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Abstract— The main point of this paper is that network
security has a geometric component, in the sense that some
architectures promote some aspects of security. Such security
issues closely related to the topological architecture of the
network graph are multi-path routing to mitigate “eavesdrop-
ping” or “packet sniffing,” worm propagation and defense,
and Distributed Denial of Service (DDoS) attack mitigation.
Those geometric aspects relevant to network security are en-
capsulated in the concept of graph curvature. An architecture
that promotes, in some sense, security is the negative curvature
of the graph, which is shown to hold in several physical and
logical graphs and in the well know “scale free” model.

I. INTRODUCTION

The objective of this paper is to define small scale,
medium scale, and large scale curvature concepts for graphs
and to show their significance in such security issues
as robust routing, distributed denial of service mitigation,
epidemiology of worms, worm defense, etc. We further look
at the curvature of some physical and logical graphs, as
well as such model as the scale free model, and show their
negative curvature by Monte Carlo simulations. This paper
involves the relatively new field of coarse geometry [20],
one aspect of which is that graphs and manifolds are treated
as the same mathematical objects, and, as such, a graph can
be given a curvature.

II. TOPOLOGICAL SURFACE EMBEDDING

For the concept of graph curvature to be more palatable,
it is convenient to think a graph as embedded in a surface,
so that if the embedding is isometric the curvature of the
graph could be defined as that of the surface. Consider
a graph G, which we write on the sphere S2, possibly
with some edges crossing. (In fact, the only situation where
no edge crossings occur is when the graph is planar.) For
each edge crossing, “pull a handle” and draw one of the
edges on the handle rather than on the sphere. After pulling
a handle for every pair of crossing edges, the graph is
written–without edge crossings–on a sphere with g handles,
that is, the compact orientable surface Sg of genus g.
The computational implementation of this process relies
on the so-called Hefter-Edmonds rotation system [16, Sec.
3.2]: intuitively, a surface encompassing a graph induces
a permutation πv, or rotation, of the edges flowing out of
each vertex v. Conversely, assume that we have a rotation
system {πv : v ∈ G0}, that is, ∀v ∈ G0, we are given a
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permutation πv of the edges flowing out of v. This yields
an embedding e : G → Sg, in which the boundaries e(G)
of the faces are given by the π walks [16, Sec. 3.2]: Start
at a vertex v0 and proceed along an outflowing edge e0

until we reach another vertex v1 from which we proceed
along the edge πv1(e0), etc., until we come back to v0

along an edge e such that πv0(e) = e0; this closed path
bounds a face and the faces are “glued” along the edges to
yield Sg . This embedding process is of course nonunique,
but among all such processes there is one that leads to
a minimum number of handles, called the genus of the
graph g(G) (see [16, Sec. 3.4]). A fundamental result says
that those rotation systems that yield the minimum genus
embedding are cellular embeddings [16, Prop. 3.4.1], that is,
Sg \e(G) breaks as the disjoint union of (acyclic) cells, i.e.,
homeomorphs of the open disk. The advantage of a cellular
embeddings is that the traffic flow on the edges can be
extended to the cells. Of course, this extension is nonunique,
but has such invariants as the index of the flow field. We
can then conceive the traffic as flowing on a continuous
geometric structure.

III. SMALL SCALE, LOW DIMENSIONAL
ISOMETRIC EMBEDDING

The above embedding is purely topological and disre-
gards the metric structure of the graph. To check whether the
graph can be isometrically embedded in the surface requires
the comparison theory [6, Chap. 4]. The comparison theory
was historically the first attempt at defining curvature of
metric spaces and is based on the fact that any metric
triangle can be isometrically embedded in any standard
Riemannian manifold M

