
A New Wavelet-Based Paradigm for Hierarchical
Coarse-Graining applied to Materials Modeling*

Ahmed E. Ismail, Gregory C. Rutledge, and George Stephanopoulos
Department of Chemical Engineering, MIT, Cambridge, MA 02139

Abstract—We outline how the wavelet transform, a hi-
erarchical averaging scheme, can be used to perform both
structural and topological coarse-graining in systems with
multiscale physical behavior, such as Ising lattices and polymer
models. We illustrate how to create sampling mechanisms,
which we call wavelet-accelerated Monte Carlo (WAMC), to
study these systems and obtain qualitative and quantitatively
accurate results in orders of magnitude less time than using
atomistic simulations.

I. INTRODUCTION

While there have been impressive computational gains
afforded in recent years through advances both in computer
hardware and in the expected gains predicted from Moore’s
law, it is also clear that relying on improvements in com-
putational performance will ultimately be insufficient for
advancing the state-of-the-art in molecular simulation. In re-
sponse, many researchers have turned their attention toward
the development of a variety of algorithms for advancing the
time and length scales accessible to molecular simulations.
One limitation common to many of these algorithms is
their limited focus—they are generally designed to study
only a specific set of molecular chemistries. However, it is
well known that many physical systems possess common
structural properties, including self-similarity. As a result,
we have created a new simulation paradigm for studying
systems with structured behavior over various length scales
which exploits these links.
Our method is based upon the wavelet transform [1–3,

among others]. Although most commonly used for signal
processing and image analysis, we use it for its data com-
pression properties. The basic principle in our application
of the wavelet transform is that we use a characteristic
property of our objects—such as the spin of a magnetic
particle, or the position of an atom along the backbone
of a chain molecule—as the basis for our sampling. The
wavelet transform is then used to develop coarse-grained
representations of “effective” or “block” variables, as well
as potentials, describing the behavior of the system over
successively larger length scales. This approach has several
advantages, including generality with respect to the range
of systems to which it can be applied; extensibility, as
it can be used as the basis for a hierarchical simulation
scheme; and efficiency, as the resulting algorithm is capable
of yielding qualitatively accurate predictions of behavior
over a wide range of parameters orders of magnitude faster
than is capable with traditional atomistic simulations. We

discuss our development of this paradigm, in the form
of a new simulation technique, wavelet-accelerated Monte
Carlo, through its application to lattice systems and to
polymer random walks.
To date, the wavelet framework transform has not been

extensively applied to models in statistical mechanics.
Huang uses wavelet analysis to observe the statistical dis-
tribution of multiplicity fluctuations in a lattice gas [4],
while Gamero et al. employ wavelets to introduce their
notion of multiresolution entropy, but for dynamic signal
analysis rather than statistical mechanics simulations [5].
O’Carroll attempts to establish a theoretical foundation
connecting wavelets to the block renormalization group
[6], [7]. The most extensive discussion of the relationship
between wavelets and renormalization group theory is a
recent monograph by Battle [8].

II. USING THE WAVELET TRANSFORM AS A
COARSE-GRAINING SCHEME

There are two principal means for carrying out coarse-
graining of a physical system: we can call these approaches
structural and topological. Structural approaches operate
on the simulation space, dividing it into regions, and then
combining the regions from one scale to another. Topolog-
ical approaches operate on the particles inserted into the
simulation space, so that the rules for coarse-graining the
system do not depend upon any specific physical structure
of the simulation space, such as a lattice, but instead upon
the structure of the particles. Ising lattices and polymer
chains typify each of these individual approaches. We show
how to develop coarse-grained simulations for each of these
models below.

A. The Ising model
The Ising model is the standard model for studying the

thermodynamic behavior of lattice systems, such as spin
magnets, lattice gases, and binary alloys [9]. The Hamil-
tonian for the Ising model, which contains both nearest-
neighbor pairwise interactions as well as interactions be-
tween lattice sites and an external field, can be generally
written in the form

−βH =
X
i

hiσi +
X
i

X
j

Jijσiσj , (1)

where σi is either the occupation number or the spin of
lattice site i, hi is the strength of the external field in the



direction of the spins σi at site i, and Jij is the strength of
the interaction between the pair of sites i and j. The spin-12
Ising model, the most frequently encountered, has σi = +1
or −1 and Jij = 0, unless i and j are nearest neighbors on
the lattice, in which case Jij is a constant. The inverse
temperature β = (kBT )

