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Abstract— This paper presents a method for identifying
discrete-time models with a lower bound on the identified
modal frequencies. A frequency bound is imposed as a
convex constraint for a weighted least squares optimization
in subspace identification. We solve the convex optimization
problem using existing linear programming techniques.

1. Introduction

Systems characterized by light damping present a chal-
lenging control problem and thus an important system
identification problem. Large lightly damped structures are
particularly prominent within the aerospace community,
specifically large flexible space structures. This class of
structures includes satellites, membranes, and other gos-
samer structures [1]. The performance requirements of
many large flexible structures necessitate the use of active
control, whether for stabilization, disturbance rejection, or
tracking. It is therefore necessary to obtain valid models of
lightly damped systems.

Large flexible structures are characterized by high-order
models with densely spaced modal frequencies and very
low damping. In addition, controlling such structures can
require many sensors and actuators, resulting in systems that
are extremely multi-input multi-output (MIMO). Different
approaches to identifying such systems have been presented
in [2–7]. In the present paper, we consider identifying
systems where we have knowledge of the lowest modal
frequency.

This paper presents a method for obtaining system mod-
els with a lower bound on modal frequencies using subspace
identification and convex optimization. Our motivation is to
identify systems where we know the first modal frequency,
but system identification techniques yield a model with
lower frequency modes. Over-modelling at low frequencies
can occur when identifying MIMO systems where the cou-
pling between certain inputs and outputs may be relatively
weak, leading to very small DC gain in certain input-output
transfer functions.

In [8] a sparse-array telescope with nine colocated sen-
sors/actuator pairs was identified. At frequencies less than
the first mode, the coupling between non-colocated sensors
and actuators was weak, resulting in response characteristics
that were below the noise floor. The system identification
algorithm fit modes to the low-frequency noise, producing

a model with numerous modes below the true first mode.
These states had to be manually removed. The frequency
constrained identification algorithm presented in this pa-
per is one technique to prevent such low-frequency over-
modelling.

Advancements in the system identification community,
notably subspace system identification algorithms, allow
for the identification of high-order, MIMO systems [9–
17]. Subspace identification methods have been extended to
identifying stable models [18–21] and positive real models
[22, 23]. In [20], stable models were identified using con-
strained least squares optimization. A similar approach is
taken in [23] to identify positive real models. In the present
paper, we use a related method to identify systems with a
lower bound on the identified modal frequencies.

In Section 2, we formulate linear matrix inequalities
that impose a lower bound on the modal frequencies of
a discrete-time state-space model. The lower bound is
enforced by bounding the eigenvalues of a matrix outside
a ball of arbitrary radius. Sections 3 and 4 present the
constrained least squares optimizations for state sequence
and extended observability matrix subspace identification
techniques, respectively. Section 5 discusses algorithm im-
plementation. Numerical examples are provided in Section
6. Conclusions are given in Section 7.

2. Frequency Bound Formulation

We begin this section with a result that provides a lower
bound on the magnitude of the eigenvalues of a matrix. This
result provides the foundation for developing linear matrix
inequalities that are equivalent to a bound on the modal
frequencies of a discrete-time linear system.

Proposition 2.1. Let Ac ∈ R
n×n and let ωmin > 0. If

there exists a symmetric positive-definiteP ∈ R
n×n such

that

1

ω2
min

AT
c PAc − P ≥ 0, (2.1)

then every eigenvalue ofAc has magnitude greater than or
equal toωmin.

Proof. Let vi be the eigenvector associated with the
eigenvalueλi of the matrix Ac. Assume that there exists



a symmetric positive-definiteP such that

1

ω2
min

AT
c PAc − P ≥ 0, (2.2)

which implies

v∗
i AT

c PAcvi ≥ ω2
minv∗

i Pvi, (2.3)

where v∗
i denotes the complex conjugate transpose ofvi.

Equation (2.3) is equivalent to

λ̄iλiv
∗
i Pvi ≥ ω2

minv∗
i Pvi, (2.4)

which implies |λi | ≥ ωmin.