r
κ of constant sectional curvature κ

and dimension r. Given a geodesic triangle �uvw in some
geodesic metric space (X, d), the comparison triangle [6,
Def. 4.1.8], [5, Chap. II.1] in the standard constant curva-
ture space (Mκ, d̄) is a triangle ūv̄w̄ such that d̄(ū, v̄) =
d(u, v), d̄(v̄, w̄) = d(v, w), d̄(w̄, ū) = d(w, u). The metric
space (X, d) to be a Cartan-Alexandrov-Toponogov [12,
Sec. 3.2] or CAT(κ < 0)-space, i.e., has curvature bounded
from above by κ < 0, if ∀z ∈ [uv], ∀y ∈ [uw] along with
their comparison points in Mκ, we have d(z, y) ≤ d̄(z̄, ȳ)
(see [6, Sec. 4.1.4]).

The comparison triangle also allows a concept of angle
to be defined solely in terms of the distance, independently
of the concept of inner product. The Alexandrov angle [5,
Def. 1.12], [6, 4.3] at the vertex u of a geodesic triangle
�uvw is the limε→0 (limε→0) of the angle at the vertex ū of
the comparison triangle ūv̄εw̄ε of �uvεwε in the standard
negative (positive) curvature space Mκ, where vε ∈ [uv],
wε ∈ [uw], and d(u, vε) = εd(u, v), d(u,wε) = εd(u,w).



The angle ∠v̄εūw̄ε depends on the metric of Mκ, but
remarkably the limit as ε ↓ 0 does not depend on what
comparison space is chosen [5, Prop. 2.9]. The Alexandrov
angle is an small scale concept, and as such it does not
directly apply to graphs. Indeed if u is an arbitrary vertex
in a graph, the Alexandrov angle between the links [uv]
and [uw] would be 180 deg. At such a small scale, the
geometry of the graph is completely lost so that this result
is not surprising. For a graph, the lowest possible scale
that can possibly provide some geometric insight in the
neighborhood of a vertex u is the scale of vertices directly
linked to u. At that scale, a nontrivial Alexandrov angle can
be defined.

Armed with the concept of Alexandroff angle, we now
can come back to the local curvature of a graph G in a
surface Sg . Assume that the graph has been topologically
embedded using the rotation system {πx : x ∈ G0}. Con-
sider the vertex x, choose an edge e incident upon x, and
define vertices v1, ..., vn such that uv1 = e, uv2 = πu(e),
uv3 = π2

u(e), uvn = πn−1
u (e), and finally πu(uvn) =

πu(uv1). Observe that vi, vi+1 need not be connected by an
edge, but that there is a distance d(vi, vi+1) associated with
them. Assume that the system of points u, v1, ..., vn and
distances d(u, vi), d(vi, vi+1) is embeddable in E

3 (see [4]).
In this case, we can connect vi, vi+1 with an edge of length
d(vi, vi+1). The cone with A as apex and the polygonal
line v1v2...vn as base is a singular surface and we strive
to define the curvature at its apex. Skipping the details, it
is not hard to see using the Gauss-Bonnet theorem that the
curvature at the apex A is positive if

∑
i ∠viuvi+1 < 2π

while the same curvature is negative if
∑

i ∠viuvi+1 > 2π.
Now we come back to the isometric embedding question

in the low scale limit vi → u. If
∑

i ∠viuvi+1 = 2π,
then the subgraph with vertices u, vi can be isometrically
embedded into Sg . If, however,

∑
i ∠viuvi+1 > 2π, then

the isometric embedding of the subgraph yields a pleat
singularity at A and the surface is said to have a singular
hyperbolic metric (see [12, Chap. 14]). If, on the other hand,∑

i ∠viuvi+1 < 2π, then the isometric embedding of the
subgraph must have a conical singularity at u (see [12, Sec.
61, 6.2]), for indeed the sum of the angles at the apex of a
cone is < 2π.

We can now perceive the bigger picture: At the large
scale the graph G ⊆ Sg>2 would be hyperbolic, with local
patches of singular negative curvature and local patches of
positive curvature.

