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Abstract— This paper shows that the transfer function of
a continuous-time positive real system with first-order-hold
sampling is discrete-time positive real. Next, a method for
identifying models that are constrained to be discrete-time
positive real is developed.

1. Introduction

Positive real transfer functions are of practical impor-
tance, arising in many engineering applications [1–3]. With
force input and velocity output, the classic mechanical
spring-mass-damper system is passive, meaning it dissipates
energy. In addition, the system is linear, so its transfer
function is positive real. In passive circuit theory, the driving
point admittance and impedance are described by positive
real transfer functions. In control theory, positive real trans-
fer functions are useful for guaranteeing stability. Thus,
when a system is known to be positive real, it is desirable to
ensure that identified models retain that characteristic even
when, for example, identification data are noisy. We are
therefore motivated to develop an identification procedure
for positive real models. This paper presents a method
for obtaining positive real models using subspace system
identification and convex optimization.

Previous work on obtaining positive real models includes
[4], in which the problem of obtaining a positive real
model is considered when the linear system is known to
be positive real. Suboptimal methods are applied after an
initial identification procedure. An alternative approachwas
presented in [5] where a regularization term is added to the
least squares cost function used in subspace identification.
Given the appropriate choice of regularization terms the
authors are able to impose positive realness on an identified
model.

Conventional zero-order-hold sampling techniques do
not, in general, preserve positive realness [6]. In this paper
we show that first-order-hold sampling preserves positive
realness. We can therefore apply the positive real identi-
fication technique of this paper to sampled-data systems
whose continuous-time dynamics are known to be positive
real and are sampled with a first-order-hold.

In the present paper, positive realness is incorporated
into the identification process by means of constrained
optimization. We identify a positive real system, which
is optimal in the sense of a weighted least squares cost
function, replacing the conventional least squares cost func-
tion of the unconstrained subspace algorithm. This paper

presents a subspace-based identification procedure where
the model set is characterized by the Kalman-Yacubovich-
Popov lemma. The constrained optimization is achieved
through convex linear programming techniques where we
optimize over a symmetric cone.

Linear system identification includes both parametric and
nonparametric methods in both the frequency and the time
domain [7]. More recently, subspace identification methods
have been developed for identifying linear systems [8–11].
Unlike traditional parametric methods, subspace algorithms
rely on an estimated state sequence or extended observabil-
ity matrix to identify system parameters. The advantages
of subspace algorithms are covered in detail in the above
references.

Subspace identification methods have been extended to
identifying stable models [12–15]. In [14], stable models
were identified using a constrained least squares optimiza-
tion. A related method is developed in the present paper for
identifying positive real systems.

2. Discrete-Time Positive Real Systems

In this section, we define discrete-time positive real and
strictly positive real transfer functions and state the Kalman-
Yacubovich-Popov (KYP) conditions as linear matrix in-
equalities.

Definition 2.1. [16] A square transfer matrixG(z), with
no poles in|z| > 1 and simple poles on|z| = 1 is discrete-
time positive real if, for allω such thatG(ejω) exists,

G(ejω) + GT(e−jω) ≥ 0. (2.1)

Definition 2.2. A square transfer matrixG(z), with no
poles in|z| ≥ 1 is discrete-time strictly positive real if there
existsε > 0 such that, for allω such thatG(ejω−ε) exists,

G(ejω−ε) + GT(e−jω−ε) ≥ 0. (2.2)

Definition 2.2 is the discrete-time analogue of the
continuous-time strictly positive real definition presented in
[17].

Lemma 2.1. [16](KYP) LetG(z) be a square matrix of
real rational functions ofz, and let (A,B,C,D) be a minimal
realization ofG(z). ThenG(z) is discrete-time positive real
if and only if there exists a positive-definite matrixP ∈



R
n×n and matricesL ∈ R

m×n and W ∈ R
m×m such that

P − ATPA = LTL, (2.3)

CT − ATPB = LTW, (2.4)

DT + D − BTPB = WTW. (2.5)

It follows from equation (2.5) that if a system is discrete-
time positive real then it has a non-zero feedthrough term.
We will return to this fact in Section 4 when examining
zero-order-hold discretizations.