−1; for convenience we choose
kB = 1, so that temperature, external field, and nearest-
neighbor interactions are all dimensionless quantities.
While (1) is a compact representation of the Hamiltonian

of the system, the expansion of the lattice variables σi and
σj as a sum of wavelet coefficients makes these equations
impractical for applying the wavelet transformation. Since
the system is described on a regular lattice, we want to use
discrete wavelets (also known as filter banks), so a matrix
formulation of the Hamiltonian would be convenient. Using
graph theory to represent the connectivity of the lattice as
a matrix [10], we define the vectors u = (σ1,σ2, . . . ,σN)
and h = (h1, . . . , hN) as the values of the N lattice vari-
ables in the system and the set of external-field strengths.
Furthermore, define the matrix J such that element Jij is the
strength of the interaction between site i and site j. If sites
i and j do not interact, then Jij = 0. Then, the Hamiltonian
(1) can be written in the form of a matrix equation:

−βH = hTu+ uTJu, (2)

where the superscript T denotes the transpose of the vector
(or matrix) which precedes it.
The matrix W which defines the wavelet transform [1–3,

among others] satisfies by construction WTW = I, where
I is the identity matrix. Therefore, to apply the wavelet
transform, we insert WTW between each pair of terms in
(2), thereby obtaining

−βH =
¡
hTWT

¢
(Wu) +

¡
uTWT

¢ ¡
WJWT

¢
(Wu) .

(3)

Using the general matrix property that BTAT = (AB)T ,
(3) can be rewritten in terms of the wavelet-transformed
vectors h̃(K) = Wh, ũ(K) = Wu, and the wavelet-
transformed matrix J̃(K) =WJWT :

−βH̃ =
³
h̃(K)

´T
ũ(K) +

³
ũ(K)

´T
J̃(K)ũ(K). (4)

Using (4) as the basis for a Monte Carlo simulation re-
quires the calculation of the change of energy ∆Enm from
microstate um to microstate un:

∆Enm = h
T (un − um) + (un − um)T J (un − um) .

(5)

If moves are restricted to changes of single spin flips, then
only a single entry of un−um is nonzero, and therefore the
calculation (5) reduces to a dot product, instead of a matrix
multiplication.
The effect of applying the wavelet transform in (4) is to

create a representation in which the ũ(K) represent “block
spins” whose values are determined by wavelet averaging
over a well-defined region of the original system. The

Hamiltonians (1) and (4) have the same formal structure,
so that Monte Carlo simulations of the two systems are
essentially identical. The only modifications needed to
simulate a coarse-grained Hamiltonian are the ability to
select new microstates ũ(K)i which are generated through
wavelet transformations of the original microstates ui, and
the elimination of unwanted degrees of freedom from (4).
It should be noted that in (4), the elements of ũ(K) are not
restricted to the same values as in the original system, but
are free to take on any value which is consistent with the
wavelet transform applied to the system.
To draw a new microstate ũ(K), we need an estimate

for the probability distribution p
³
ũ
(K)
i

´
for the individual

sites in the new, coarse-grained lattice. Determining the
correct distribution for a given ũ(K)i would require a detailed
simulation of the original system. An alternative, ignoring
the effect of neighboring block spins, would be to perform
an exact enumeration of the spins within a block, which
is possible only for the smallest of block spins. Since we
would like to apply this method to systems of arbitrary
size, we want to avoid both of these options. Therefore,
we simulate a sublattice with the same dimensions as ũ(K)i ,
ignoring physical interactions with the rest of the system
by using either free or periodic boundary conditions. Using
the standard Metropolis acceptance criterion, we compute
distributions for the properties of the small lattice, such
as the magnetization. Then, since the wavelet transform
defines a single block spin ũ(K)i as a linear function of
the individual spins at level K − 1 which it replaces, we
can use the linearity properties of probability distributions
to convert the distribution of the properties directly into a
distribution for the block spin ũ(K)i [11]. Finally, using the
distribution for ũ(K)i as a starting point, we perform a Monte
Carlo simulation on the system of block spins defined by
the Hamiltonian (4).
Although (1) and (4) are structurally the same, we cannot

impose a one-to-one correspondence between the states in
the configuration space of (5) and the states in the con-
figuration space of (4). Consequently, the thermodynamic
information obtained from the two will not necessarily be
identical: the inability to sample correctly the exact distribu-
tion p