IV. ISOMETRIC EMBEDDING IN 3 AND HIGHER
DIMENSIONAL SPACES

A problem with the previous analysis, along with its
definition of positively and negatively curved graphs, is
that it clings on the assumption that the graph has been
topologically embedded in a surface. Here we indicate the
way to carry over this analysis to graphs embedded in 3-
manifolds.

There is a dramatic transition as we go from 2-D to 3-D,
because indeed, while a metric triangle, that is, a triple of
points with their distances satisfying the triangle inequality,
is embeddable in any space of any curvature, the basic 3-D
building block, the metric tetrahedron, that is, a quadruple
of points such that every of its triple satisfies the triangle
inequality, is not always isometrically embeddable in an
arbitrarily curved space (see Sec. V). In addition, the 2-
D geometry fact that the sum of the internal angles of a
triangle dictates the curvature is more complicated in 3-D. If
αij , i �= j, is the dihedral angle of the edge xixj , and if we
agree that αii = π, then what dictates the geometry is the
Gram matrix Γ = {− cosαij} (see [19], [15]). Precisely, the
geometry is hyperbolic iff λ1(Γ) < 0 < λ2(Γ) ≤ λ3(Γ) ≤
λ4(Γ) and all (i, j) cofactors are positive; the geometry is
Euclidean iff λ1(Γ) = 0 < λ2(Γ) ≤ λ3(Γ) ≤ λ4(Γ) with
the same condition on the cofactors; finally, the geometry
is spherical iff Γ > 0.

Now take a graph, let its complete n-subgraphs be the
n-simplexes, n ≤ 3, of a 3-D complex, and assume that this
simplicial complex is the triangulation of a 3-manifold M

3.
Then the (sectional) curvature (of the complex and hence
the graph) can be defined as the function k(xixj) = 2π −∑

kl α
kl
ij , where αkl

ij is the dihedral angle around xixj in
the tetrahedron xixjxkxl (see [14]). This definition extends
trivially to n > 3. A confirmation of the validity of this def-
inition is provided by the 3-manifold fact that, if k(xixj) >
0, then M

3 has a spherical metric [15]. A scalar curvature
can also be defined as S(xi) =

∑
jkl κ(xixj)vol(xixjxkxl)

(see [14]). The Yamabe flow problem asserts that the scalar
curvature of a Riemannian manifold can be deformed to a
constant one [25], [22], [1], [21]. However, this is not in
general true for the combinatorial Yamabe problem [14], a
fact that has unfortunate consequences for network conges-
tion (see Sec. IV).

Using a simplified approach to local combinatorial curva-
ture, Eckmann-Moses [7] showed that the curvature of the
World Wide Web graph follows a power law distribution
across negative curvature.

V. MEDIUM SCALE EMBEDDING IN CONSTANT
CURVATURE SPACE

If we strip a weighted graph (G,w) from those links that
are too costly to communicate along, the graph becomes
uniquely characterized by its node set x1, ..., xn and a
distance d(xi, xj) for every pairs of nodes. It can be
shown [4, Th. 63.1] that the graph viewed as a metric space
(G, d) can be irreducibly isometrically embedded in the
standard constant curvature κ > 0 space of dimension r
iff the diameter of the set of points does not exceed π√

κ

and the n× n matrix Γ = {cos
(
d(xi, xj)

√
κ
)} is positive

semidefinite with eigenvalues

0 = λ1 = ... = λn−r−1 < λn−r ≤ ... ≤ λn

Likewise [4, Th. 106.1 and Cor.], the same graph is embed-
dable in the standard hyperbolic space of curvature κ < 0



if only if the n×n matrix Γ = {cosh
(
d(xi, xj)

√−κ
)} has

eigenvalues

λ1 ≤ ... ≤ λr+1 < 0 = λr+2 = ... = λn−1 < λn

Finally [4, Th. 42.3], the graph is embeddable in E
r, r ≤

n− 1, iff the (n + 1) × (n + 1) Cayley-Menger matrix [4,
Th. 41.1, 42.1],



0 1 1 . . . 1
1 0 d(x1, x2)2 . . . d(x1, xn)2

1 d(x2, x1)2 0 . . . d(x2, xn)2
...

