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Assessment of Performance Limitations Due to Nonlinearity in a
Model of a Human with Diabetes

Nicholas Hernjak and Francis J. Doyle |l

Abstract—A 19'"-order in silico patient model is analyzed pumps are commonly-available [2], [3], [4]. For the control
to determine if nonlinear control is necessary for optimal algorithm, researchers have investigated a wide-range of
regulation of blood glucose levels. A numerical measure of non- designs including simple PID algorithms [5], [6] as well as
linearity is used to assess the open-loop degree of nonlinearity . . Lo
and the results then compared to those from an assessment of Ilnear_ [7] and nonlinear [8] model predictive Contml (MI_DC)
the control-relevant nonlinearity. Control-relevant nonlinearity ~ @lgorithms. Also, a number of researchers have investigated
is assessed with a performance metric that uses the system’s nonlinear optimal control techniques, e.g. Ollerton [9] and
nonlinear closed-loop operators to calculate bounds on the Fisher [10].
achievable performance of stabilizing, linear control designs. In a previous study [11], the authors analyzed the min-

The results show that the open-loop system is mildly nonlinear . . . .
in a typical operating region and has a low degree of imal diabetic system model of Bergmaz al. [12] with

control-relevant nonlinearity for standard, linear performance  the purpose of determining if a nonlinear, or otherwise
specifications. If asymmetric performance is desired, in which advanced, control algorithm is necessary to achieve high

negative deviations are rejected more aggressively than positive |evels of performance in regulation of glucose through an
deviations, the control-relevant nonlinearity grows significantly assessment of the system’s degree of control-relevant non-

indicating that nonlinear control is necessary to achieve this i itv. Control-rel t i ity i functi f th
task optimally. The results indicate that the primary contrib- Inearity. Lontrol-relevant noniinéarty 1S a tunction ot the

utor to the control-relevant nonlinearity is the performance inherent system nonlinearity, operating region, and perfor-
objective and that, for most cases, linear control is sufficient mance objective. The assessment techniques involved use of
for blood glucose regulation. a nonlinearity measure to quantify the degree of nonlinearity
of the system’s Optimal Control Structure (OCS) [13] as
I. INTRODUCTION a means to assess the nonlinearity of an approximation
The lifestyles of persons living with diabetes may bdo the optimal state-feedback control problem. The results
severely affected by the consequences of the disease. Didicate that the system model is only mildly nonlinear in
to the inability of the pancreas to regulate blood glucosthe operating region considered and that, given a standard
levels, patients are often required to regulate glucose levelgadratic performance objective, the system is optimally
manually. This task often involves the patient extractingegulated using linear techniques. When an asymmetric
blood samples to use in measuring glucose levels and thefrformance objective is considered in which hypoglycemic
deciding if boluses of insulin beyond those of their dailydeviations are penalized more heavily than hyperglycemic
regimen are required_ Due to the infrequent, and possib@BViationS due to the greater immediate health concerns
imprecise, nature of these measurements, tight glucose ségsociated with hypoglycemic deviations [14], the control-
regulation may only be possible given frequent interaction&levant nonlinearity is found to increase with increasing
with a physician. The dangers of widely varying glucosé@symmetric weight implying the need for nonlinear control.
levels are many, including heart and blood vessel diseadeue to the nature of the control-relevant nonlinearity effects,
kidney disease, blindness, and comas, the consequenceg@minally linear controller designs with possible nonlinear
which may be a shortened life span [1]. Glucose devigcorrections were found to be the optimal designs. Examples
tions below the basal level (hypoglycemic deviations) aréf possible control algorithms meeting these criteria include
considerably more dangerous in the short-term than positiidear MPC with an asymmetric objective function or gain-
(hyperglycemic) deviations, though both types of deviationscheduled PID control.
are undesirable. Because the model in the previous study contains only
Realizing the inherently problematic nature of selfthree states, many important physiological effects are not
regulation of glucose, systems researchers have activéyplicitly modeled. Possibly, this level of approximation
pursued automated regulation systems. A closed-loop gl result in the neglecting of critical nonlinear behaviors
cose regulation system requires three components: a glucégat may influence controller design. It is the objective of
sensor, an insu"n delivery device, and a Contro' a|goth|s Study to determine if nonlinear Contl’ol iS needed for the