Lemma 2.2. LetG(z) be a square matrix of real rational
functions ofz, and let (A,B,C,D) be a minimal realization
of G(z). ThenG(z) is discrete-time strictly positive real if
and only if there exists a positive-definite matrixP ∈ R

n×n,
matricesL ∈ R

m×n andW ∈ R
m×m, andδ > 0 such that

P − δP − ATPA = LTL, (2.6)

CT − ATPB = LTW, (2.7)

DT + D − BTPB = WTW. (2.8)

Proof. Assume thatG(z), realized by(A,B,C,D), is
discrete-time strictly positive real. Then

G(ejω−ε) = C(ejω−εI − A)−1B + D, (2.9)

which is equivalent to

Gε(e
jω) = Cε(e

jωI − Aε)
−1Bε + Dε, (2.10)

whereGε(e
jω)

△
= G(ejω−ε), Aε

△
= eεA, Bε

△
= eεB, Cε

△
=

C, andDε
△
= D. By Definition 2.1,Gε(z) is positive real

and Lemma 2.1 implies that there existPε, L, andW such
that Pε − AT

ε PεAε = LTL, (2.11)

CT
ε − AT

ε PεBε = LTW, (2.12)

DT
ε + Dε − BT

ε PεBε = WTW. (2.13)

Equations (2.11)-(2.13) are equivalent to

P − δP − ATPA = LTL, (2.14)

CT − ATPB = LTW, (2.15)

DT + D − BTPB = WTW, (2.16)

whereP
△
= e2εPε, andδ

△
= 1−e−2ε < 1. Note thatδ > 0 if

and only if ε > 0. The converse result follows by reversing
these steps.

We now express the positive real matrix conditions of
Lemma 2.1 as a convex constraint for a least squares
optimization in a subspace identification. Equations (2.3)-
(2.5) are equivalent to the inequality

[

P CT

C DT + D

]

−
[

AT

BT

]

P
[

A B
]

≥ 0, (2.17)

or, using Schur complements, to




[

P CT

C DT + D

] [

AT

BT

]

P

P
[

A B
]

P



 ≥ 0. (2.18)

Since (2.18) involves the quadratic termsPA andPB, we
define R

△
= PA, S

△
= PB, (2.19)

and rewrite (2.18) as




P CT RT

C DT + D ST

R S P



 ≥ 0, (2.20)

where P = PT > 0. (2.21)

The conditions (2.19)-(2.21) are equivalent to the positive
real matrix conditions (2.3)-(2.5). Similarly, it can be shown
that the strictly positive real matrix conditions of Lemma
2.2 are equivalent to (2.19), (2.21), and





(1 − δ)P CT RT

C DT + D ST

R S P



 ≥ 0, (2.22)

whereδ > 0.

3. The Bilinear Transform and Positive Real Systems

In this section, we state the continuous-time positive real
definition and associated KYP conditions. We then consider
the effect of the bilinear transform in transforming a positive
real system between continuous time and discrete time.

Definition 3.1. [16] A square matrixG(s) of real-
rational functions, with no poles in Re(s) > 0 and only
simple poles on Re(s) = 0, is continuous-time positive real
if, for all ω such thatG(jω) exists,

G(jω) + GT(−jω) ≥ 0. (3.1)

Lemma 3.1. [16](KYP) LetG(s) be a square matrix of
real rational functions ofs, and let (A,B,C,D) be a minimal
realization ofG(s). ThenG(s) is continuous-time positive
real if and only if there exists a positive definite matrix
P ∈ R

n×n and matricesL ∈ R
m×n andW ∈ R

m×m such
that −PA − ATP = LTL, (3.2)

CT − PB = LTW, (3.3)

DT + D = WTW. (3.4)

In [16], the discrete-time KYP lemma is proven from the
continuous-time KYP lemma using the bilinear transform.
Therefore, the bilinear transformation preserves positive re-
alness between continuous-time and discrete-time systems.

Proposition 3.1. The square matrixGc(s) is continuous-
time positive real if and only if the square matrixGd(z) is
discrete-time positive real whereGc(s) is mapped toGd(z)
using the bilinear transform

s =
2

τ

z − 1

z + 1
, (3.5)

whereτ is the period of the discrete-time system.

Although the bilinear transform provides a one-to-one
and onto mapping from the set of continuous-time positive
real transfer functions to the set of discrete-time positive real



transfer functions, it is not hardware realizable. Therefore,
we consider sample and hold methods, and their effect on
positive realness in the next two sections.

