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Abstract–This paper presents a new class of subspace
algorithms for system identification, in which the projection
of future data onto past data is performed by a multichannel
least-squares lattice filter with parameterizations and channel
arrangements particularly suited to subspace system identi-
fication. Because an adaptive lattice filter provides the core
computational engine of the new subspace algorithms, the
main computational burden of the algorithms can be executed
in real time, as data is being sampled. This approach produces
much faster system identification algorithms than existing
batch algorithms for subspace identification.

I. INTRODUCTION

In recent years, a class of methods usually referred to
as subspace methods [1], [2], [3] has become recognized
as the best approach to system identification in the pres-
ence of high levels of broad-band noise and unmodeled
disturbance. All such methods require identification by
some least-squares algorithm of high-order prediction
models that predict future outputs from past inputs
and outputs. The coefficient matrices in the identified
prediction models are used to build a Hankel matrix,
often weighted in some fashion by the original data, and
then a state-space realization of the estimated system is
constructed from a singular-value decomposition of the
Hankel matrix. Because at least several thousand data
points are required to obtain nearly unbiased estimates
of unknown systems from noisy data, the least-squares
estimation of the prediction models is the most com-
putationally intensive part of a subspace identification
algorithm. Least-squares estimation is always equivalent
to orthogonal projection, and the preferred method for
computing the projections required in subspace identifi-
cation has come to be QR factorization of certain data
matrices.
Previous subspace algorithms have used batch (i.e.,

nonadaptive) least-squares parameter estimation to de-
termine certain Hankel matrices from the data. The
required least-squares solutions have been obtained by
batch QR factorization of certain data matrices. This
paper presents a class of subspace algorithms that use
least-squares lattice filters to perform adaptive QR fac-
torization of data matrices and estimate Hankel matrix.
For lattice-filter based subspace algorithms, we have

developed a method for using our lattice filters[4] to
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construct the triangular matrix R in the QR factorization
of a Toeplitz data matrix W whose columns are shifted
versions of the input and output data sequences. For
subspace system identification, only this matrix R is
needed. Although, it is generally understood among
adaptive-filtering researchers that RLS lattice filters
perform a block orthogonalization of the columns of the
data matrix, this orthogonalization is only implicit and
sometimes only approximate. Our RLS lattice filters are
unique in that they perform a complete orthogonalization
(not just a block orthogonalization) of the data matrix,
and this orthogonalization is exact even for short data
sequences because of the unwindowed initialization of our
algorithms. However, even with our basic lattice filters,
this orthogonalization is still implicit. Our procedure for
constructing the R matrix for the QR factorization from
the reflection coefficients and residual errors in the lattice
filter is a recent discovery-which we believe is one of our
most significant discoveries over the past few years. As
far as we know, it has not been possible to construct
such an R matrix with any previous lattice filters.
The outline of this paper is as following: Section II de-

scribes the concepts of the subspace system identification
methods. Section III discusses the adaptive lattice filter
we will use in this paper and the implementation of the
subspace method. An example for comparison is shown
in Section IV. In Section V, we conclude the research
which has been done.

II. SUBSPACE SYSTEM IDENTIFICATION

Fig. 1 illustrates the basic steps in subspace identifi-
cation of a state space model of a linear time invariant
(LTI) system.

A. Kalman Preditor

Consider the LTI system

x(t+ 1) = A0x(t) +B
uu(t) +Bww(t) ,

y(t) = Cx(t) + v(t) ,
(1)

where A0 is a stable matrix. The sequences w, and v
are stationary zero-mean white-noise sequences. Only the
sequences y and u are measured. Our goal is to use the
measured y and u to identify unbiased system matrices
(A0, B

u, C).
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Fig. 1. Subspace State-Space System Identification.

Consider the LTI system in (1) and the (M + 1)-step
ahead Kalman predictor

ŷM (t) =
tX
i=1

hM (t, i)

µ
y(t− i)
u(t− i)

¶
, (2)

hM (tn, i) = CA
M−1
o S(tn, i)[F (tn − i) Bu ] , (3)

where S(tn, i) is function of Ao, C and F .
Define the Hankel matrix at given time tn as

HM,N =


h1(tn, 1) h1(tn, 2) . . . h1(tn, N)
h2(tn, 1) h2(tn, 2) . . . h2(tn, N)
...

