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Abstract— This paper presents a method for identifying a model with numerous modes below the true first mode.
discrete-time mc_>de|s with a lower bound _on_the identified These states had to be manually removed. The frequency
modal frequencies. A frequency bound is imposed as a cqongtrained identification algorithm presented in this pa-

convex constraint for a weighted least squares optimization is one techni to prevent h low-fr n ver-
in subspace identification. We solve the convex optimization per is one technique to prevent such low-irequency ove

problem using existing linear programming techniques. modelling.
] Advancements in the system identification community,
1. Introduction notably subspace system identification algorithms, allow

Systems characterized by light damping present a chdbr the identification of high-order, MIMO systems [9—
lenging control problem and thus an important systera7]. Subspace identification methods have been extended to
identification problem. Large lightly damped structures aridentifying stable models [18—-21] and positive real models
particularly prominent within the aerospace communityj22,23]. In [20], stable models were identified using con-
specifically large flexible space structures. This class daftrained least squares optimization. A similar approach is
structures includes satellites, membranes, and other gaaken in [23] to identify positive real models. In the presen
samer structures [1]. The performance requirements phper, we use a related method to identify systems with a
many large flexible structures necessitate the use of actil@ver bound on the identified modal frequencies.

control, whether for stabilization, disturbance rejectior In Section 2, we formulate linear matrix inequalities
tracking. It is therefore necessary to obtain valid modéls ghat impose a lower bound on the modal frequencies of
lightly damped systems. a discrete-time state-space model. The lower bound is

Large flexible structures are characterized by high-ordenforced by bounding the eigenvalues of a matrix outside
models with densely spaced modal frequencies and vesy ball of arbitrary radius. Sections 3 and 4 present the
low damping. In addition, controlling such structures carmconstrained least squares optimizations for state sequenc
require many sensors and actuators, resulting in systeahs tand extended observability matrix subspace identification
are extremely multi-input multi-output (MIMO). Different techniques, respectively. Section 5 discusses algorithm i
approaches to identifying such systems have been presenpdeinentation. Numerical examples are provided in Section
in [2-7]. In the present paper, we consider identifyings. Conclusions are given in Section 7.

systems where we have knowledge of the lowest modal _
frequency. 2. Frequency Bound Formulation

This paper presents a method for obtaining system mod-\ve begin this section with a result that provides a lower
els with a lower bound on modal frequencies using subspag@und on the magnitude of the eigenvalues of a matrix. This
identification and convex optimization. Our motivationds t result provides the foundation for developing linear mxatri
identify systems where we know the first modal frequencynequalities that are equivalent to a bound on the modal

but system identification techniques yield a model withrequencies of a discrete-time linear system.
lower frequency modes. Over-modelling at low frequencies

can occur when identifying MIMO systems where the cou-
pling between certain inputs and outputs may be reIativeI?Fh

Proposition 2.1. Let A, € R™ ™ and letwy;, > 0. If
ere exists a symmetric positive-definffec R™*™ such

weak, leading to very small DC gain in certain input-outpu at
i 1
transfer functions. o - ATPA, — P >0, 2.1)
In [8] a sparse-array telescope with nine colocated sen- Wiin

sors{actuator pairs was _|dent|f|ed. At frequencies less th?hen every eigenvalue of, has magnitude greater than or
the first mode, the coupling between non-colocated sensaors

S " equal towmin.
and actuators was weak, resulting in response charaatsrist G Wmin
that were below the noise floor. The system identification Proof. Let v; be the eigenvector associated with the

algorithm fit modes to the low-frequency noise, producingigenvalue); of the matrix A.. Assume that there exists
0-7803-8335-4/04/$17.00 ©2004 AACC 867



a symmetric positive-definité> such that Next, we consider the inequality (2.9), which applies over
the second frequency interval. Using Schur complements,

QLACTPAC —P>0, (2.2) (2.9) is equivalent to
C . . 14+ —4
which implies _E W?mn”% (ATP+PA)—P ATP -
1- o2 _4 72 -
vi AYPAv; > Wk i P, (2.3) m PA P
* ; (2.10)
where v} denotes the complex conjugate transpose,of
Equation (2.3) is equivalent to To express (2.10) as a linear matrix inequality, we define
< A
Ni\ivf Po; > wii vf Pu;, (2.4) R = PA, (2.11)
which implies |\; | > wmin. [ and (2.10) is rewritten as
. . . . <1+ﬂ4—2>
Now let us consider a continuous-time system with — “min™ ) (RT+R) —P RT S 212
dynamics matrixA. € R™*™, Using Theorem 2.1, we 1*;5‘];‘!7 >0, (212)
constrain all eigenvalues ol to exist on or outside the R P

disk of radiuswy;,. This is equivalent toA. having no

eigenvalues with frequency less thag,;,. To impose this .