Now let us consider a continuous-time system with
dynamics matrixAc ∈ R

n×n. Using Theorem 2.1, we
constrain all eigenvalues ofAc to exist on or outside the
disk of radiusωmin. This is equivalent toAc having no
eigenvalues with frequency less thanωmin. To impose this
constraint, we require that there exists a real symmetric
P > 0, such that, (2.1) is satisfied.

Recall that we are interested in using this constraint for
system identification and require the constraint in terms ofa
discrete-time equivalent system for that purpose. The con-
straint is approximated in discrete-time using the bilinear
transform

Ac =
2

τ
(A − In)(A + In)−1, (2.5)

whereA is the discrete-time dynamics matrix, andτ is the
sampling period. Substituting (2.5) into the inequality (2.1)
yields

4

ω2
minτ2

(A + I)−T(A − I)TP (A − I)(A + I)−1 − P ≥ 0,

(2.6)

where0 < ωmin < π
τ

. Now, (2.6) is written as

0 ≤−

(

1 +
4

ω2
minτ2

)

(

ATP + PA
)

−

(

1 −
4

ω2
minτ2

)

(

P + ATPA
)

, (2.7)

which is equivalent to
(

1 + 4
ω2

min
τ2

)

(

1 − 4
ω2

min
τ2

)

(

ATP + PA
)

+ P + ATPA ≥ 0, (2.8)

for 0 < ωmin < 2
τ

and

−

(

1 + 4
ω2

min
τ2

)

(

1 − 4
ω2

min
τ2

)

(

ATP + PA
)

− P − ATPA ≥ 0, (2.9)

for 2
τ

< ωmin < π
τ

.

Next, we consider the inequality (2.9), which applies over
the second frequency interval. Using Schur complements,
(2.9) is equivalent to









−

(

1+ 4

ω
2

min
τ
2

)

(

1− 4

ω
2

min
τ
2

)

(

ATP + PA
)

− P ATP

PA P









≥ 0.

(2.10)

To express (2.10) as a linear matrix inequality, we define

R
△
= PA, (2.11)

and (2.10) is rewritten as








−

(

1+ 4

ω
2

min
τ
2

)

(

1− 4

ω
2

min
τ
2

)

(

RT + R
)

− P RT

R P









≥ 0, (2.12)

whereP = PT > 0. To make the constraint convex, we
relax the condition onP to

P = PT ≥ δI, (2.13)

for an arbitrarily smallδ > 0.
Now, we consider the frequency constraint over the first

frequency interval. The inequality (2.8) cannot be expressed
as a linear matrix inequality by direct application of Schur
complements and a change of variables. Instead, we apply a
shift operator toA and express the constraint in the shifted
plane. The shift is defined by

Â
△
= A − In. (2.14)

By combining (2.8) with (2.14), the constraint (2.8) can be
written as

−
1

2

(

ÂTP + PÂ
)

−

(

1

4
−

1

ω2
minτ2

)

ÂTPÂ − P ≥ 0,

(2.15)

which is equivalent to

0 ≤

[

− 1
2

(

ÂTP + PÂ
)

PÂ

ÂTP ÂTPÂ

]

+

[

−
(

1
4 − 1

ω2

min
τ2

)

ÂTPÂ 0

0 0

]

(2.16)

To express (2.16) as a linear matrix inequality, we define

F
△
= ÂTP, G

△
= ÂTPÂ, (2.17)

so that (2.16) may be rewritten as
[

− 1
2

(

F + FT
)

−
(

1
4 − 1

ω2

min
τ2

)

G FT

F G

]

≥ 0, (2.18)

whereG = GT > 0. The constraint onG is made convex
by the relaxation

G = GT ≥ δI, (2.19)



whereδ > 0 is arbitrarily small.
The linear matrix inequalities (2.12)-(2.13) and (2.18)-

(2.19) place a lower bound on the modal frequencies of
a discrete-time dynamic matrix. In the following section,
these linear matrix inequalities are implemented as convex
constraints in subspace identification.

3. Least Squares Optimization with a State Sequence

In this section, we incorporate the frequency constraints
of Section 2 into a weighted least squares optimization
problem for subspace identification using an estimated state
sequence.