³
ũ
(K)
i

´
ensures that there will be a loss of entropy

associated with the coarse-graining process. However, we
can still ensure that the detailed balance condition for the
simulation based on (4) is satisfied for the new simulation
by requiring

α
³
ũ
(K)
n → ũ

(K)
m

´
α
³
ũ
(K)
m → ũ

(K)
n

´ = p
³
ũ
(K)
n

´
p
³
ũ
(K)
m

´e−β(H(ũ(K)
n )−H(ũ(K)

m )),

where α (m→ n) is the probability of accepting a move
from microstate m to microstate n, and p (m) is the
probability of selecting microstate m as determined from
simulations on finer-grained lattices at lower scales.
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Fig. 1. Coarse-graining model for a lattice gas. Each 2 × 2 block
is converted into a new block whose occupation is the average of the
occupation numbers at the previous scale.

The effect of this procedure is shown schematically in
Figure 1, which represents a lattice gas. At the original
scale, there are only two options for each site—occupied or
unoccupied. Applying the wavelet transform to a 2×2 block
on this lattice leads to a new “block site,” which can have
occupations ranging from fully empty to fully occupied,
with one-quarter, half, and three-quarters occupied as the
other options. If we choose, we can then re-block each 2×
2 segment of the new model to produce an even coarser
model, where each site can take one of 17 different values
(corresponding to occupation fractions of 0, 116 ,

1
8 , . . . , 1).

The Hamiltonian which describes each of these systems is
structurally equivalent, but the numeric constants hi and Jij
in 4 will be different in each case.

B. Polymer chains
The fundamental concept behind the application of the

wavelet transform to a polymer chain is that we apply the
wavelet transform topologically along the chain backbone to
the positions of the individual “atoms” (or functional groups
or repeat units). Thus, we take as our input data the set of
positions R = {r1, . . . r2N}, and define the unnormalized
Haar wavelet transform as the mapping

r(k)n =
1

2

h
r
(k−1)
2n−1 + r

(k−1)
2n

i
, (6)

w(k)n =
1

2

h
r
(k−1)
2n−1 − r(k−1)2n

i
. (7)

The output is the set of averages
n
r
(k)
1 , r

(k)
2 , . . . , r

(k)
N

o
and

the set of differences
n
w
(k)
1 , w

(k)
2 , . . . , w

(k)
N

o
, where the

superscript denotes the number of times we have repeated
the process (on the set of scaling coefficients). The effect
of the averaging operator in (6) is to create a new coarse-
grained bead r(k)n at the center of mass of the beads at r(k)2n−1
and r(k)2n ; the differencing operator (7) returns the distance
between the original particles’ positions and their center
of mass. A schematic representation is shown in Figure 2.

Fig. 2. Coarse-graining of a 16-site random walk in two dimensions
using “center-of-mass aggregation” of adjacent points along the chain, as
suggested by the wavelet transform method. The four sites which would
be created after another iteration of this method are indicated on the graph;
note that each is at a quarter-integer lattice point. [N.B. While shown in
two dimensions for simplicity, all simulations were three-dimensional.]

The methods most similar to the approach presented here
are the “soft colloid” method of Louis et al. [12] and the
“bond fluctuation” model of Carmesin and Kremer [13].
The specific hierarchical method discussed here is closely
related in spirit to renormalization group procedures, and in
particular to the blocking technique of Kadanoff [14], [15].
While we perform our simulations using only the

averaged coordinates
n
r
(k)
1 , r

(k)
2 , . . . , r

(k)
N

o
, if we were

also able to keep track of the difference coordinatesn
w
(k)
1 , w

(k)
2 , . . . , w

(k)
N

o
, we could reconstruct the chain

at the next finest scale
n
r
(k−1)
1 , r

(k−1)
2 , . . . , r

(k−1)
N

o
as a

consequence of perfect reconstruction [3]. The challenge
of this approach is that the probabilistic models which
would describe the difference coordinates is in general more
complicated than those for the averaged coordinates, which
makes working with them much more computationally
expensive. Thus, if it were vital to develop a model for
the differencing coordinates, it will almost always be to
our advantage to simulate the system at scale k − 1, and
then use (6) and (7) to compute the difference coordinates.
The total length N of a chain can be written as N =