constraint, we require that there exists a real symmetr|€!2x the condition or¥ to

P > 0, such that, (2.1) is satisfied. P="P">6I, (2.13)
Recall that we are interested in using this constraint for o

system identification and require the constraint in terma of 'O an arbitrarily smally > 0. _ .

discrete-time equivalent system for that purpose. The con- Now, we consider the frequency constraint over the first

straint is approximated in discrete-time using the bil'meafrequ?”cy interv'al.'The ine':quality'(2_8) cannot .be exprdss
transform as a linear matrix inequality by direct application of Schur

complements and a change of variables. Instead, we apply a
A, = E(A —L)(A+1,) ", (2.5) shift operator tod and express the constraint in the shifted
T plane. The shift is defined by

where P = PT > 0. To make the constraint convex, we

where A is the discrete-time dynamics matrix, ands the Al a_7 214
sampling period. Substituting (2.5) into the inequalityl{§2 o (2.14)
yields By combining (2.8) with (2.14), the constraint (2.8) can be
4 written as
——— A+ D) TA-DTP(A-D(A+I)"' =P >0, . . R
WininT” ! (ATP+PA)— Lo L Vitpi-_p>o,
(2.6) 2 4 w2, T2
(2.15)
where0 < wpin < Z. Now, (2.6) is written as L .
T which is equivalent to
4 T 1 (AT A A
0§—<1+ﬁ> (ATP + PA) o< —§(AAP+PA) PA
mZ ATP ATPA
—(1- 2—> (P+ATPA), (2.7) 1 1 AT 3
( wIninT2 —+ o (Z B W?Di672> A*PA 0 (216)

which is equivalent to

To express (2.16) as a linear matrix inequality, we define
(1 + ﬁ)

) A g A AT
2ol (ATP+ PA)+ P+ ATPAZ 0, (28) F=A"P, G=ATPA, (2.17)
1-— .
( “’?xnnTZ) so that (2.16) may be rewritten as
for 0 < wi < 7 and [ L R R IR ol IR
(1 + =2 72)
_% (ATP + PA) — P — ATPA >0, (29) whereG = GT > 0. The constraint orGG is made convex
(1 - wilmfz) by the relaxation

T
for 2 < wy < . G=G" >4, (2.19)
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whered > 0 is arbitrarily small. Now define
The linear matrix inequalities (2.12)-(2.13) and (2.18)- AT
i A AYP 0
(2.19) place a lower bound on the modal frequencies of 1= 0 ARk
a discrete-time dynamic matrix. In the following section, ”
these linear matrix inequalities are implemented as convé@ that (3.8) can be written as

constraints in subspace identification. o 4
wenran-|[1 4] Foe]

Wy 21, (3.9)

3. Least Squares Optimization with a State Sequence Yijk+i-1

In this section, we incorporate the frequency constraints | G+F H Xk|k+z‘—1 ?
of Section 2 into a weighted least squares optimization C D Uk|kti-1 F’
problem for subspace identification using an estimatee stat (3.10)
sequence. where

Consider the discrete-time, linear time-invariant system .

2 AT
Tre1 = Azy, + Bug, 3.1) H=A"PB. (3.11)
yr = Cxy, + Duy, (3.2) The cost function (3.10) and the frequency bound con-

. . m straints (2.18)-(2.19) may be implemented as a constrained
wherez, € R", up € R™, y, € RP, A € R™", B € |inear least squares optimization.

