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Abstract— This paper shows that the transfer function of presents a subspace-based identification procedure where
a continuous-time positive real system with first-order-hold  the model set is characterized by the Kalman-Yacubovich-
sampling is discrete-time positive real. Next, a method for  po,6y |emma. The constrained optimization is achieved
identifying models that are constrained to be discrete-time . . .
positive real is developed. thrqugh convex linear programming technigues where we

_ optimize over a symmetric cone.
1. Introduction Linear system identification includes both parametric and

Positive real transfer functions are of practical impornonparametric methods in both the frequency and the time
tance, arising in many engineering applications [1-3].HWitdomain [7]. More recently, subspace identification methods
force input and velocity output, the classic mechanicdhave been developed for identifying linear systems [8-11].
spring-mass-damper system is passive, meaning it dissipatUnlike traditional parametric methods, subspace algarith
energy. In addition, the system is linear, so its transfaely on an estimated state sequence or extended observabil-
function is positive real. In passive circuit theory, thesthg ity matrix to identify system parameters. The advantages
point admittance and impedance are described by positie¢é subspace algorithms are covered in detail in the above
real transfer functions. In control theory, positive reahis-  references.
fer functions are useful for guaranteeing stability. Thus, Subspace identification methods have been extended to
when a system is known to be positive real, it is desirable tidentifying stable models [12-15]. In [14], stable models
ensure that identified models retain that characterisién evwere identified using a constrained least squares optimiza-
when, for example, identification data are noisy. We argon. A related method is developed in the present paper for
therefore motivated to develop an identification procedurielentifying positive real systems.
for positive real models. This paper presents a method
for obtaining positive real models using subspace system 2. Discrete-Time Positive Real Systems
identification and convex optimization. . . . . . .

Previous work on obtaining positive real models includes !N this section, we define discrete-time positive real and
[4], in which the problem of obtaining a positive rea|str|ctly positive real transfer functions and state therkah-

model is considered when the linear system is known t§2cubovich-Popov (KYP) conditions as linear matrix in-
be positive real. Suboptimal methods are applied after dfflualities.

initial identification procedure. An alternative approaeés Definition 2.1. [16] A square transfer matrig(z), with
presented in [5] where a regularization term is added to thg poles injz| > 1 and simple poles ofx| = 1 is discrete-

least squares cost function used in subspace identificatiqine positive real if, for allw such thatG(e/+) exists,
Given the appropriate choice of regularization terms the

authors are able to impose positive realness on an identified G(e) + GT(e7*) > 0. (2.1)
model.

Conventional zero-order-hold sampling techniques do Definition 2.2. A square transfer matrixz(z), with no
not, in general, preserve positive realness [6]. In thisspapPoles in|z| > 1 is discrete-time strictly positive real if there
we show that first-order-hold sampling preserves positiveXistse > 0 such that, for allw such thatG(e’“~°) exists,
realness. We can therefore apply the positive real identi- e e
fication technique of this paper to sampled-data systems G5 + GT(e7797%) 2 0. (2.2)
whose continuous-time dynamics are known to be positive
real and are sampled with a first-order-hold.

In the present paper, positive realness is incorporat
into the identification process by means of constraine
optimization. We identify a positive real system, which Lemma 2.1. [16](KYP) LetG(z) be a square matrix of
is optimal in the sense of a weighted least squares ca®tal rational functions of, and let (A,B,C,D) be a minimal
function, replacing the conventional least squares cost-fu realization ofG(z). ThenG(z) is discrete-time positive real
tion of the unconstrained subspace algorithm. This papédrand only if there exists a positive-definite matifx
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Definition 2.2 is the discrete-time analogue of the
continuous-time strictly positive real definition preshin
7].