Consider the discrete-time, linear time-invariant system

xk+1 = Axk + Buk, (3.1)

yk = Cxk + Duk, (3.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
p, A ∈ R

n×n, B ∈
R

n×m, C ∈ R
p×n, andD ∈ R

p×m. We define

Uk|k+i−1
△
=

[

uk uk+1 . . . uk+i−2 uk+i−1

]

,
(3.3)

Yk|k+i−1
△
=

[

yk yk+1 . . . yk+i−2 yk+i−1

]

,
(3.4)

where Uk|k+i−1 ∈ R
m×i and Yk|k+i−1 ∈ R

p×i. Using a
subspace algorithm that provides state estimates, we obtain
the sequences

X̂k|k+i−1
△
=

[

x̂k x̂k+1 . . . x̂k+i−2 x̂k+i−1

]

,
(3.5)

X̂k+1|k+i

△
=

[

x̂k+1 x̂k+2 . . . x̂k+i−1 x̂k+i

]

,
(3.6)

whereX̂k|k+i−1 ∈ R
n×i and X̂k+1|k+i ∈ R

n×i. Estimates
of the coefficient matrices are obtained by minimizing

J(A,B,C,D)
△
=

∣

∣

∣

∣

∣

∣

∣

∣

W1

([

X̂k+1|k+i

Yk|k+i−1

]

−

[

A B
C D

]

×

[

X̂k|k+i−1

Uk|k+i−1

])

W2

∣

∣

∣

∣

∣

∣

∣

∣

2

F

, (3.7)

whereW1 ∈ R
s×n+p and W2 ∈ R

i×r are weighting ma-
trices. By manipulating the weighting matrices, we express
the cost function linearly in terms of the same parameters
as the frequency constraints. Recall that different frequency
constraints apply over two separate frequency intervals.

3.1. Weighted cost function for0 < ωmin < 2/τ

First, we consider the frequency interval whereωmin is
between zero and2/τ . Applying the shift operator (2.14)
to the cost function (3.7) results in

J(Â, B,C,D)
△
=

∣

∣

∣

∣

∣

∣

∣

∣

W1

([

X̂k+1|k+i

Yk|k+i−1

]

−

[

Â + I B
C D

]

×

[

X̂k|k+i−1

Uk|k+i−1

])

W2

∣

∣

∣

∣

∣

∣

∣

∣

2

F

, (3.8)

Now define

W1
△
=

[

ÂTP 0
0 Ip

]

, W2
△
= Ii, (3.9)

so that (3.8) can be written as

J(C,D,F,G,H) =

∣

∣

∣

∣

∣

∣

∣

∣

[

F 0
0 Ip

] [

X̂k+1|k+i

Yk|k+i−1

]

−

[

G + F H
C D

] [

X̂k|k+i−1

Uk|k+i−1

]∣

∣

∣

∣

∣

∣

∣

∣

2

F

,

(3.10)

where

H
△
= ÂTPB. (3.11)

The cost function (3.10) and the frequency bound con-
straints (2.18)-(2.19) may be implemented as a constrained
linear least squares optimization.

3.2. Weighted cost function for2/τ < ωmin < π/τ

Now, consider the second frequency interval. We define

W1
△
=

[

P 0
0 Ip

]

, W2
△
= Ii, (3.12)

so that (3.8) can be written in terms of the constraint
parameters

J(C,D,P,R, S) =

∣

∣

∣

∣

∣

∣

∣

∣

[

P 0
0 Ip

] [

X̂k+1|k+i

Yk|k+i−1

]

−

[

R S
C D

] [

X̂k|k+i−1

Uk|k+i−1

]∣

∣

∣

∣

∣

∣

∣

∣

2

F

,

(3.13)

where

S
△
= PB. (3.14)

Equation (3.13) combined with the frequency constraints
(2.12)-(2.13) is a constrained least square optimization,
which is linear in parameters.