...
. . .

...
hM (tn, 1) . . . . . . hM (tn,N)

 . (4)

It is true that

HM,N = O(M)C(N) , (5)

where C(N) and O(M) have the following form
C(N) = £ B(tn) . . . S(tn, n)B(tn − n+ 1)

¤
, (6)

with B(t) defined as [F (t) Bu], and

O(M) =


C
CAo
...

CAM−1o

 , (7)

also

O↑(M) =


CAo
CA2o
...

CAM−1o

 , O↓(M) =


C
CAo
...

CAM−2o

 . (8)

Suppose that UΣV ∗ is a minimal singular-value de-
composition of HM,N . Use Σ to identify the system order
n. Define the first n columns of U and V are Ur and Vr,
and the diagonal matrix with the first n singular values
in Σ is Σr. Then

O(M) = UrΣ1/2
r , C(N) = Σ1/2

r V ∗r . (9)

We can get the system matrices B, C and Kalman
gain matrix F (t) from

C = first top block row of O(M), (10)

[F (t) Bu] = first left block column of C(N).(11)

The matrix Ao can be obtained by

Ao = O↓(M)†O↑(M). (12)

B. Subspace Method

For the input sequence u(t) and the output sequence
y(t), define the matrices of past data Wp, future input



Uf and future output Yf as

Wp =


Y (t− 1) . . . Y (t−N)
...

. . .
...

Y (N) . . . Y (1)
Y (N − 1) . . . Y (0)

 , (13)

Uf =


u(t+M − 1) . . . u(t)
...

. . .
...

u(M +N) . . . u(N + 1)
u(M +N − 1) . . . u(N)

 , (14)

Yf =


y(t+M − 1) . . . y(t)
...

. . .
...

y(M +N) . . . y(N + 1)
y(M +N − 1) . . . y(N)

 . (15)
N is the number of history data used and M is the

number of future data used.
Apply the QR factorization to the data matrix W ,

W = [ Uf Wp Yf ] (16)

= [ Q1 Q2 Q3 ]

 R11 R12 R13
0 R22 R23
0 0 R33

 . (17)
It can be proved that the Hankel matrix in (5) will

converge to the following:

HM,N = (R22
−1R23)T . (18)

The R22 can be treated as a weighting function. That
is, the RT23 represent the weighted Hankel matrix:

RT23 = HM,N R
T
22 (19)

The system matrices can then be retrieved from
the weighted Hankel matrix as discussed in the last
subsection of the next section.

III. LATTICE FILTER AND QR FACTORIZATION

In recent years, lattice filters are recognized as one
of the fastest and most numerically stable methods for
recursive least-squares (RLS) estimation. Many applica-
tions have been done by applying these methods. This
paper uses a class of unwindowed multichannel lattice
algorithms with orthogonal channels recently developed
at UCLA [4] for RLS estimation. The adaptive lattice
algorithms contain two parts: the residual-error lattice
algorithm and the model-parameter algorithm. The first
part has to be computed in each time step to generate all
the information needed in the algorithm, while the second
part only has to be done whenever the model parameters
are needed. This is an unwindowed lattice filter, which
can eliminate the error caused by the prewindowed
assumption (i.e., that all initial data is zero). It is also
a multichannel lattice filter, which is essential to the
algorithm delevoped in the paper.

In subspace identification algorithms, the major com-
putational cost is QR factorization to the data history
matrix. In [5], Cho introduced a fast QR factorization
algorithm for subspace system identification via exploit-
ing the displacement of the data matrix. For a i× j data
history matrix, where i is the length of the data and j
is the width of the channel history, the algorithm lower
the computational load from O(ij2) to O(ij), which is
essential. The lattice filter algorithm used in the research
provides a numerically stable way to extract the Rmatrix
recursively from the data matrix with computational load
O(ij).