R™ ™ and matricesL € R™*™ and W € R™*™ such that Since (2.18) involves the quadratic terf*sl and PB, we

1 A A
P_ATPA=LTL, 23 9€ine  RZLpy S £ PB, (2.19)
CT —ATPB =LTW, (2.4) and rewrite (2.18) as
DY+ D-BTPB=wTwW. (2.5) P cT RT
c DT+D ST | >0, (2.20)

It follows from equation (2.5) that if a system is discrete-
time positive real then it has a non-zero feedthrough term.
We will return to this fact in Section 4 when examiningwhere
zero-order-hold discretizations.

R S P
P=PT>0. (2.21)

The conditions (2.19)-(2.21) are equivalent to the positiv
real matrix conditions (2.3)-(2.5). Similarly, it can beogin
that the strictly positive real matrix conditions of Lemma
2.2 are equivalent to (2.19), (2.21), and

Lemma 2.2. Let G(z) be a square matrix of real rational
functions ofz, and let (A,B,C,D) be a minimal realization
of G(z). ThenG(z) is discrete-time strictly positive real if
and only if there exists a positive-definite matfixc R™*",

matricesL € R™*" and W € R™*™, andé§ > 0 such that (1-9)P ct R"
C DT+D ST [ >0 2.22
P—6P—ATPA=L"L, (2.6) b P e (2.22)
T 4T _ 7T
¢ A PB=L"W, 2.7) whered > 0.
DT +D-BTPB=wWTW. (2.8)

3. The Bilinear Transform and Positive Real Systems

In this section, we state the continuous-time positive real
definition and associated KYP conditions. We then consider
G %) =C(e/* I - A)'B+ D, (2.9) the effect of the bilinear transform in transforming a piosit
real system between continuous time and discrete time.

Proof. Assume thatG(z), realized by(A, B,C, D), is
discrete-time strictly positive real. Then

which is equivalent to

oy iw . Definition 3.1. [16] A square matrixG(s) of real-
Ge(e?) = Ce(e’] — Ae) ™" Be + D, (210)  rational functions, with no poles in R® > 0 and only
simple poles on Re) = 0, is continuous-time positive real

Jw é jw—e é € é € é
whereGe(e’”) = G(e ), Ae = " A, B: = ¢°B, Ce if, for all w such thatG(jw) exists,

C, and D, 2 D. By Definition 2.1,G.(z) is positive real

and Lemma 2.1 implies that there exft, L, andW such G(jw) + G (—jw) > 0. (3.1)
that P.—ATP.A. =L"L, (2.11) Lemma 3.1. [16](KYP) LetG(s) be a square matrix of
cr —ATpP.B. = L"W, (2.12) rea: rational Iun(ct)ioni of, a(m)d let (A,B,C,D) be a minimal
T _ pT T realization of G(s). ThenG(s) is continuous-time positive
De +D. - B. BB = W™ W. (213) real if and only if there exists a positive definite matrix
Equations (2.11)-(2.13) are equivalent to P e R and matricesL € R™*"™ and W € R™*"™ such
P—6P—ATPA=LTL, (2.14) e —PA-ATP=1L"L, (3.2)
CT — ATPB = LW, (2.15) Ct—PB=L"W, (3.3)
DT+ D - BTPB=wWTW, (2.16) D'+ D=w"W. (3.4)

In [16], the discrete-time KYP lemma is proven from the
continuous-time KYP lemma using the bilinear transform.
Therefore, the bilinear transformation preserves pasitd+
alness between continuous-time and discrete-time systems
We now express the positive real matrix conditions of

: Proposition 3.1. The square matrixi.(s) is continuous-
Lemma 2.1 as a convex constraint for a least squar?s - . . -
Ime positive real if and only if the square matii;(z) is

optimization i_n a subspace_ identif_ication. Equations 62'3)discrete-time positive real wher@, () is mapped ta7, (=)
(2.5) are equivalent to the inequality using the bilinear transform ’

whereP 2 ¢2P., ands £ 1—e~2 < 1. Note thats > 0 if
and only ife > 0. The converse result follows by reversing
these steps.