...
...

. . .
...

1 d(xn, x
1)2 d(xn, x2)2 . . . 0




has eigenvalues

λ1 ≤ ... ≤ λr+2 < 0 = λr+3 = ... = λn−1 < λn

Using the above eigenvalue reformulation, it is possible
to check embeddability of basic graph structures in standard
spaces [10]. The complete graph Kn with uniform link
weights is embeddable in E

n−1, in M
n−1
κ<0 , and in M

n−1
κ>0

provided

κ ≤

cos−1

(
− 1

n−1

)
d(xi, xj)




2

Furthermore, the same complete graph Kn is embeddable
in M

n−2
κ>0 if the above holds with equality. This leaves

us in a quandary as to what geometry Kn has. Since
Kn is bounded while Mκ<0 is not, the complete graph
has spherical geometry. A star structure with uniform link
weight is embeddable in a sufficiently negatively curved
manifold. To check embeddability of such a core concentric
structure as the ISP graph, we construct the model shown in
Fig 1: We start with the complete graph Kn with unit link
weight and, to each vertex, we attach a long edge of length
�. We can be shown that this model is embeddable in Mκ<0

provided �
√−κ is beyond a threshold. This is already an

example as to how large scale geometric issues can be dealt
with in this setting. In fact, large scale geometry appears
more vividly if we attempt to embed a tree in constant
curvature space. Consider a tree with uniform degree and
link weight w. Embeddability in a finite curvature space is
not possible; however, if we let w

√−κ → ∞, and extract
the dominant part of the matrix {cosh(d(xi, xj)

√−κ)},
then the embeddability condition is satisfied. This means
that the tree is embeddable in Mκ<0 from the large scale
viewpoint or that the tree is embeddable in M−∞.

VI. LARGE SCALE GEOMETRY

We now proceed to large scale curvature by looking
at theoretically infinite diameter graphs. Because positive
curvature manifolds have their diameter bounded, it follows
that at large scale, the only relevant curvature concept is
nonpositive. To define such a concept, it is instructive to
go back to Riemannian geometry. Let M be a Riemannian

�
nK

A

B

C

Fig. 1. Left: The Internet Service Provider (ISP) graph: Each node is
an ISP; two ISP’s are linked if one is the next-hop of the other in the
Border Gateway Protocol (BGP); each link is assigned a weight equal to
the number of paths observed between the two ISP’s by a traceroute-like
routine; the weight of a link is color coded; light gray represents low
weight while dark black represents high weight; high degree nodes are at
the center while low degree nodes are at the periphery; observe that the
geodesic triangle �ABC has low δF compared with its diameter. Right:
The idealized model to show embeddability in hyperbolic space.

manifold of sectional curvature κ < 0. The fatness of a
geodesic triangle �uvw is defined as

δF (�uvw) := (1)

inf


d(x, y) + d(y, z) + d(z, x) :

x ∈ [vw]
y ∈ [uw]
z ∈ [uv]




and the bounded fatness property [20, pp. 84-85] is that

δF (M) := sup{δF (�uvw) : u, v, w ∈ M} <
6√−κ

(2)

Clearly, because the above definition of δF (·) relies only
on a metric structure, it can be extended to geodesic metric
spaces, in particular to graphs. Therefore, we will say
that a graph G is δF -hyperbolic if δF (G) < ∞. By this
definition, all finite diameter graphs are hyperbolic, so that
an amended definition relevant to very large, yet finite
graphs is warranted. It can be shown that, for ε > 0,

sup
� ⊆ M

r
κ<0

diam(�) ≥ ε

δF (�)
diam(�)