4. Least Squares Optimization with an Extended
Observability Matrix

Now, a constrained optimization is formulated for an
estimated extended observability matrix subspace method.
We define the extended observability matrix

Γ
△
=











C
CA

...
CAi−1











, (4.1)

Using an extended observability matrix subspace routine we
obtain Γ̂, an estimate of (4.1). Using Matlab notation, we
define the matrices

Γ̂1
△
= Γ̂(p + 1 : pi, 1 : n), (4.2)

Γ̂2
△
= Γ̂(1 : p(i − 1), 1 : n). (4.3)



The cost function for determiningA may be written as

J(A)
△
=

∣

∣

∣

∣

∣

∣
W1

(

Γ̂1 − Γ̂2A
)

W2

∣

∣

∣

∣

∣

∣

2

F
, (4.4)

where W1 ∈ R
s×p(i−1) and W2 ∈ R

n×r are, again,
weighting matrices.

4.1. Weighted cost function for0 < ωmin < 2/τ

For the first frequency interval, we applying the shift
(2.14) to the cost function (4.4)

J(Â) =
∣

∣

∣

∣

∣

∣
W1

(

Γ̂1 − Γ̂2(Â + In)
)

W2

∣

∣

∣

∣

∣

∣

2

F
, (4.5)

We define

W1
△
= ÂTP Γ̂+

2 , W2
△
= In, (4.6)

whereΓ+
2 is the Moore-Penrose generalized inverse. Now,

(4.4) can be written as

J(F,G) =
∣

∣

∣

∣

∣

∣
F

(

Γ̂+
2 Γ̂1 − In

)

− G
∣

∣

∣

∣

∣

∣

2

F
, (4.7)

where F and G are defined in (2.17). The cost function
(4.7) and the frequency bound constraints (2.18)-(2.19)
may be implemented as a constrained linear least squares
optimization.

4.2. Weighted cost function for2/τ < ωmin < π/τ

Now define

W1
△
= P Γ̂+

2 , W2
△
= In, (4.8)

so that (4.4) can be written in terms of the constraint
parameters

J(P,R) =
∣

∣

∣

∣

∣

∣
P Γ̂+

2 Γ̂1 − R
∣

∣

∣

∣

∣

∣

2

F
, (4.9)

whereR is defined in (2.11). Equation (4.9) combined with
the frequency constraints (2.12)-(2.13) is a constrained least
square optimization, which is linear in parameters.

5. Algorithm Implementation

The constrained estimated state sequence optimization
described in Section 3 of this paper is implemented for
subspace-based identification. A variant of the N4SID
subspace algorithm presented in [11] determines system
order and the state sequence. The constrained least squares
optimization is as follows.

For ωmin such that0 < ωmin < 2/τ , we minimize

J(C,D,F,G,H) =

∣

∣

∣

∣

∣

∣

∣

∣

[

F 0
0 Im

] [

X̂k+1|k+i

Yk|k+i−1

]

−

[

G + F H
C D

] [

X̂k|k+i−1

Uk|k+i−1

]∣

∣

∣

∣

∣

∣

∣

∣

2

F

,

(5.1)

such that
[

− 1
2

(

F + FT
)

−
(

1
4 − 1

ω2

min
τ2

)

G FT

F G

]

≥ 0, (5.2)

where

G = GT ≥ δI, (5.3)

and δ > 0 is arbitrarily small. We can then solve for the
system matricesA andB from the equations

A = F−1G + In, B = F−1H. (5.4)

And for ωmin such that2/τ < ωmin < π/τ , we minimize

J(C,D,P,R, S) =

∣

∣

∣

∣

∣

∣

∣

∣

[

P 0
0 Im

] [

X̂k+1|k+i

Yk|k+i−1

]

−

[

R S
C D

] [

X̂k|k+i−1

Uk|k+i−1

]∣

∣

∣

∣

∣

∣

∣

∣

2

F

,

(5.5)

such that








−

(

1+ 4

ω
2

min
τ
2

)

(

1− 4

ω
2

min
τ
2

)

(

RT + R
)

− P RT

R P









≥ 0, (5.6)

where

P = PT ≥ δI, (5.7)

and δ > 0 is arbitrarily small. System matricesA and B
are determined by

A = P−1R, B = P−1S. (5.8)

The optimization is performed using the SeDuMi Matlab
toolbox [24]. We impose quadratic and positive semi-
definite constraints in SeDuMi by optimizing over symmet-
ric cones.