4. Zero-Order-Hold Discretization of Continuous-Time
Positive Real Systems

In this section, we examine the effects on positive real-
ness of zero-order-hold sampling. For the continuous-time
transfer functionGc(s), the discrete-time zero-order-hold
equivalent is given by

Gd(z) =
z − 1

z
Z

{

1

s
Gc(s)

}

, (4.1)

whereZ{·} is the z-transform of a sampled signal. For a
precise definition of theZ{·} operator see [18].

Consider the continuous-time positive real transfer func-
tion Gc(s), with minimal realization(Ac, Bc, Cc, 0). The
zero-order-hold equivalent isGd(z), realized by

Ad = eAcτ , Bd = A−1
c (eAcτ − I)Bc, (4.2)

Cd = Cc, Dd = 0, (4.3)

where τ is the sampling period. From Lemma 2.1, we
recognize that a discrete-time system can be positive real
only if it has a non-zero feedthrough term, meaning it is
exactly proper. The discrete-time system realization given
by (4.2)-(4.3) has a zero feedthrough term and thus cannot
be positive real.

The following result classifies functions that can be made
positive real by an additive feedthrough term when sampled
using a zero-order-hold.

Proposition 4.1. LetGc(s) be a continuous-time transfer
function and letGd(z) be the zero-order-hold discrete-time
equivalent. If Gc(s) is asymptotically stable, then there
existsβ ∈ R, such that for allDd +DT

d ≥ βI, Gd(z)+Dd

is discrete-time positive real.

Proof. Assume thatGc(s) is asymptotically stable. The
zero-order-hold equivalentGd(z) is also asymptotically
stable. Therefore, there exists aβ ∈ R such that

Gd(e
jω) + GT

d (e−jω) ≥ −βI, (4.4)

for all ω. The inequality (4.4) implies that

[

Gd(e
jω) + Dd

]

+
[

GT
d (e−jω) + DT

d

]

≥ Dd + DT
d − βI.

(4.5)

ChoosingDd + DT
d ≥ βI implies that Gd(z) + Dd is

discrete-time positive real.

In [6] a similar result is presented for the single-input
single-output (SISO) case.

5. First-Order-Hold Discretization of Continuous-Time
Positive Real Systems

Since the zero-order-hold does not generally preserve
positive realness, we examine the effect on positive realness
of using first-order-hold sampling. The main result of this
section states that the first-order-hold discretization pre-
serves positive realness even if the continuous-time system
is strictly proper.

Theorem 5.1. Let Gc(s) be a continuous-time transfer
function and assume thatGc(s) is discretized by a first-
order-hold with sampling periodτ . The discrete-time trans-
fer function is given by

Gd(z) =
(z − 1)2

τz
Z

{

1

s2
Gc(s)

}

. (5.1)

If Gc(s) is continuous-time positive real thenGd(s) is
discrete-time positive real.

Proof. Assume that Gc(s) is continuous-time posi-
tive real with the minimal realization(Ac, Bc, Cc,Dc).
Let Gd(z) be the discrete-time equivalent ofGc(s)
obtained from the first-order-hold mapping (5.1). Let
(Ad, Bd, Cd,Dd) be a minimal realization ofGd(z). A
state-space formulation of the first-order hold discretization
is given by [18]

Ad
△
= Θ1, Bd

△
= Θ1Θ3 + Θ2 − Θ3, (5.2)

Cd
△
= Cc, Dd

△
= Dc + CcΘ3, (5.3)

where Θ1 ∈ R
n×n, Θ2 ∈ R

n×m, and Θ3 ∈ R
n×m are

given by Θ1 = eτAc , (5.4)

Θ2 = A−1
c (eτAc − I)Bc, (5.5)

Θ3 =
1

τ
A−2

c (eτAc − I)Bc − A−1
c Bc. (5.6)

For convenience, we assume thatAc is nonsingular. The
singular case can be proven using the Moore-Penrose gen-
eralized inverse. By combining (5.2)-(5.3) with (5.4)-(5.6),
the matrix transformations are

Ad = eτAc , (5.7)

Bd =
1

τ
A−2

c (eτAc − I)2Bc, (5.8)

Cd = Cc, (5.9)

Dd = Dc + Cc

[

1

τ
A−2

c (eτAc − I) − A−1
c

]

Bc. (5.10)

Since Gc(s) is continuous-time positive real, Lemma 3.1
yields

[

−AT
c Pc − PcAc CT

c − PcBc

Cc − BT
c Pc DT

c + Dc

]

≥ 0, (5.11)

wherePc = PT
c > 0. Inequality (5.11) implies

ΛT(t)