rithm. A number of practical measurement devices ankfgulation of glucose through control-relevant nonlinearity
assessment of the 9order metabolic model of Sorensen
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In section Il, the control-relevant nonlinearity assessmerapproximation initial conditions and by limiting the possible
techniques used here are introduced including an open-lodpfinitions of|-|| to finite-time norms.
nonlinearity measure and a control-relevant nonlinearity As defined in eq. (1), the computation ¢f; involves
assessment technique based on quantifying performartte solution of an infinite-dimensional min-max problem
limitations of linear control designs. In section lll, theand is, generally, computationally infeasible. To simplify the
system model is introduced and open-loop nonlinearitproblem, the spack may be limited to a representative set
characterization is performed. In section 1V, a theoreticdl, C Y. Next, a restricted version @ is realized through
assessment of the system’s control-relevant nonlinearityse of a parameterized linear approximation, for example
is performed for the disturbance rejection task under agfor a SISO system):

sumptions of desired linear performance and, separately, N

asymmetric performance as motivated in the preceding Glu(s)] :wou(s)+z Wi u(s) 2
discussion. In section V, the results are summarized and i=1 Tis +1

conclusions are presented. To compute the nonlinearity measure, one selects the num-

ber of basis functions\;) and the corresponding set of
Il. NONLINEARITY ASSESSMENT TECHNIQUES  {jme constants7() and then performs a minimization to

A. Open-Loop Non"nearity Assessment find the Optlmal set of Welghtsz,uz, for thew € U, that

T tifv th i itv of th " del d . maximizes the measure. It has been shown that the search
roguan ify the nonlinearity of the system model used iy, o optimal weight set is convex [22]. Given the above
this work, a measure of open-loop nonlinearity is require

. : ! strictions, the nonlinearity measure approximation can be
The concept of a measure of nonlinearity was first propos

by Desoer and Wang [16] in demonstrating the linearizing ltten as: IG[u] - Nu]|

effects of linear feedback. Haber [17] was the first to pro- M~ min max " 3)
pose a series of practical, data-driven nonlineadstsused weRMN T u€e 1V [w]]

primarily to detect the presence of nonlinearity. Researchepdere Gu] is represented by eq. (2).

have continued to develop nonlinearity measures based gn Control-Relevant Nonlinearity Assessment

various quantification principles, including: differences in s the authors have shown previously [24], it is gen-
steady-state gain over an operating region [18], measures g lly insufficient to base controller design décisions on

stgady-state map curvature [19.]’. porm-based quantiﬁqaﬁ%%sessment of only the degree of open-loop nonlinearity
using a novel inner product definition [20], and comparisofys 5 system. Control-relevant nonlinearity is the feature

of empirical and theoretical gramians [21]. that places limitations on the achievable performance of

”Fc_>_r thlsz\évo.rk, thz nonI|neqr|tyhm%asure p]rcoposecli b)ﬁontrol designs for nonlinear systems. For example, the
Allgower [22] is used to quantify the degree of 0pen-loopyatormance of a linear controller on a system with severe

nonlmeant;(/j. This measurehls dlre(_:tlylt:cased c;nr:he work ontrol-relevant nonlinearity should be expected to be very
Desoer and Wang [16]. The nominal form of the measurg,q \wjith this intuition, the following is a description of

IS given as. a control-relevant nonlinearity assessment technique that
u |Glu] — NTu| bases its analysis on a measure of achievable performance

Py = g;gfg igg TN @) [25]. Because the primary objective of a glucose controller

is to reject external glucose disturbances, focus is placed

where i/ is the space of admissible input signals, :  on assessment of control-relevant nonlinearity in terms of

U — Y is the system operatofy : U — ) is a linear performance is disturbance rejection.

approximation taV, andg is the space of linear operators.  Given a closed-loop system composed of nonlinear oper-
The norm||-|| denotes a p-norm defined on the space ddtors, as shown in Figure 1, the closed-loop operdfgs ,
output signals,y. Any admissible norm may be used inthat relates the effect of output disturbancés,c D,, on

computing the measure, but it is prudent to consider a norfAe loop outputy € ), whenr = d, = 0 is defined as
that has relevance for the problem under consideration. Bygllows:

definition, ¢4, characterizes nonlinearity based on the best Hyq, = (I - GC(-1)"' Gy 4)

linear approximation given the “worst” input signal. . . . .
PP 9 P 9 One can specify desired performance in disturbance rejec-

. . YR .
The nonlinearity measureyy, .W”I. yield res_ults in the tion through the choice of a reference operatff, , whose
range[0,1] where a value of O indicates a linear procesy y