6. Example

Consider two continuous-time spring-mass-dampers act-
ing in parallel









ẋ1

ẋ2

ẋ3

ẋ4









=









0 1 0 0

− k1

m1

− c1

m1

0 0

0 0 0 1

0 0 − k2

m2

− c2

m2

















x1

x2

x2

x4









+









0
1

m1

0
1

m2









u +









0
1

m1

0
1

m2









w, (6.1)

y =
[

0 q1 0 q2

]









x1

x2

x3

x4









+ v, (6.2)

where the position of the first spring-mass-damper isx1,
its velocity is x2, the position of the second spring-mass-
damper isx3, its velocity isx4, the force input in Newtons
is u, the output isy, the plant disturbance isw, the sensor
noise isv, the masses arem1 = 2 kg andm2 = 1.2 kg, the
damping constants arec1 = 10 kg/s andc2 = 15 kg/s, the
spring constants arek1 = 104 kg/m2 andk2 = 104 kg/m2,
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Fig. 1. Bode plots for the discretized system with no plant distur-
bance noise or sensor noise. The plots of the discrete-time system, the
unconstrained identification, and the frequency constrained identification
coincide.

and the output multiplication factors areq1 = 15 andq2 =
5. With these values the modal frequencies of the system are
70.717 rad/sec and 91.2871 rad/sec. The continuous-time
system (6.1)-(6.2) is sampled with a zero-order-hold and a
sampling period of 0.005 seconds. The resulting discrete-
time state-space realization is given by

xk+1 =









0.9387 0.004836 0 0
−24.18 0.9145 0 0

0 0 0.8997 0.00468
0 0 −39 0.8412









xk

+









6.134 × 10−6

0.002418
1.003 × 10−5

0.0039









(uk + wk) , (6.3)

yk =
[

0 15 0 5
]

xk + vk. (6.4)

We identify the discrete-time system (6.3)-(6.4) using an
unconstrained subspace algorithm similar to the algorithm
presented in [11] and the constrained algorithm presented
in Section 5 withωmin = 65 rad/sec. The system is excited
with a zero-mean Gaussian white noise signal and the plant
disturbance and sensor noise are identically zero. The Bode
plots for the discrete-time system, the unconstrained model,
and the frequency constrained model are given in Figure 1.
Both the unconstrained and the constrained identifications
yield models that accurately reflect the system’s modal
frequencies.

Now, we consider the same system with plant disturbance
and sensor noise. The plant disturbance noise is modelled
by a sequence of identically distributed Gaussian random
variables with zero mean and standard deviation equal to
25% of the peak input signal. The sensor noise is defined
as

vk
△
= 0.20Nk max(yk) sin(.005k), (6.5)
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Fig. 2. Bode plots for the discretized system with non-zero plant
disturbance noise and sensor noise. Shown are plots of the discrete-
time system (solid), the unconstrained identification (dash-dotted), and the
frequency constrained identification (dashed).

where Nk a uniformly distributed random variable on
the interval (0, 1). Again, we identify the discrete-time
system (6.3)-(6.4) using the unconstrained and frequency
constrained identification algorithms. The Bode plots are
provided in Figure 2. Notably, all of the modal frequencies
identified by the unconstrained algorithm were below the
first natural frequency of the system. In Table 1, we see
that the constrained identification did indeed constrain the
modal frequency above 65 rad/sec.

TABLE I

MODAL FREQUENCIES(RAD/SEC)

Discrete-time Unconstrained Constrained
System (6.3)-(6.4) Identification Identification

70.7107 19.5647 73.0924
70.7107 53.8182 73.0924
91.2871 63.7156 628.8218
91.2871 63.7156 646.4980

7. Conclusions

In this paper, we presented a subspace method for identi-
fying linear models with a lower bound on modal frequency.
We presented a theorem for bounding the eigenvalues of
a matrix outside of a ball of arbitrary radius and used the
theorem to develop linear matrix inequalities that are equiv-
alent to frequency constraints on a discrete-time system.
The inequalities were implemented as convex constraints in
a weighted least squares optimization.
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