R»x™m C e RP*™ and D € RP*™, We define

A 3.2. Weighted cost function f@/7 < wyin < 7/7

Upkriot = [ e b1 oo Uiricz Ukpic ](:’3 3 Now, consider the second frequency interval. We define
A Al P 0 A

Yilktiot = [ Uk Ukl - Ukti2 Ykrio1 | Wy = [ 0 I, } ; Wy =1, (3.12)

(3.4)
. » ) so that (3.8) can be written in terms of the constraint
where Uy j4,—1 € R™ " and Yy 4,—1 € RP**. Using a parameters

subspace algorithm that provides state estimates, wenobtai

the sequences J(C,D,P,R,S) = H [ P 0 ] [ Xt 1]t }
X A A A 0 I Yilkti-1
Xippric1 = | &k Bhpr - Bhgic2 Thgio1 | R S Xk|k 2
35 _ Fic1
. AL (39) {C DHUklkﬂ—l} F
Xitipori = | The1 Thg2 oo Epgpicl Thga | (3.13)
(3.6)
where
where X ;1 € R™ and X,y x4; € R, Estimates 2 pp (3.14)

of the coefficient matrices are obtained by minimizing
A B Equation (3.13) combined with the frequency constraints
c D } (2.12)-(2.13) is a constrained least square optimization,

J(A, B,C, D) éle ([ Kicapess ] - [
which is linear in parameters.

Yijkgio1

Xk\k+i—1 ])
X W-
[ Uklkti—1 2

2

; (3.7 4. Least Squares Optimization with an Extended
F Observability Matrix

where W, € R and W, € R'" are weighting ma-  Now, a constrained optimization is formulated for an

trices. By manipulating the weighting matrices, we expresssimated extended observability matrix subspace method.
the cost function linearly in terms of the same parameteige define the extended observability matrix
as the frequency constraints. Recall that different frague

constraints apply over two separate frequency intervals. c
CA

1>

3.1. Weighted cost function for < wpin < 2/7 r

First, we consider the frequency interval wherg;, is CA.Z'*l
between zero and@/r. Applying the shift operator (2.14)
to the cost function (3.7) results in Using an extended observability matrix subspace routine we
obtainT', an estimate of (4.1). Using Matlab notation, we

, (4.1)

J(A,B,C,D) £|lw; ([ f,:l:jr"“j } - { Agl g ] define the matrices
be 2 I = D(p+1:pi,1:n), (4.2)
W . D Wl 3.8 LA .
[ Uklk+i—1 ? P (38) r,2 IF'1:p(E—1),1:n). (4.3)
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The cost function for determining may be written as where

A £ 2 =qGT
J(A4) = ||wy (B = Do) Wa| (4.4) G=G">04l, (5.3)
axplio1) e ) andd > 0 is arbitrarily small. We can then solve for the
where W7 € R and W, € R"*" are, again, gystem matricest and B from the equations
weighting matrices.
_ _ A=F'G+1,, B=F"'H. (5.4)
4.1. Weighted cost function for < wp,in, < 2/7

For the first frequency interval, we applying the shiftAnd for wmin such tha/7 < wmin < /7, we minimize

2.14) to th t function (4.4 X ,
(2.14) to the cost function (4.4) 2 J(C,D,P,R,S)=H{FO) IO :||:§(/k+1|k+z]
. A P m klk+i—1
J(A) = HW1 (F1 — T (A+ In)) WzH ) (4.5) N 2
F | R S Xklkrio1
We define ¢ D Uklkgi—1 ||
W, 2 ATpry, Wy 21,  (46) (5.5)
. , ) such that
whereT'] is the Moore-Penrose generalized inverse. Now,
4.4 be writt =
(4.4) can be written as _( i;ﬁ) (R 4+ R)—P R
JFG) =l (0, - 1) —al (4.7) (112-4# 20, (56)
(.6 =[P (5 1) e, @ 7 p
where F' and G are defined in (2.17). The cost functionWhere
(4.7) and the frequency bound constraints (2.18)-(2.19)
may be implemented as a constrained linear least squares P="P">4I, (5.7)
optimization. . oo .
and ¢ > 0 is arbitrarily small. System matriced and B
4.2. Weighted cost function f@/7 < wyin < /7 are determined by
Now define A= PR, B=P7S. (5.8)
A ~ A
Wy = PI'], Wa = I, (4.8) The optimization is performed using the SeDuMi Matlab

Eoolbox [24]. We impose quadratic and positive semi-

so that (4.4) can be written in terms of the constraint .~ S . L
definite constraints in SeDuMi by optimizing over symmet-
parameters e cones