[

−AT
c Pc − PcAc CT

c − PcBc

Cc − BT
c Pc DT

c + Dc

]

Λ(t) ≥ 0,

(5.12)



where

Λ(t)
△
=

[

etAc −τAc(Ad − I)−2Bd

0 I

]

, (5.13)

where t is a variable to be used for integration. Through
substitution of the identities (5.7)-(5.10), the inequality
(5.12) becomes

[

H11(t) H12(t)
HT

12(t) H22(t)

]

≥ 0, (5.14)

for all t such that0 ≤ t ≤ τ , where

H11(t)
△
=etAT

c

[

−AT
c Pc − PcAc

]

etAc , (5.15)

H12(t)
△
=etAT

c

[

CT
d + τAT

c PcAc(Ad − I)−2Bd

]

, (5.16)

H22(t)
△
=DT

d + Dd − BT
d (Ad − I)−TCT

d

− Cd(Ad − I)−1Bd

+ τ2BT
d (Ad − I)−2TAT

c PcA
2
c(Ad − I)−2Bd

+ τ2BT
d (Ad − I)−2TA2T

c PcAc(Ad − I)−2Bd.
(5.17)

Taking the integral of (5.14) overt from 0 to τ yields
∫ τ

0

[

H11(t) H12(t)
HT

12(t) H22(t)

]

dt =

[

Ω11 Ω12

ΩT
12 Ω22

]

≥ 0,

(5.18)

where

Ω11

△
=Pc − AT

d PcAd, (5.19)

Ω12

△
=A−T

c (Ad − I)T
[

CT
d + τAT

c PcAc(Ad − I)−2Bd

]

,
(5.20)

Ω22

△
=τ [DT

d − BT
d (Ad − I)−TCT

d ]

+ τ3BT
d (Ad − I)−2TA2T

c PcAc(Ad − I)−2Bd

+ τ [Dd − Cd(Ad − I)−1Bd]

+ τ3BT
d (Ad − I)−2TAT

c PcA
2
c(Ad − I)−2Bd.

(5.21)

Expressions (5.18)-(5.21) imply

ΣT

[

Ω11 Ω12

ΩT
12 Ω22

]

Σ ≥ 0, (5.22)

where

Σ
△
=

[ √
τAc(Ad − I)−1

√
τAc(Ad − I)−2Bd

0 1√
τ
I

]

,

(5.23)

which is equivalent to
[

Pc − AT
d PdAd CT

d − AT
d PdBd

Cd − BT
d PdAd Dd + DT

d − BT
d PdBd − Φ

]

≥ 0,

(5.24)

where

Pd
△
=τ(Ad − I)−TAT

c PcAc(Ad − I)−1, (5.25)

Φ
△
= − τ2BT

d (Ad − I)−TAT
c Pd(Ad − I)−1Bd

− τ2BT
d (Ad − I)−TPdAc(Ad − I)−1Bd. (5.26)

Therefore, to prove thatGc(z) is discrete-time positive real,
it is sufficient to show thatΦ is positive semi-definite.

Next, we factor (5.26) as

Φ =
[√

τ3Ac(Ad − I)−2Bd

]T
[

−AT
c Pc − PcAc

]

×
[√

τ3Ac(Ad − I)−2Bd

]

. (5.27)

Since−AT
c Pc−PcAc ≥ 0, it follows thatΦ ≥ 0. Therefore,

(5.24) yields
[

Pd − AT
d PdAd CT

d − AT
d PdBd

Cd − BT
d PdAd Dd + DT

d − BT
d PdBd

]

≥ 0, (5.28)

wherePd = PT
d > 0. Using Lemma 2.1, equation (5.28)

implies thatGd(z) is discrete-time positive real.

6. Least Squares Optimization

In this section, we develop weighted least squares op-
timization problems for both the state sequence and the
extended observability matrix subspace identification tech-
niques.

Consider the discrete-time, linear time-invariant system

xk+1 = Axk + Buk, (6.1)

yk = Cxk + Duk, (6.2)

where xk ∈ R
n, uk ∈ R

m, yk ∈ R
m, A ∈ R

n×n, B ∈
R

n×m, C ∈ R
m×n, and D ∈ R

m×m. To describei time
steps of the input signal and output signal, we define

Uk|k+i−1

△
=

[

uk uk+1 · · · uk+i−1

]

, (6.3)

Yk|k+i−1

△
=

[

yk yk+1 · · · yk+i−1

]

, (6.4)

whereUk|k+i−1 ∈ R
m×i andYk|k+i−1 ∈ R

m×i.
The objective of time domain system identification is to

estimate the coefficient matrices of (6.1) and (6.2) from the
input dataUk|k+i−1 and the output dataYk|k+i−1.