(across the set of inputs considered) and values approachlr?ém specifies the ideal cIoseQ—Ioop output for a given
1 indicate a severely nonlinear process. Nominaffy, Input, d,,. For the purposes of this work, a controller design

is well-defined only for bounded-input, bounded—outpufsrc;bllejg fg”o?e said to be well-posed if the following metric
(BIBO) stable systems. Helbigt al. [23] extended the q '

measure definition to consider transient systems by allowing HHydy (G,C)d, — Hy, dy
for maximization of the measure over the set of process  Pp, = inf sup :
L. L . . CceC g4, ep,

initial conditions and minimization over the set of linear v&y ’

(®)

Hey dy|
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where GG is a stable process operator a@idis the space control-relevant nonlinearity for the process and perfor-
of causal, stabilizing controllers. The measuré, , is mance objective. This type of analysis is consistent with
a measure of the difference between the output of thaptimal control-based characterization techniques, such as
loop operator and that of the ideal operator given thanalysis of the system’s OCS, and is not pursued here due
“worst” disturbance and the best stabilizing controller. Ifto the analytical burden in deriving™* for the high-order

the performance specified b‘y;dy is achievablePp, = 0.  system model that will be analyzed.

I1l. SYSTEM MODEL AND OPEN-LOOP
CHARACTERIZATION

The diabetic system model considered in this work is the
metabolic model developed by Sorensen [15]. Thi§*19
order model represents a compartmentalized view of the
human body with a focus on the tissues that are relevant to
the body’s glucose and insulin dynamics. As compared to
the single bilinear term in the model of Bergmenal, the
metabolic model considered in this work contains a large
number of nonlinear features including several instances
Fig. 1. General closed-loop syste@i.= process operato; = controller, of th_e INVErse tapgent fur_mtlon. Al Steady-State’_the model
G, = disturbance operator. All operators are assumed to be nonline4€C€ives a baseline insulin feed of 22.33 mU/min and has
casual, and stable. a basal glucose concentration of 87.65 mg/min. To model

the effects of external glucose delivery (i.e., meals) and

To use eq. (5) to assess control-relevant nonlinearity, orilee dynamics of glucose absorption, the meal model of
can consider recasting the measure in terms of only linekehmann and Deutsch [27] is used.
controllers, i.e.: To provide a baseline for the control-relevant nonlinearity

assessment that will be performed in the next section, the

system’s open-loop nonlinearity is characterized using the
(6) nonlinearity measure), (1) over glucose concentrations

in the range 70-150 mg/dL. Using a set of 28 positive
where C;, is the space of causal, stabilizirimear con- gnd negati_ve insulin pulse devigtions, a sub_set of which
trollers. Therefore, there is no guarantee that, for a wells Shown in Figure 2 along with the resulting glucose
posed, nonlinear procesdp, = 0. Non-zero values for trajegtorles, the qonllnear!ty measure is computed using
Ap, imply that linear control cannot meet the desiredhe linear approximation in eq. (2) wittv; = 20 and

. . i i i Uu __
performance as specified by;, and that, therefore, the Ti € [2.5,600] min resulting in a value ofyy = 0.1Q
system has a non-trivial degreé of control-relevant nonlinl NS low value of the nonlinearity measure implies a very
earity. low degree of system nonlinearity. In the next section, it

will be shown how these results compare to the system'’s
gdegree of control-relevant nonlinearity.

| Hya, (G, C)y ~ 1, d,
Ap, = inf sup ’ -

CeCr g, eD,

*
Hia, |

To computeAp, , the spac&, can be approximated by
considering linear controllers given by the Youla param

terization [26] IV. CONTROL-RELEVANT NONLINEARITY

C(s) = Q(s) (I — L(s)Q(s)) ™" @) ASSESSMENT

where L is a linear process operator a@ is a stable The focus of the control-relevant nonlinearity character-

filter. Since the process considered here is assumed iggtion will be the system’s perforn"_nance in rejecting_ex-
be nonlinear, its linearization is used in eq. (7) and i{ernal glucose disturbances. To begin, performance will be

will be understood that global stability is not guaranteed?SS€SSed given meals ranging in size from 12.5-50 g. These
Thus, for computation of\p, , a representative set of input meal sizes are representative of typical breakfast, lunch, and

disturbances®,. C D,) is chosen and) in eq. (7) is dinner glucose quantities. The exogenous glucose infusion
yc Yy )

parameterized using an expression similar to eq. (2). ifit€ for a 50 g meal is shown in the solid line in Figure 3.