< sup
� ⊆ E

r

diam(�) ≥ ε

δF (�)
diam(�)

<
3
2

and the inequalities becomes equalities as ε ↓ 0. (The first
inequality is proved via the comparison theory of Sec. III
and the second is proved from the fact that δF (�) =
2a2b2+2a2c2+2b2c2−a4−b4−c4

2abc for a triangle with edge lengths
a, b, c along with some elimination method.) It follows that
a necessary condition for a finite graph to be a CAT(κ < 0)
space is that the maximum of δF /diam be less than 3/2. It
can be shown [10] that this maximum occurs on the vertices.
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Fig. 2. The mathematical expectation of max δF /diam versus the total
number of edges for all 4 graph generators. Observe that the scale free
graph is the most hyperbolic.

Another computationally more efficient but less intuitive
measure is based on the fact that the distances d(xi, xj)
among four points, x1, x2, x3, x4, carry curvature informa-
tion. Let us order the vertices so that, if we define L(xi) =
d(x1, x4) + d(x2, x3), M(xi) = d(x1, x2) + d(x3, x4), and
S(xi) = d(x1, x3) + d(x2, x4), we have S ≤ M ≤ L.
Define

δG(X) :=

sup
{

L(x1, x2, x3, x4) −M(x1, x2, x3, x4)
2

: xi ∈ X

}

Then it can be shown that X is δF -hyperbolic iff δG(X) <
∞. For a finite graph, it can be shown that the real issue
is δG(u, v, w, x)/diam(u, v, w, x) < (

√
2 − 1)/

√
2, where

u, v, w, x are vertices sufficiently spaced.

VII. MONTE CARLO SIMULATIONS

To bring extra evidence of our claim, also formulated
independently by Baryshnikov [3], that the Internet is δ-
hyperbolic, we analyze the curvature properties of the var-
ious graph models of Internet build-up. In the early Erdös-
Rényi R(n,M) model, a random graph was characterized
by n nodes and M links distributed uniformly at random.
Another model is the small world W(n, d, β) model of
Watts and Strogatz [24]. In this model, we start with n
nodes arranged in a lattice, that is, every node has the same
degree d, and then every link is rewired with probability
β. The R(n,M) and W(n, d, β) models were, however,
not able to reproduce the typical heavy tail feature of
network graphs, and for this reason the scale free model,
F(n,m), also referred to as growth/preferential attachment
model [2], was introduced. In this model, the network starts
up with a core of n0 nodes, linked as a random spanning
tree. Then new nodes v1, ..., vn are recursively brought and
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Fig. 3. The mathematical expectation of max δG/diam versus the total
number of edges M for all 4 graph generators. Observe that the scale free
graph is the most hyperbolic.

each new node has m links attached to the previous nodes
with a probability proportional to the degree, referred to
as preferential attachment F(n,m). A slight variant is the
uniform attachment probability model U(n,m). (See [11]
for a comparison.) It can be shown [2] that the resulting
preferential attachment graph F(n,m) has heavy tail degree
distribution as n → ∞ and that the uniform attachment
graph does not.

We took n0 = 10 and constructed the graphs all the way
through n = 50 nodes, for all 4 graph generators. To draw
a fair comparison among the 4 generators, we took the total
number of links M as parameter and we plotted

E

„
max

u,v,w∈G0

δF (�uvw)

diam(�uvw)

«
, E

„
max

u,v,w,x∈G0

δG(u, v, w, x)

diam(u, v, w, x)

«

versus M for all 4 generators, as shown in Figs 2, 3, re-
spectively. Observe that the two curves are quite consistent
in their overall shape.

