISR 2 relative to ISR 1 for different
transmission variables

Numerical examples for relative position data (real-
valued) and Combat ID data (discrete-valued) show
applicability of the methodology.

QoI is defined relative to a reference measure qk. An
ideal choice for qk is such that a change in QoI oc-
curs if and only if a system property (mode) changes.
Such a choice cannot exist for dynamical systems
as shown by the initial transient phase in Figure 2.
We are only able to attribute the differences in ex-
pected QoI at steady state to the different noise co-
variances (modes). In other words, a change in
QoI does not imply a change in system mode and
there is a strictly positive probability of false alarms.
It is easily argued using detectability concepts that
there is also a strictly positive probability of missed-
detection. A characterization of probabilities of false
alarm and detection is important for reliable detec-
tion of changes in QoI.
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