is easily seen that, similar to the computationgé§ (1), The selected form fOHZdy is given as follows:
the optimization problem is reduced to finding the set of 35.03s
weights that minimizes\p, . Hyy =—+3 (8)

An alternative approach to control-relevant nonlinearity (1505 +1)
assessment based on eq. (5) is to solve for the contr6fter, Figure 4 is a plot of the output of eq. (8) given a 50 g meal
that results inPp, = 0 and to characterize its nonlinearity disturbance as well as the system’s open-loop response to
with a nonlinearity measure such as eq. (1). In this casthat same disturbance. Eq. (8) is selected as it represents a

higher controller nonlinearity implies a higher degree oflecrease in the peak glucose value of greater than 50% and
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Fig. 2. Subset of the outputs (top) and inputs (bottom) used to computdg. 4. Comparison of the open-loop system output (solid) and the ideal
the open-loop nonlinearity of the system model. Insulin delivery amountsilosed-loop response (dashed) given by eq. (8) for a 50 g meal disturbance.
Solid = -670 mU, Dashed = -4500 mU, Dash-dotted = 200 mU, Dotted =

1350 mu.

open-loop nonlinearity assessment) and do not indicate a
need to consider nonlinear control for this task.
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Fig. 3. 50 g meal disturbance profile (solid) and 50 g meal disturbance 3 % =0 00 T80 200 20 200 20
followed by a comparable negative deviationtat 150 min (dashed). - Time (min)

Fig. 5. Comparison of the closed-loop system output (top, solid) under
. . L optimized linear control and the ideal closed-loop response (top, dashed)
includes an allowance for negative glucose deviations at thien by eq. (8) for 12.5, 25, 37.5, and 50 g meal disturbances. Closed-loop
end of the trial due to possibly imprecise control action. insulin inputs are shown in the bottom plot.

To computeAp , the input spaceD, is restricted to

a set of four meals with magnitudes of 12.5-50.0 g. The While performance in rejecting a meal disturbance is
stable filter,@, in eq. (7) is parameterized as in eq. (2)critical in glucose control design, what is, perhaps, even
where N; = 10 with logarithmically-spaced; € [2.5,126] more important is control during hypoglycemic deviations
min. The optimization is performed using Matlalfi'reinunc as these are more acutely dangerous to a patient if they
algorithm to a final time of 360 min (6 h). Given thereach large magnitudes. Therefore, a second qualitative type
performance criteria in eq. (8) and the considered meaf disturbance is considered that includes both positive and
sizes, the computed value dfp, is 0.10 indicating that negative components, an example of which is shown as the
the system can approximately meet this linear performanckiashed line in Figure 3. Physically, this disturbance can be
specification under linear control. Figure 5 compares thénought of as, perhaps, a meal followed by an excessive
output of the closed-loop system under the optimized linedrolus of insulin. The system’s open-loop response to this
controller to that of eq. (8). The results show that thelisturbance is shown in Figure 6 along with the output of
outputs of the closed-loop system do not quite meet theqg. (8). It can be seen that a disturbance of this magnitude
precise form of the outputs of eq. (8). There is no significamesults in a significant negative deviation in glucose. In fact,
evidence of nonlinear effects. Therefore, the results implg deviation of this magnitude is physically undesirable, but
low control-relevant nonlinearity (in agreement with thewill be used as a worst-case for future comparison.
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80

range. Therefore, it is investigated how closely the system
can be brought to the performance of an asymmetric objec-
tive that yields a more desirable negative response, e.g.:

35.03s *
, (150s+1)2 Hydydy 20
HYy = )
!/dy
35.03(1—a)s %
“Gsost1? Hya,dy <0

The parameterq € [0,1], in eq. (9) controls the degree
of asymmetry ofH;;y. As « is increased, the magnitude
of the desired negative response decreases. Clearly, this
is nonlinear behavior that should not be achievable using
e linear control on this essentially linear system, but it is
% 50 100 150 200 250 300 350 worth quantifying how close the output can be brought to
Time (min) this type of behavior under linear control to help gauge the
Fig. 6. Comparison of the open-loop system output (solid) and the ideﬁeed for nonlmear_ control. . o
closed-loop response (dashed) given by eq. (8) for a 50 g meal disturbanceFor the same disturbances used in obtaining the results
followed by a comparable negative disturbance as shown in Figure 3. jp Figure 7, ADu was calculated given the performance
specification in eq. (9) as a function of The results, as
) _ _ _ shown in Figure 8, demonstrate thap, increases with
Using four different magnitudes of the disturbance, th‘i’ncreasinga. The discontinuity that appears in Figure 8
calculated value ofAp, is 0.13 Figure 7 includes the near = 0.80 appears to be related to an increase in
closed-loop outputs under the optimized linear controllefhe influence of constraints. Given that the maximum value
and the corresponding outputs of eq. (8). Again, the resulg Ap, is 0.53 at the extreme value of = 1 (i.e., no
show that the system is not quite able to meet the preciggpoglycemic deviation), the results show that linear control