6.1. Least squares optimization using an estimated state
sequence

We now formulate the constrained optimization problem
for a state sequence estimation subspace technique. Using a
subspace algorithm, such as CVA or N4SID, that provides
state estimates, we obtain the sequences

X̂k|k+i−1

△
=

[

x̂k x̂k+1 · · · x̂k+i−1

]

, (6.5)

X̂k+1|k+i
△
=

[

x̂k+1 x̂k+2 · · · x̂k+i

]

, (6.6)

where X̂k|k+i−1 ∈ R
n×i and X̂k+1|k+i ∈ R

n×i. The
identification problem now becomes a linear least squares
problem. Estimates of the coefficient matrices are obtained
by minimizing

J(A,B,C,D)
△
=

∣

∣

∣

∣

∣

∣

∣

∣

W1

([

X̂k+1|k+i

Yk|k+i−1

]

−
[

A B
C D

] [

X̂k|k+i−1

Uk|k+i−1

])

W2

∣

∣

∣

∣

∣

∣

∣

∣

2

F

,

(6.7)



whereW1 ∈ R
s×n+m and W2 ∈ R

i×r are weighting ma-
trices. To impose the discrete-time positive real constraints
(2.19)-(2.21) on the cost function (6.7), we define

W1

△
=

[

P 0
0 Im

]

, W2

△
= Ii, (6.8)

so that (6.7) becomes

J(C,D,P,R, S)
△
=

∣

∣

∣

∣

∣

∣

∣

∣

[

P 0
0 Im

] [

X̂k+1|k+i

Yk|k+i−1

]

−
[

R S
C D

] [

X̂k|k+i−1

Uk|k+i−1

]∣

∣

∣

∣

∣

∣

∣

∣

2

F

.

(6.9)

Equation (6.9) and the discrete-time positive real constraints
(2.19)-(2.21) constitute a constrained least square optimiza-
tion, which is linear in parameters. We relax constraint
(2.21) to P = PT ≥ σI, (6.10)

whereσ > 0 is arbitrarily small so that the optimization is
convex.

6.2. Least squares optimization using an estimated ex-
tended observability matrix

Now, a constrained optimization is formulated for an esti-
mated extended observability matrix subspace method. The
MOESP algorithm and an N4SID variant are two common
estimated observability matrix based subspace methods [10,
11]. We define the extended observability matrix

Γ
△
=











C
CA

...
CAi−1











, (6.11)

and the lower triangular block Toeplitz matrix of impulse
responses

Φ
△
=











D 0 . . . 0
CB D . . . 0

...
...

.. .
...

CAi−2B CAi−3B . . . D











. (6.12)

Using an extended observability matrix subspace routine
we obtain an estimate of (6.11), designatedΓ̂. A technique
described in [10, 11] is used to obtain an estimate of (6.12),
designated̂Φ.

The data matriceŝΓ and Φ̂ are used to write a least
squares optimization. Using Matlab notation, we define the
matrices

Γ̂0

△
= Γ̂(1 : m, 1 : n), Φ̂0

△
= Φ̂(1 : m, 1 : m). (6.13)

We also define the block vectors

Γ̂1

△
= Γ̂(m + 1 : mi, 1 : n), (6.14)

Γ̂2

△
= Γ̂(1 : m(i − 1), 1 : n), (6.15)

Φ̂1

△
= Φ̂(m + 1 : mi, 1 : m). (6.16)

The identification problem may now be presented as a least
squares optimization, with the cost function,

J(A,B,C,D)
△
=

∣

∣

∣

∣

∣

∣

∣

∣

W1

([

Γ̂1 Φ̂1

Γ̂0 Φ̂0

]

−
[

Γ̂2 0
0 Im

] [

A B
C D

])

W2

∣

∣

∣

∣

∣

∣

∣

∣

2

F

,

(6.17)

where W1 ∈ R
s×mi and W2 ∈ R

n+m×r are, again,
weighting matrices.