The curves can be explained as follows: The backbone
graph is a random tree visiting all nodes; when links are
being added, the δ initially increases rapidly because the
tree is being “fattened,” while the diameter remains roughly
constant; then the δ decreases because the new links start
creating some shortcuts, while the diameter still remains
constant; then we reach the most interesting region, half-
way between the minimum and the maximum M , because
the geometry is hyperbolic without trivial tree structure;
after that, there are too many links, which has the effect of
decreasing the diameter while the δ remains constant, hence
the curve goes up, to approach the complete graph situation
δF (K50)/diam(K50) = 2. Another important observation is
that the scale free model is the most hyperbolic.



VIII. APPLICATIONS

A. Multipath Routing

One of the many security concerns in modern data
networks is eavesdropping, that is, unauthorized packet
interception along a link with the potential of reconstructing
the full message—if all packets are sent along the same
optimum path from source to destination, as TCP does
under normal conditions. One of the proposed patches to
such a security breach is to send packets in a randomized
fashion along different equal-cost [9], [23] or nonoptimal
routes [8], [11]. The problem when packets travel along
nonoptimal routes is that they incur different delays, arrive
out-of-order at the destination, and TCP is very limited in
its ability to reorder the packet to their original sequence.
In fact, most of the time, TCP will simply drop the out-
of-order packets. A robustified version [8], referred to as
TCP-MP, where MP stands for Multiple-Path, has been
developed and, if implemented in the protocol suite of the
source and destination, is able to reconstruct the packet
sequence to its original order. However, the worse the out-
of-order, the more the overhead, so that it is still desirable
to maintain the delay discrepancy under control by sending
packets along near optimal routes, subject to a multiplicative
tolerance λ ≥ 1 and formalized under λ-quasi-geodesics [5,
Def. I.8.22]. A λ-quasi-geodesic is, by definition, a λ-quasi-
isometric embedding, that is, a map γ̃ : [a, b] → X subject
to

1
λ
|s− s′| ≤ d(γ̃(s), γ̃(s′)) ≤ λ|s− s′|

In [8], the near optimal paths were computed by a “brute
force” search. The remarkable property of hyperbolic graphs
is that if γ̃ is a λ-quasi-geodesic with the same end points
as the geodesic γ, the Hausdorff distance dH(γ, γ̃) is
bounded by a quantity depending only on (λ, δ) (see [5,
Th. III.H.1.7]).

Even though the quasi-optimal paths can be sought, with
reasonable efficiency, within this neighborhood of the opti-
mum path, we prefer, however, to use yet another property
of hyperbolic space—mainly that the quasi-geodesics can
be computed as k-local geodesics, that is, locally optimum
paths over k hops [5, Th. III.H.1.13]. A quasi-optimal
route discovery protocol can be devised based on this
property [13].

B. DDoS Attack Mitigation

Core concentric networks, which we would rename as
hyperbolic networks, have also been proposed as an archi-
tecture that mitigates Distributed Denial of Service (DDoS)
attacks. Indeed, the attack of the “zombies” to a destination
would have to transit through some “cores” where the
actions of the various “zombies” would destroy each other.

C. Positive Curvature Graphs

The problem with a hyperbolic space is that the good
behavior of the geodesics might be detrimental in Infor-
mation Warfare (IW). Indeed, the quasi-geodesics, along

which we could reroute, are guaranteed to be close to the
geodesic-probably too close by security standards. Indeed,
to fool the enemy attempting “eavesdropping” or “packet
sniffing,” it might be desirable to have the quasi-geodesics
geographically far away from the geodesic that the enemy
is wiretapping. In other words, sometimes, it is desirable to
have a wild behavior of the quasi-geodesics. This bad be-
havior of the quasi-geodesics typically occurs in a positively
curved or spherical space.