A. Residual-Error Lattice

As shown in Fig. 2, the residual-error lattice filter has
two parallel architectures, the forward-propagating and
backward-propagating blocks. Details of the lattice stages
are given in [4]. The cross arrows connecting forward and
backward blocks give rise to the term lattice filter. There
is a pair of uncoupled blocks for each n, one for processing
the forward-propagating block and one for processing the
backward-propagating block. Each such pair of blocks
constitutes a stage of the lattice filter. Data is exchanged
between the forward-propagating block and the backward
propagating block on completion of each stage to ini-
tialize the next stage. The error vectors êin;k, r̂

i
n;k, ě

i
n;k

and řin;k are defined as forward-propagating forward
residual errors, forward-propagating backward residual
errors, backward-propagating forward residual errors and
backward-propagating backward residual errors, respec-
tively.

The residual-error lattice algorithm does the QR
factorization implicitly but obtains all the information
needed to construct the R matrix explicitly whenever it
is needed. The lattice algorithm in [4] using the following
forward and backward error vectors f̂ in;k(t) and b̌

i
n;k(t).

The correlation matrices for f̂ in;k(t) and b̌
i
n;k(t) are

α̂ijn;k(t) = hf̂ in;k(t), f̂ jn;k(t)i , (20)

α̌ijn;k(t) = hb̌in;k(t), b̌jn;k(t)i . (21)

From here on, the all the subscript index k will be
omitted because we only use k = n for all the following
equations. In (20) and (21), for i = j, we have the norm
of f̂ in and b̌

i
n as

| f̂ in | =

q
hf̂ in, f̂ ini =

p
α̂iin , (22)

| b̌in | =

q
hb̌in, b̌ini =

p
α̌iin . (23)

There are artificial channels embeded in the data to
implement the unwindowed lattice filter. It was discussed
in [6] that the effect of the artificial channels can be
ignored when the t is large.
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Fig. 2. Residual Lattice Filter.

We define the f̂ , b̌, α̂ and α̌ as

f̂ =
h
z−nf̂1:q1

¯̄
z−(n−1)f̂1:q2

¯̄
. . .
¯̄
z−1f̂1:qn

i
, (24)

b̌ =
h
b̌1:q1

¯̄
b̌1:q2

¯̄
. . .
¯̄
b̌1:qn

i
, (25)

α̂ = diag
³
α̂11:qq1

¯̄
α̂11:qq2

¯̄
. . .
¯̄
α̂11:qqn

´
, (26)

α̌ = diag
³
α̌11:qq1

¯̄
α̌11:qq2

¯̄
. . .
¯̄
α̌11:qqn

´
, (27)

also the data matrices Ŵ, W̌, and their QR factoriza-
tion:

Ŵ =


Y (t− n) . . . Y (t− 1)

...
. . .

...
Y (1) . . . Y (n)
Y (0) . . . Y (n− 1)

 = Q̂ R̂ , (28)

W̌ =


Y (t− 1) . . . Y (t− n)

...
. . .

...
Y (n) . . . Y (1)
Y (n− 1) . . . Y (0)

 = Q̌ Ř . (29)
From (20) — (29), we conclude the following:

f̂ · α̂−1/2 = Q̂ , b̌ · α̌−1/2 = Q̌ . (30)

B. Model Parameters

The model parameters algorithm and initializations
shown in [4] generate the model parameters at any
time step t from the data in the residual-error lat-
tice. Fig. 3 illustrates the signal flow of the algorithm.
The model parameters need not be generated at every
t. For each order n, there are l pairs of uncoupled
blocks, which contain one forward-propagating and one
backward-propagating block. Data is exchanged between
the forward-propagating block and the backward propa-
gating block on completion of each stage to initialize the
next stage.