P o AT
_ 2z—1
[C DT+D} {BT]P[A B1>0, (2.17) o2l 5)
or, using Schur complements, to wherer is the period of the discrete-time system.
p ct AT P Although the bilinear transform provides a one-to-one
C DT+ D BT >0 2.18 i ; i it
+ =Y (2.18)  and onto mapping from the set of continuous-time positive
P [ A B ] P real transfer functions to the set of discrete-time positeal
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transfer functions, it is not hardware realizable. Themfo 5. First-Order-Hold Discretization of Continuous-Time
we consider sample and hold methods, and their effect on Positive Real Systems

positive realness in the next two sections. Since the zero-order-hold does not generally preserve
positive realness, we examine the effect on positive realne
4. Zero-Order-Hold Discretization of Continuous-Time  Of using first-order-hold sampling. The main result of this
Positive Real Systems section states that the first-order-hold discretizatioa- pr
serves positive realness even if the continuous-time syste
In this section, we examine the effects on positive reals strictly proper.
ness of zero-order-hold sampling. For the continuous-time
transfer functionG.(s), the discrete-time zero-order-hold
equivalent is given by

Theorem 5.1. Let G.(s) be a continuous-time transfer
function and assume tha¥.(s) is discretized by a first-
order-hold with sampling period. The discrete-time trans-
1 fer function is given by

e FC) SRS S LTS

Gq(2) S—zGc(s)

4 G.(s) is continuous-time positive real the@,(s) is
Cc_iiscrete-time positive real.

(5.1)

TZ
where Z{-} is the z-transform of a sampled signal. For

precise definition of th&{-} operator see [18].

Consider the continuous-time positive real transfer fun
tion G.(s), with minimal realization(4., B., C.,0). The Proof. Assume thatG.(s) is continuous-time posi-
zero-order-hold equivalent i§,(z), realized by tive real with the minimal realization 4., B., C., D..).

Let G4(z) be the discrete-time equivalent off.(s)
Ag = eleT, By = A7Y(eA™ — I)B., (4.2) obtained from the first-order-hold mapping (5.1). Let
Cy=C,, Dy =0, (4.3) (A4, B4, Cq,Dg4) be a minimal realization ofG,(z). A
state-space formulation of the first-order hold discreitira
where 7 is the sampling period. From Lemma 2.1, welS given by [18]
recognize that a discrete-time system can be positive real 4,20
. . L. d =Y,
only if it has a non-zero feedthrough term, meaning it is N N
exactly proper. The discrete-time system realization rgive Cy=C,, Dg=D.+ C.0O3, (5.3)

by (4.2_)-_(4.3) has a zero feedthrough term and thus Cannv%ere 0, € R™", ©, ¢ R™™ and©; € R™™ are
be positive real.

By2©,0;5+0, 65, (5.2)

The following result classifies functions that can be madg " by @, =4, (5.4)
positive real by an additive feedthrough term when sampled 0y = A1 (e — I)B,, (5.5)
using a zero-order-hold. I .

O3 =—-A_“(e""* —I)B. — A_ " B.. (5.6)

Proposition 4.1. Let G.(s) be a continuous-time transfer T

function and letGy(z) be the zero-order-hold discrete-time FOr convenience, we assume that is nonsingular. The
equivalent. If G.(s) is asymptotically stable, then there Singular case can be proven using the Moore-Penrose gen-
existsg € R, such that for allD,+ DT > BI, G4(z) + Dy eralized inverse. By combining (5.2)-(5.3) with (5.4)6%.

is discrete-time positive real. the matrix transformations are
TA.

Proof. Assume thaiG.(s) is asymptotically stable. The ~— Aa =€, (5.7)
zero-order-hold equivalen(_?d(z) is also asymptotically By = lA;2(eTAC — 1B, (5.8)
stable. Therefore, there existsdac R such that T

Cq = C,, (5.9)
Ga(e’) +Gg(e™?) = =PI, (4.4)

c

Dyg=D.+C, [lAgQ(e““c —1)— A‘l} B.. (5.10)
T

for all w. The inequality (4.4) implies that . . . . ..

v quality (4.4) imp Since G.(s) is continuous-time positive real, Lemma 3.1
[Ga(e) + Dy + [G (™) + D] > Dy + D} — BI. yields

(4.5) ~-ATP. - P.A. CF-P.B.