shape of the output off;, , but, in general, the difference performs well across the majority of the rangecof/alues.
is acceptable. Based on the value &f , the system

still demonstrates low control-relevant nonlinearity as linear

control approximately meets the desired performance. It is 0.6
important to note that the system responses tend to approach  gss| |
the lower constraint on insulin infusion rate, thus adding a
degree of nonlinearity to the system behavior.

Glucose Deviation (mg/dL)

0.5-

0.451

0.4r

L7035t
0.3t

0.251

0.2r

Glucose Deviation (mg/dL)
o

0 50 100 150 200 250 300 350 0.151

Time (min) q
£ 0.1 *
E 60 0 0.2 0.4 0.6 0.8 1
2 a
E
& a0t B . . . . .
& Fig. 8. Linear performance metric for the system with desired perfor-
§ mance specified b)H;dy in eq. (9) as a function of the asymmetric
20F 1 v,
“5; performance parametet,.
£
; 0 I I I I I
20 50 100 150 200 250 300 350

Time (min) To exactly demonstrate how the best-possible linear con-
troller performs in trying to mimic the behavior of eq. (9),

Fig. 7. dCIC}mparison olf thz c:}ose(?-lolopl Sys;elm output (top,(solid)dunﬁerfigure 9 contains the closed-loop outputs for the optimized
optlmlze inear control and the ideal close -loop response top, as f .
given by eq. (8) for 12.5, 25, 37.5, and 50 g meal disturbances foIIOWQEﬂear controllers given a set of varying values. As the

by comparable hypoglycemic deviations. Closed-loop insulin inputs aréarlier results imply, the system can easily obtain the desired
shown in the bottom plot. performance for the positive portion of the disturbance,
but the performance in rejecting the negative disturbance
As discussed above, the negative glucose deviations sderlimited by the impact of constraints. Still, except in the
in Figures 6 and 7 are unacceptable for the largest distuegion 200 < ¢ < 250 min, the responses closely match
bances, but the positive deviations are within an acceptatilee desired behavior for most values @f For the largest
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values ofa (e.g., thea = 0.95 result in Figure 9), the [2]
impact of constraints and the overly-aggressive referenc 4%
function result in the optimal linear control response having[5
decreased performance at early times. Based on the set o}

obtainedAp, values, there is little room for improvement

. 6
through the use of nonlinear control. [6]
0 40 T T
3 7]
z 20
2
I 8]
a
2 20 9]
g ;
© 0 50 100 150 200 250 300 350 [10]
= Time (min)
£
£
E 80+ g [11]
bC] i
& [12]
c -
2
a
= i [13]
R s s s s
c 0 50 100 150 200 250 300 350
Time (min)
[14]

Fig. 9. Comparison of the closed-loop system output (top, solid) under
optimized linear control and the ideal closed-loop response (top, dashed)
given by eq. (9) for a 50 g meal disturbance followed by a comparablﬁ5]
hypoglycemic deviation forx = 0.25,0.5,0.75, 0.95. Closed-loop insulin
inputs are shown in the bottom plot.

[16]
V. CONCLUSIONS

For physically-relevant performance specifications, thfﬂ]
results provide no significant motivation for the use o
nonlinear control for glucose regulation. Even in the case
of an asymmetric performance objective, linear contrar®!
was found to yield satisfactory levels of performance. If
nonlinear control is investigated, the most likely source
of significant improvement would be in the incorporati0n[19]
of constraint handling techniques in a linear algorithm. In
general, the results of this study agree with those of thHgCl
previous analysis of the model of Bergmat al. using
different techniques. [21]

In terms of the best design of linear controller to be used,
a linear MPC algorithm with constraint handling is likely [22
to be the best choice. The additional robustness properties
of linear MPC algorithms make them preferable over less-
complex algorithms (e.g., PID) for this system since th
system dynamic properties are likely to change significantly
over both short and long-term periods. Due to the low24l
degree of open-loop and control-relevant nonlinearity, it is
not expected that any significant changes in the modelgs]
nonlinearity would occur that would necessitate changing
the controller design itself. ol
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