D. Worm Propagation and Defense

While there are many worm propagation schemes, they
can be unified under the theme that a worm propagates
on a graph, from one infected node to the neighboring
nodes. The propagation graph depends on the nature of
the worm and as such could have varying topological,
curvature, and random properties. For example, a mail
worm propagates on the logical mail graph. While the mail
graph appears to fall short of heavy tail, it has the growth,
sublinear preferential attachment model [18]. In general,
a worm exploits some software vulnerability and does a
random scanning of the 32-bit address space every clock
tick T . The random scanning is in general programmed
using a linear congruence, well known to generate a uniform
probability distribution, in which case the worm can be
thought of as propagating on the Erdös-Rényi R(n, p)
random graph. However, in the Sapphire/Slammer worm,
the hacker miscoded the linear congruence [17] with the
consequence that the “congruence” was cycling over some
subset of IP addresses itself triggered by a “seed.” If it is
agreed that the probability of choosing a particular cycle is
directly proportional to the size of the cycle if the initial
seed is selected uniformly at random, it follows that the
probability distribution of the IP addresses is not uniform.
The propagation graph hence appears to be of the core-
concentric type, with the long cycles in the core and the
small cycles at the periphery.

In the absence of defense strategy to contain a worm,
simulation reveal a propagation pattern, that is, a plot
of the number of infected machines versus time, that is
heavily graph dependent. This is another indication of the
crucial role played by the curvature of the graph. An
easy mail worm defense scheme would be to shut down
the server when two, or three messages from the same
sender are received at close interval. If we implement this
scheme, Monte Carlo simulations indicate that the speed of
propagation of the worm definitely slows down, but that the
overall shape of the curve remains the same. The invariance
of the shape of the curve under worm defense strategy is
a fundamental limitation as to what the elementary defense
strategy can do. This is reminiscent of the fundamental
limitations on the achievable feedback performance, well
known in linear control theory. The explanation of this
limitation is as follows: Assume the graph is infinite and
hyperbolic. A finite worm defense strategy implemented by
finitely many shutdowns of mail servers would be no more



than a quasi-isometry on the graph, and it is well-known in
coarse geometry that a quasi-isometry is unable to destroy
the δ-hyperbolic property of the graph [5, Th. III.H.1.9],
hence the limitation as to what the defense strategy could
accomplish.

E. Congestion Interpretation of Curvature

Since many worms do not contain malicious code, but
disable the network by congesting it, it is important to
understand what geometric network properties make it
prone to congestion.

Consider a graph specified by vertices u, v1, ..., v5 and
distances d(u, vi) = 1, d(vi, vi+1) = 1 where the other
distances d(vi, vj), i �= j are derived from the previous
ones. From the previous analysis, the local curvature at the
vertex u is positive. Assume a message has to transit from
vi to vj . Since the base is a pentagon, the communication
cost between vi and vj is at most two, so that most of
the traffic will transit around the base rather than through
the apex. Hence, positive local curvature at u means light
traffic through u.

Consider now a similar situation except that the base
v1, ..., vn has at least seven (n ≥ 7) vertices, which by the
previous analysis makes the local curvature at u is negative.
In this case, even when vi, vj are nearly diametrically op-
posed on the base, their communication cost cannot exceed
2, if the traffic transits through the apex. Therefore, strong
negative curvature means congestion. It appears therefore
that it might be a good idea to keep the curvature constant;
however, the combinatorial Yamabe problem reveals that
not even the scalar curvature can be made constant.

IX. CONCLUSION AND FURTHER PROSPECTS

Beyond security, it is claimed that many graph theoretic
issues are encapsulated in that single concept—graph cur-
vature. The “core-concentric” wired networks are on the
negative curvature side, whereas the wireless “meshed”
networks are rather on the positive curvature side. With
the advent of adaptive networking and the control plane,
it is desirable to have stable geodesics, which is achieved
with a hyperbolic network. If, on the other hand, we want
to use multipath routing to the extreme by having wildly
varying quasi-geodesics, this can be achieved on a positively
curved network, but at the expense that the geodesics will be
unstable as well, hence compounding the fluttering problem.
Clearly, the curvature reflects the various trade-offs.
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