.~ prp. bryp, |20 (5.11)

Choosing D, + DY > I implies that G4(z) + Dy is . -

discrete-?img posi?ive regl. P al?) d o WhereP. = P > 0. Inequality (5.11) implies

AT ) { —ACTPC — P.A. C;f — P.B,

In [6] a similar result is presented for the single-input Ce— BIP: D! + D.
single-output (SISO) case. (5.12)
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A |: etAe 7TAC(Ad7])72Bd :l

0 . (5.13)

wheret is a variable to be used for integration. Through
substitution of the identities (5.7)-(5.10), the ineqtali

(5.12) becomes
Hyo(t)

Hiyy (¢)
>0 5.14
[ HL,(0) Haa(t) | =% (>-14)
for all ¢ such thatd < ¢ < 7, where
Hyy(t) 248 [—ATP. — PA. e, (5.15)

Hya(t) 248 [CF + AT P AL(Ag — 1) *By], (5.16)
Hays(t) DY + Dy — BT (Ag — I)~TCT
— Cy(Ag —I)"'By
+72B)(Aq— 1) ?TATP.A%(Ay — I)*By
+72BY(Ag — 1) T A>T P, A.(Ay — I)*By.
(5.17)
Taking the integral of (5.14) overfrom 0 to 7 yields

T Hu(t) Hia(t) Q1 Do
dt = >0
/o {Hﬁ(t) H(t) Qf Qo | =7
(5.18)
where
Q1 2P, — AJP.A,, (5.19)

Qs 2A;T(Ag — DT [CF + 7AT P AL(Ag — 1) "*B4]
(5.20)

S7[DY — BY (A~ D)7*CH)

+ 73BT (Ag — 1) T A>T P, A(Ay — 1) 2By

+ T[Dd —Cy(Agq — I)_le]

+7°Bj (Ag— 1) *T AT P.AZ(Ag — 1) *Ba.

(5.21)
Expressions (5.18)-(5.21) imply
5T { o oo } >0, (5.22)
where
o { ﬁAC<AOd—1>-1 VA )7?B, } |
VT
(5.23)
which is equivalent to
{ P.— AYPA, CT — ATP,By ] >0
Cy— BYPyAq Dg+ D} —BIPBy—® | =
(5.24)
where
Py 2r(Ag — 1) "AT P A (A — D)7V, (5.25)
2 72BT(Ay— I)"TATPy(Aq— )"'By
— 2B (Aqg—I)"TPjA.(Ag — I)"'By.  (5.26)

Therefore, to prove that.(z) is discrete-time positive real,
it is sufficient to show thaf is positive semi-definite.
Next, we factor (5.26) as

o= [\/T_?’Ac(Ad - 1)—2Bd}T [~ATP, - P,A,]

x [ﬁAc(Ad - I)*2Bd} : (5.27)
Since— AT P.— P.A, > 0, it follows that® > 0. Therefore,

(5.24) yields

|: P;— AdTPdAd CdT — A}PdBd

Cd — BgPdAd Dd + D;lr _ Bg‘PdBd :| Z 07 (528)

where P; = P§ > 0. Using Lemma 2.1, equation (5.28)
implies thatG4(z) is discrete-time positive real. O

6. Least Squares Optimization

In this section, we develop weighted least squares op-
timization problems for both the state sequence and the
extended observability matrix subspace identificatiomtec

niques.
Consider the discrete-time, linear time-invariant system
Tpt1 = Axy, + Buy, (6.1)
Y = Cxy + Duk, (62)

wherez, € R, up € R™, y, € R™, A € R"*", B €
RTLX’UL, C c Rmxn, andD c Rme_ TO deSCfibei tlme
steps of the input signal and output signal, we define

(6.3)
(6.4)

N
Ukjevio1 = | Uk Ukt Ukgio1 |

N
Yijkdiot = [ Y Ukt1 Yrrio1 | s

WhereUMkﬂ_l € Rmx¢ andYk|k+i_1 € R™x¢,

The objective of time domain system identification is to
estimate the coefficient matrices of (6.1) and (6.2) from the
input dataly;4,—1 and the output dat&, ;4.