Nb ×Ne, where Nb is the number of beads actually being
simulated in the chain, and Ne is the “effective size” of
a bead; that is, Ne represents the number of beads on
the original representation of the chain that are combined
to form a single coarse-grained bead. By definition, an
atomistic simulation has Ne = 1 and therefore N = Nb. If
we proceed through multiple stages of a hierarchical sim-
ulation, we write the vector Ne = (Ne,1, Ne,2, . . . , Ne,m) ,
where m is the number of stages in the simulation so far.
The effective bead size N (m)

e is then given by N(m)
e =Qm

i=1Ne,i.
Our hierarchical algorithm proceeds as follows. We start

by performing an atomistic simulation (O
¡
106
¢
attempted

MC moves) on a chain containing Nb,1 beads, with Ne,1 =
1. Then, every Nb,1 steps, we use (6) and (7) to determine
the centers-of-mass r(K) of the coarse-grained beads at a
given length scale Ne,2 = 2K , and the wavelet coeffi-



cients w(1), . . . ,w(K). From this data, we can store the
necessary information for the distribution of coarse-grained
bond lengths, bond angles, and torsion angles at the next
stage of the simulation. The next step is a coarse-grained
simulation of a chain of length Nb,2 beads, where each
coarse-grained bead represents Ne,2 beads of the original
chain, where Ne,2 = 2K ≤ Nb,1/4. If the chain length
N = Nb,2 × Ne,2 is the desired length, we can terminate
the simulation; otherwise, we can proceed to a third stage
simulation of Nb,3 beads, each with effective size Ne,3 ≤
(Nb,2 ×Ne,2) /4. This process can be repeated as many
times as is necessary to achieve the desired system length.
The coarse-grained algorithm runs independently of the
source of the input distributions: they can be derived from
experimental data, from an atomistic simulation, or from a
previous iteration of the coarse-grained algorithm.
A move on the coarse-grained lattice consists of replacing

a selected bond with a new bond whose internal coordinates
are drawn from the bond-length, bond-angle, and torsion-
angle distributions derived in the previous stage of the
simulation. Following the work of Dautenhahn and Hall
[16], the remainder of one side of the chain is displaced
correspondingly to preserve the connectivity of the chain.
Once the new configuration is obtained, it is checked for
self-avoidance.

III. RESULTS

A. The Ising model
The wavelet transform method tends to produce overes-

timates for the critical point of the system; therefore, if
we start with the high-temperature limit of our algorithm
and slowly reduce the temperature in our simulation, we
can observe the movement toward the critical point by
watching various fluctuation parameters, such as the heat
capacity CH =

³­
E2
®− hEi2´ /kBT 2. Near the critical

point, we expect to see a rapid increase in the value of
CH , consistent with the expected logarithmic divergence
observed in the limit of finite-size systems [17], [18]. If
we use the onset of this logarithmic divergence as an
indicator, we can then “step down” and use a finer lattice
with more degrees of freedom. This system will naturally
better reflect the physics of our system, particularly in the
vicinity of the critical point. We expect that very near the
critical point, we will have to simulate the system at the
original scale, since this will be effectively the only level
which accurately represents the underlying behavior of the
system. However, the region of parameter space where this
is necessary is relatively small compared to the complete
parameter space. This is especially true when we consider
that as we proceed below the critical temperature of the
system, the logarithmic divergence of CH will also vanish.
As a result, as we move increasingly far away from the
critical point, we begin to approach the other fixed-point
behaviors associated with the low-temperature limits of the
system. Since these are reasonably well-preserved using the
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Fig. 3. Illustration of “adaptive” coarse-graining scheme for a 64 ×
64 Ising model. The simulation sizes are as indicated; the model spends
approximately 90 per cent of its computational time in the region marked
MMC (Metropolis Monte Carlo).