In the model parameters, the components of the
forward-propagating model-parameter matrix Ân;l and
backward-propagating model-parameter matrix B̌n;l are
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Fig. 3. Model Parameters Algorithm.

defined ash
f̂1n . . . f̂

p
n

i
= −

nX
l=1

[z−lΨ]Ân;l , (31)

£
b̌1n . . . b̌

p
n

¤
= −

nX
l=1

[z−lΨ]B̌n;l , (32)

from (24), (25), (31) and (32), we have

f̂ = −
h
z−nΨ

¯̄
z−(n−1)Ψ

¯̄
. . .
¯̄
z−1Ψ

i
· Â

= −Ŵ · Â = −Q̂ · R̂ · Â , (33)

b̌ = − £z−1Ψ ¯̄ z−2Ψ ¯̄ . . . ¯̄ z−nΨ¤ · B̌
= −W̌ · B̌ = −Q̌ · Ř · B̌ , (34)

where Â and B̌ are defined as

Â =


Â1,0 Â2,1 . . . Ân,n−1
0 Â2,0 . . . Ân,n−2
...

...
. . .

...

0 0 . . . Ân,0

 , (35)
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B̌ =


B̌1,1 B̌2,1 . . . B̌n,1
0 B̌2,2 . . . B̌n,2
...

...
. . .

...
0 0 . . . B̌n,n

 . (36)

From (30), (33) and (34), the following are true:

−Â · α̂−1/2 = R̂−1 , −B̌ · α̌−1/2 = Ř−1 . (37)

C. Subspace Method Implementation

Apply the lattice filter with order (N +M), Y (t) =
[y(t) u(t)], from (29) and (37), we have

Ř = −α̌1/2B̌−1 . (38)

Note that the Ř is the R factor of the QR factorization
to the lattice filter data matrix W̌ , which Toeplitz
structure is different from W . We developed a method
to transfer the Ř to the matrix suitable for the subspace
method.
In (29), the lattice order n is N +M , and the Y (t) is

defined as [y(t) u(t)]. There exists an unitary T so that
W = W̌T . Apply the QR factorization to Ř T will give
us the R factor of W matrix:

W = W̌ T = Q̌ Ř T = Q̌ (Q2R2) = (Q̌Q2)| {z }
Q

(R2)|{z}
R

.

Pick up the R23 part from R and apply SVD to its
transpose, from (19), we have

RT23 = HM (N)R
T
22 = UΣV

∗ . (39)

Use Σ to identify the system order n, reduce the SVD,
then

O(M) = UrΣ1/2
r , C(N) = Σ1/2

r V ∗r R
−T
22 . (40)

The system matrices and the Kalman gain matrix are

Ao = O↓(M)†O↑(M),
[F Bu] = first left block column of C(N),

C = first top block row of O(M).
This summary of the method is illustrated in Fig. 4

IV. SIMULATION RESULTS

In [7], sixth-order two-input/two-output models of
microgyroscope have been identified. The model that
we used in the simulations has two very closely spaced
rocking modes near 4392Hz and 4394Hz. The plunging
mode is near 2684Hz. Those modes are lightly damped.
The two very close, lightly damped modes make identi-
fication difficult. The bode plot and the zoom-out near
the rocking modes corresponding to the first input/first
output is shown in Fig. 5. This example simulates the
microgyroscope placed in a noisy environment.
The system is excited by known inputs u(t) and

white actuator noise w(t) with SNR = 25dB. The
measurements y(t) are corrupted by white noise v(t)
with SNR = 25dB. The subsapce algorithm N4SID in
MATLAB is used for comparison. We ran 100 cases and
compared identified results. The average errors of the
two method are shown in Fig. 6.
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For the CPU time comparison, we measure the time
spent on constructing the weighted Hankel matrix and
the system matrices. As shown in Fig. 7, the lattice filter
based method runs faster than the other without losing
the accuracy.
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V. CONCLUSIONS

We have developed a fast, numerically stable subspace
system identification algorithm based on a multhchannel
adaptive lattice filter. Because an adaptive lattice filter
provides the core computational engine of the new
subspace algorithm, the main computational burden of
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Fig. 7. CPU Time Comparison at different order. Solid line:
LatSSID. Dash line: N4SID.

the algorithm can be executed in real time, as data
is being sampled. This approach produces significantly
faster system identification algorithms than existing
batch algorithms for subspace identification.
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