To impose the positive real constraint, we define

W1

△
=

[

P Γ̂+
2 0

0 Im

]

, W2

△
= In+m, (6.18)

where Γ̂+
2 is the Moore-Penrose generalized inverse. The

minimization problem can now be written

J(C,D,P,R, S)
△
=

∣

∣

∣

∣

∣

∣

∣

∣

[

P Γ̂+
2 Γ̂1 P Γ̂+

2 Φ̂1

Γ̂0 Φ̂0

]

−
[

R S
C D

]∣

∣

∣

∣

∣

∣

∣

∣

2

F

. (6.19)

Again, we have delineated a constrained least square prob-
lem that is linear in optimization parameters. The solution
is obtained by minimizing (6.19) such that (2.19)-(2.20) and
(6.10) are satisfied.

7. Algorithm Implementation

The constrained subspace identification described in this
paper is implemented in Matlab version 6.5. To determine
system order and the state sequence, we use a variant
of the N4SID subspace algorithm, presented in [9]. The
algorithm uses the computationally efficient singular value
decomposition and “Q-less” QR factorization. For imple-
mentation, we use the estimated state sequence optimization
described in Section 4.1. The constrained least squares
optimization problem is to minimize (6.9) subject to (2.19)
whereP = PT ≥ σI and σ > 0 is arbitrarily small. The
system matricesA and B are determined byA = P−1R
andB = P−1S.

The optimization is performed using the SeDuMi Matlab
toolbox [19]. SeDuMi solves linear programming problems
over symmetric cones, allowing us to impose quadratic and
positive semi-definite constraints.

8. Examples

Consider the continuous time spring-mass-damper
[

ẋ1

ẋ2

]

=

[

0 1
− k

m
− c

m

] [

x1

x2

]

+

[

0
1

m

]

u +

[

0
1

m

]

w,

(8.1)

y =
[

0 b
]

[

x1

x2

]

+ v, (8.2)

where the position isx1, the velocity isx2, the force input
in Newtons isu, the scaled velocity output isy, the plant
disturbance isw, the sensor noise isv, the mass ism = 7
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Fig. 1. Nyquist and Bode plots for the discretized spring-mass-damper
system with no plant disturbance or sensor noise. The plots of the
discrete-time system , the unconstrained identification, and the positive
real constrained identification coincide.

kg, the damping isc = 36 kg/s, the stiffness isk = 1087
kg/m2, and the output multiplication factor isb = 23. Since
the input is force and the output is a scaled velocity, the
continuous-time transfer function is positive real.

The continuous-time system (8.1)-(8.2) is discretized
with a sample time of 0.01 seconds using a first-order-hold.
The discrete-time state space realization is

xk+1 =

[

0.99 0.0097
−1.5 0.94

]

xk +

[

1.4 × 10−5

0.0013

]

(uk + wk),

(8.3)

yk =
[

0 23
]

xk + 0.01613uk + 0.01613wk + vk.
(8.4)

Theorem 5.1 implies that (8.3)-(8.4) is discrete-time positive
real.

We identify the discrete-time spring-mass-damper system
using an unconstrained algorithm similar to the one pre-
sented in [9] and using the constrained algorithm presented
in Section 7. We consider the system (8.3)-(8.4) both
with and without plant disturbance and sensor noise. First,
consider the system (8.3)-(8.4) excited by a zero mean
Gaussian white noise signal with the plant disturbance and
sensor noise identically equal to zero. The Nyquist and
Bode plots are given in Figure 1. We see that the discretized
system, unconstrained model, and constrained model are all
positive real.

Now, system (8.3)-(8.4) is excited with the same input
signal, but non-zero plant disturbance and sensor noise.
The plant disturbance and sensor noise are modelled by
zero mean Gaussian white random processes with standard
deviations equal to10% of the peak input and output
signals, respectively. The Nyquist and Bode plots are given
in Figure 2. The discretized system is positive real, and only
the constrained algorithm identifies a positive real model.

9. Conclusions

In this paper, we presented a subspace method for iden-
tifying linear models that are guaranteed to be positive real.
We expressed the discrete-time Kalman-Yacubovich-Popov
matrix conditions as a linear matrix inequality. Notably, we
provided a proof that first-order-hold sampling preserves
positive realness.
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Fig. 2. Nyquist and Bode plots for the discretized spring-mass-damper
system with Gaussian white plant disturbance noise and sensor noise.
Shown are plots of the discrete-time system (solid), the unconstrained
identification (dash-dotted), and the positive real constrained identification
(dashed).
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