6.1. Least squares optimization using an estimated state
sequence

We now formulate the constrained optimization problem
for a state sequence estimation subspace technique. Using a
subspace algorithm, such as CVA or N4SID, that provides
state estimates, we obtain the sequences

(6.5)
Tryi |, (6.6)

where Xy i1 € R™ and Xj 15y € R™7. The
identification problem now becomes a linear least squares
problem. Estimates of the coefficient matrices are obtained

by minimizing
X .
W k+1|k+1 :|
' ([ Yiik+i-1

[ A B } { Xifkriot
¢ D Uklk+i-1

Xijkrio1 = [ & &ra Thtio1 |
B N .
Xk+1\k+i = [ Tk+1 LTk+2

J(A,B,C,D) 2

2

6.7)

|
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whereW; € R¥*"+tm and W, € R**" are weighting ma- The identification problem may now be presented as a least
trices. To impose the discrete-time positive real constsai squares optimization, with the cost function,
(2.19)-(2.21) on the cost function (6.7), we define

AP 0 A J<A7B7C,D)éHW1([F1 ?1}
Wy = { 0 T } Wo=1, (6.8) Fo @0
m ~ 2
Iy 0 A B

so that (6.7) becomes “ 1o 1 c o)W

m F
X X 6.17
J(C,D,P,R,S) 2 { Ig IO } { i(/kJrllkJrz ] | (6.17)
m k|k+i—1 where W; € R**™ and W, € R"™™*" gre, again,

weighting matrices.

_|:R S:||:Xk|k+i1:| X . . .
C D Ukjhti-1 To impose the positive real constraint, we define

F

(6.9) M+
. . . . i Wl é |: PFQ 0 :| ) W2 é n+m> (618)
Equation (6.9) and the discrete-time positive real congsa 0 In

(.2'19)'(2.'21). constitute a constrained least square apim \{vhere f; is the Moore-Penrose generalized inverse. The
tion, which is linear in parameters. We relax constraint . = " 2. :
minimization problem can now be written

(2.21) to P="P" >0l (6.10) L s
J,D,P,R,S) 2 ||| FLaTr PL3®:
whereo > 0 is arbitrarily small so that the optimization is (C,D,P,R,8) = o d,
convex. R S IR
o . : — . (6.19)
6.2. Least squares optimization using an estimated ex- C D .

tended observability matrix Again, we have delineated a constrained least square prob-

Now, a constrained optimization is formulated for an estitem that is linear in optimization parameters. The solution

mated extended observability matrix subspace method. TRegptained by minimizing (6.19) such that (2.19)-(2.20) an
MOESP algorithm and an N4SID variant are two commons 10) are satisfied.

estimated observability matrix based subspace methods [10

11]. We define the extended observability matrix 7. Algorithm Implementation
C The constrained subspace identification described in this
CA paper is implemented in Matlab version 6.5. To determine

(6.11) system order and the state sequence, we use a variant
: of the N4SID subspace algorithm, presented in [9]. The
CA-t algorithm uses the computationally efficient singular ealu
decomposition and “Q-less” QR factorization. For imple-

and the lower triangular block Toeplitz matrix of impulse , ; L
mentation, we use the estimated state sequence optinmzatio

responses
P described in Section 4.1. The constrained least squares
D 0 0 optimization problem is to minimize (6.9) subject to (2.19)
A CB D . 0 12 where P = PT > oI ando > 0 is arbitrarily small. The
¢ = : : . : (6.12) system matricesd and B are determined byd = P~ 'R
: : .o R
CA—2B CA*3B ... D andB =P~ 'S.