wavelet transformation, we can safely return to increasingly
coarse-grained descriptions of our system as the simulation
proceeds past the critical point.
As an example, we compute the spontaneous magneti-

zation curve for a 64× 64 Ising lattice in the temperature
range 0.5 ≤ T ≤ 10.0, with ∆T = −0.05, and choosing
as our refinement criterion ∆CH/∆T ≤ −0.5, until we
reach the finest scale, corresponding to the original problem.
We begin by coarse-graining the system to an (8, 8)-model,
where we find that the criterion is triggered only at T = 5.1;
we then continue with a (4, 16)-model, down to T = 4.0, at
which point the refinement criterion is exceeded. Refining
once more, we proceed with a (2, 32)-model until T = 3.4,
at which point the threshold is again crossed. Since the
next refinement is the original problem, we proceed at this
level of resolution until we have passed the critical point,
so that ∆CH/∆T is positive. As a coarsening criterion, we
select for simplicity the opposite of the refinement criterion,
∆CH/∆T ≤ 0.5. Using this criterion, we find that we
coarsen the model to the (2, 32)-, (4, 16)- and (8, 8)-models
at temperatures of T = 1.75, T = 1.65, and T = 1.55,
respectively. The rapid coarsening of the model results from
the higher estimates of the critical point in the coarsened
models. Since we are well past the critical point, we expect
changes in the heat capacity as a function of temperature to
be relatively small, and thus it is possible to obtain accurate
results from a relatively coarse model. Computationally,
the time required to create this diagram was only 28 per
cent that required to perform a standard Metropolis Monte
Carlo simulation with the same number of steps. Moreover,
in the regions that were not simulated using MMC, the
computation time required was just 8 per cent of the time
required for MMC. The resulting plot of magnetization
versus temperature, shown as Figure 3, compares favorably
to the analytical solution of Onsager, which is also shown
[19].
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B. Polymer chains
A comparison of the results obtained for a detailed

atomistic simulation and for two-scale coarse-grained simu-
lations of chains up to length 213 = 8192 beads are shown
in Figure 4. Two different coarse-grained simulations are
plotted, showing Ne,2 = 32 and 64, respectively; the mean
end-to-end distances of the three simulations show excellent
agreement with one another, indicating that for relatively
large values of Ne,2, there is little effect on the end-to-end
distance. Additionally, the Flory exponent for the scaling
of the end-to-end distance, hRi ∼ Nν , is shown to be
νcg ≈ 0.578± 0.006 for Ne,2 = 32 and ν = 0.581± 0.006
for Ne,2 = 64, both of which are within one percent of the
best available estimate ν ≈ 0.577 [20].
To show that this hierarchical simulation strategy is

effective for studying large systems, we can measure its
performance over a variety of chain sizes, as shown in
Figure 5, which shows the running times for three different
algorithms. The topmost line in the graph corresponds to
a detailed atomistic simulation using an algorithm compa-
rable to the WAMC algorithm; the running time of this
algorithm is approximately O

¡
N7/4

¢
. If we optimize the

atomistic algorithm by using the pivot algorithm, along with
some of the additional improvements suggested by Kennedy
[21], we, obtain the “optimized atomistic” plot shown. The
running time has been reduced to roughly O

¡
N6/5

¢
; still

further changes can reduce the running time to O (N) or
below; however, the resulting algorithm is impractical for
use in models with interparticle potentials other than self-
avoidance.
The lower line plotted in Figure 5 represents the running

time of the WAMC algorithm with Ne = 32. We note
that the algorithm has a running time of O

³
N
7/5
b

´
, which

is in between the results for the atomistic and optimized
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pivot, and WAMC algorithms for polymer chains as a function of the
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atomistic algorithms. However, since by definition we have
Nb¿ N , we expect that the WAMC algorithm will be faster
on a per-move basis than either atomistic algorithm, unless
the associated prefactor is much larger for the WAMC algo-
rithm. However, since both methods are executing variations
on the same basic process, this does not occur, and the
WAMC algorithm is generally faster than either atomistic
technique.

IV. CONCLUSIONS

The wavelet-accelerated Monte Carlo scheme is a robust
technique for performing coarse-grained molecular systems
with multiscale behavior. The simulations, although re-
quiring more structural information than the initial atom-
istic simulation, have many fewer degrees of freedom,
and therefore execute much more quickly. In addition, its
adaptable nature means that we can adjust our coarse-
graining strategy without knowing a priori any information
about the system to be studied. Moreover, this gives us the
ability to explore physics at any scale between those of the
atomistic models and the model with the maximum allow-
able coarse-graining, a feature which other “handshaking”
coarse-graining methodologies cannot offer.
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