J(P,R) = HPfjfl - RH?, (4.9) 6. Example

whereR is defined in (2.11). Equation (4.9) combined with Consider two continuous-time spring-mass-dampers act-
the frequency constraints (2.12)-(2.13) is a constrairadt| ing in parallel

square optimization, which is linear in parameters. i1 0 1 0 0 1
. k c
5. Algorithm Implementation E2 | _ | Tmr w0 0 Z2
. . L ] 0 0 0 1
The constrained estimated state sequence optimization g?’ 0 0 b _a ?
described in Section 3 of this paper is implemented for 4 ma ma 4
subspace-based identification. A variant of the N4SID (1) (1)
subspace algorithm presented in [11] determines system I T I e I 6.1)
order and the state sequence. The constrained least squares 0 0 ’ '
optimization is as follows. m% m%
For wmin such thatd < wp,i, < 2/7, we minimize T
% X
J(C,D,F,G,H):H{F 0 } |:Xk+1|k+i:| y=[0 @ 0 @]| 2| +v (6.2)
0 Ipn Yiik+i-1 3
G+F H[ X ? o
- { c D ] [ U’“"”?’l ] ,  where the position of the first spring-mass-damper:is
klkti=1 I its velocity is zo, the position of the second spring-mass-
(5.1) . ; b ) )
damper iszs, its velocity isxy4, the force input in Newtons
such that is u, the output isy, the plant disturbance is, the sensor

noise isv, the masses ana; = 2 kg andms = 1.2 kg, the
>0, (5.2) damping constants arg = 10 kg/s andcy = 15 kg/s, the
spring constants are, = 10* kg/m? andk, = 10* kg/m?,
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Fig. 1. Bode plots for the discretized system with no plargtudi  Fig. 2. Bode plots for the discretized system with non-zetantp
bance noise or sensor noise. The plots of the discrete-tirmeray the disturbance noise and sensor noise. Shown are plots of dureth-
unconstrained identification, and the frequency congdhiidentification time system (solid), the unconstrained identification (edsttied), and the
coincide. frequency constrained identification (dashed).

and the output multiplication factors agg = 15 andg> = where N, a uniformly distributed random variable on

5. With these values the modal frequencies of the system atige interval (0,1). Again, we identify the discrete-time
70.717 rad/sec and 91.2871 rad/sec. The continuous-tigstem (6.3)-(6.4) using the unconstrained and frequency
system (6.1)-(6.2) is sampled with a zero-order-hold and @nstrained identification algorithms. The Bode plots are
sampling period of 0.005 seconds. The resulting discretgrovided in Figure 2. Notably, all of the modal frequencies
time state-space realization is given by identified by the unconstrained algorithm were below the
first natural frequency of the system. In Table 1, we see

83581; 060841118126 8 8 that the constrained identification did indeed constrai th
Tyl = O. : 0 0.8097 000468 | ¥ modal frequency above 65 rad/sec.
0 0 -39 0.8412 TABLE |
6.134 x 10~° MODAL FREQUENCIES(RAD/SEC)
0.002418
+ 1.003 x 103 (up + wi) (6.3) Discrete-time Unconstrained|[ Constrained
’ System (6.3)-(6.4)|| Identification || Identification
0.0039 70.7107 19.5647 73.0924
=0 15 0 5 . 6.4 70.7107 53.8182 73.0924
ue = | [+ v (6.4) 91.2871 63.7156 628.8218
91.2871 63.7156 646.4980

We identify the discrete-time system (6.3)-(6.4) using an
unconstrained subspace algorithm similar to the algorithm
presented in [11] and the constrained algorithm presented
in Section 5 withw,,;,, = 65 rad/sec. The system is excited 7. Conclusions
with a zero-mean Gaussian white noise signal and the plant,, s paper, we presented a subspace method for identi-
disturbance and sensor noise are identically zero. The Boﬂﬁng linear models with a lower bound on modal frequency.
plots for the discrete-time system, the unconstrained Nodgye presented a theorem for bounding the eigenvalues of
and the frequency constrained model are given in Figure 1. nauiy outside of a ball of arbitrary radius and used the
Both the unconstrained and the constrained |dent|f|cat|orﬂﬁeorem to develop linear matrix inequalities that are equi
yield models that accurately reflect the system's modalignt o frequency constraints on a discrete-time system.

frequencies. _ _ The inequalities were implemented as convex constraints in
Now, we consider the same system with plant d'Sturban%?weighted least squares optimization.
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