_ N . ~ The optimization is performed using the SeDuMi Matlab
Using an extended observability matrix subspace routingolbox [19]. SeDuMi solves linear programming problems

we obtain an estimate of (6.11), designafedA technique gver symmetric cones, allowing us to impose quadratic and
described in [10, 11] is used to obtain an estimate of (6.12)ositive semi-definite constraints.

designated. R R
The data matriced” and & are used to write a least 8. Examples
squares optimization. Using Matlab notation, we define the Consider the continuous time spring-mass-damper

matrices [dsl}_[o 1 }{$1}+{O}u+{0}w
o 4 [(1:m,1:n), & 2 ®(1:m,1:m). (6.13) ) — —c T - L )
8.1

K
m m

We also define the block vectors

_ z1
D 2T (m+1:mi,1:n), (6.14) y=[0 b][@}“’ (82)
Iy 2 f(1 cm(i—1),1:n), (6.15) Wwhere the position is;, the velocity isz», the force input
A A - ) in Newtons isu, the scaled velocity output ig, the plant
=&(m+1:mi,1:m). (6.16)  disturbance isv, the sensor noise is, the mass isn = 7
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Magnitude (dB)

Imaginary Axis

Phase (deg)

. ReaTAst N Frequer:éy(vad/sec)

Fig. 1. Nyquist and Bode plots for the discretized springsrdamper
system with no plant disturbance or sensor noise. The plétshe
discrete-time system , the unconstrained identificatior #re positive
real constrained identification coincide.

Fig. 2.
system with Gaussian white plant disturbance noise andosemsise.
Shown are plots of the discrete-time system (solid), the uosttained
identification (dash-dotted), and the positive real caistd identification

Imaginary Axis

oz B o5 Kl
Real Axis Frequency (radisec)

Nyquist and Bode plots for the discretized springsrdamper

(dashed).

kg, the damping is: = 36 kg/s, the stiffness i& = 1087
kg/m?, and the output multiplication factor ts= 23. Since
the input is force and the output is a scaled velocity, thei]
continuous-time transfer function is positive real.

The continuous-time system (8.1)-(8.2) is discretized[2
with a sample time of 0.01 seconds using a first-order-hold.
The discrete-time state space realization is

vers — | 099 00007 ] [ 14x107° (s +00) 3]

PP -1 094 | K 0.0013 PR
(8.3)

5

ye =10 23 ]z +0.01613u; + 0.01613wy, + vg. )
(8.4)

Theorem 5.1 implies that (8.3)-(8.4) is discrete-time pesi  [6]

real. [7]

We identify the discrete-time spring-mass-damper system
using an unconstrained algorithm similar to the one pre-
sented in [9] and using the constrained algorithm presente@]
in Section 7. We consider the system (8.3)-(8.4) both
with and without plant disturbance and sensor noise. First®]
consider the system (8.3)-(8.4) excited by a zero mean
Gaussian white noise signal with the plant disturbance angh
sensor noise identically equal to zero. The Nyquist and
Bode plots are given in Figure 1. We see that the discretiz%il]
system, unconstrained model, and constrained model are all
positive real.

Now, system (8.3)-(8.4) is excited with the same inpuElz]
signal, but non-zero plant disturbance and sensor noise.
The plant disturbance and sensor noise are modelled Byl
zero mean Gaussian white random processes with standar,
deviations equal tol0% of the peak input and output
signals, respectively. The Nyquist and Bode plots are given
in Figure 2. The discretized system is positive real, ang on 19
the constrained algorithm identifies a positive real model.

[16]
9. Conclusions

In this paper, we presented a subspace method for iddfZ]
tifying linear models that are guaranteed to be positivé reg g
We expressed the discrete-time Kalman-Yacubovich-Popov
matrix conditions as a linear matrix inequality. Notably w
provided a proof that first-order-hold sampling preserve%lg]
positive realness.
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