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Abstract— In an early paper [3], the ergodic control problem
of partially observed Markov chains was studied. A major
assumption was proposed to justify the existence of the optimal
policy characterized by a dynamic programming equation. In
this note we show that the major assumption, though quite
general and easily verifiable, is not satisfied by an important
class of machine maintenance problems. A modified version
of the assumption is thus presented to improve this shortage
and an example is analyzed to show our work.

I. INTRODUCTION

Deriving the dynamic programming equations (DPEs) for
the ergodic control problems of partially observed Markov
chains is aged yet far from been solved with satisfac-
tion [1]. Classical sufficient conditions for the existence of
solutions to the DPEs include Ross’srenewability condi-
tion [5], Platzman’sreachability-detectabilitycondition [4],
and Stettner’spositivity condition [6]. Recently, Chung
and Arapostathis [3] proposed another condition which is
considered more concise and practical in comparison with
those proposed before. However, a major drawback of the
condition is that it is not satisfied by any system with a
reachable state that is completely observable. This issue
is addressed in the note and a modified version of the
condition is proposed to improve its generality. In Section 2
we review all the required technical background and the
major result in [3]. Section 3 provides this paper’s main
results, including a detailed analysis of an example by which
we compare several important assumptions.

II. PRELIMINARIES

A partially observed controlled Markov chain, also
known as partially observed Markov decision process
(POMDP), is governed by a five-tuple (S,U,U ,Q,c) with the
following meanings:S = X×Y is the process’s state space
whereX, Y is the finite system space, finite observable space
with cardinality Nx, Ny respectively.U is the compact
action space. LetB(V) denote theσ-algebra for a given
topological spaceV, then U : X→ B(U) is a set-valued
map with compact non-empty value andU(x) is the set
of feasible actions when the system is in statex ∈ X.
Q is the Markovian transition kernel of the process and
c : X × U → Rn is the cost function assumed continuous
and bounded. Specifically, when the system state at timet
is Xt and a controlUt is taken, a costc(Xt, Ut) is incurred

and the system moves to next stateXt+1 with observation
Yt+1 according to the transition kernelQ defined by

[Quy ]ij := Prob(Xt+1 = j, Yt+1 = y|Xt = i, Ut = u)

for all t ∈ N0 (the set of nonnegative integers),j ∈X, and
y ∈Y. Also, the mappingu → Quy is assumed continuous.
It is well know that we can transform the partially observed
process into the completely observed process by construct-
ing the information stateψt , recursively defined by

ψt+1 :=
∑
y∈Y

ψtQ
u
y

ψtQuy1
· 1{Yt+1=y} ,

for ψt ∈ Ψ = P(X), the probability (row) vector space on
X, u ∈ U and t ∈ N0 where1{·} is the indicator function
and 1 the column vector of 1’s of appropriate size. Let
V (ψ, y, u) := ψQuy1 and T (ψ, y, u) := ψQuy/V (ψ, y, u)
for V (ψ, y, u) 6= 0 then the transition kernel for the
information state is given by

K(B|ψ, u) : = Prob{ψt+1 ∈ B|ψt = ψ,Ut = u}, (II.1)

=
∑

Yt+1∈Y

V (ψ, Yt+1, u) · 1{T (ψ,Yt+1,u)∈B}

for all B ∈ B(Ψ), ψ ∈ Ψ , andu ∈ U. So we can write the
transformed five-tuple as (Ψ ,U, Ũ , K, c̃) where Ũ : Ψ →
B(U) and c̃(ψ, u) :=

∑
x∈X c(x, u)ψ(x) for all ψ ∈ Ψ

and u ∈ U. For the original history space of the partially
observed processH0 := Ψ , Ht := Ht−1×U×Y for all t ∈
N (the set of positive integers) we obtain a corresponding
completely observed history space:Ĥ0 := Ψ , Ĥt := Ĥt−1×
U× Ψ for all t ∈ N.

An admissible strategyor admissible policyπ is a se-
quence{πt}∞t=0 of Borel measurable stochastic kernelsπt
on U given Ĥt satisfyingπt(Ũ(ψt)|ht) = 1 for all ψt ∈ Ψ ,
ht ∈ Ĥt and t ∈ N0. An admissible policy is called
deterministicif there exists a functionf : Ψ → U such
thatπt(f(ψt)|ht) = 1 for all ψt ∈ Ψ , ht ∈ Ĥt andt ∈ N0.

It is shown that for an initial distributionψ0 ∈ Ψ and
admissible strategyπ, there exists an unique probability
measurePπψ0

induced on the sample path(Ψ×U)∞. Denote
the corresponding expectation operator asEπψ0

and the
incurredβ-discounted cost,β ∈ (0, 1), as

Jβ(ψ0, π) = lim
T→∞

Eπψ0

[
T−1∑
t=0

βtc̃(ψt, Ut)

]
.



If hβ(ψ) = infπ∈Π Jβ(ψ, π) for ψ ∈ Ψ , then it is well
know thathβ(ψ) is concave onΨ and is the unique solution
in C(Ψ) (the space of continuous functions onΨ ) for
Bellman’sβ-discounted optimality equation

hβ(ψ) = min
u∈U

{
c̃(ψ, u) + β

∫
Y
hβ(ψ′)K(dψ′|ψ, u)

}
.

(II.2)
Other properties regardinghβ(ψ) can be seen in [4].

The classical vanishing discount limit method extends the
result of β-discounted cost model to the long-run average
cost model with incurred costs

J(ψ0, π) := lim sup
T→∞

1
T

Eπψ0

[
T−1∑
t=0

c̃(ψt, Ut)

]
(II.3)

by letting β → 1 on the modified form of (II.2). (See,
e.g., [1]). In order to justify the method, the following
assumption was proposed in [3], along with its implication
on the existence of the optimal policy.

Assumption 2.1:There exist constantsε > 0, Nb ∈ N
andβ0 < 1 such that for eachβ ∈ [β0, 1) we have

max
1≤k≤Nb

Pπβ

ψ∗
{ψk ∈ Ψ ε} ≥ ε ,

Ψ ε := {ψ ∈ Ψ |ψ(i) ≥ ε, i ∈ X}, ψ∗ := argminψ∈Ψhβ(ψ).
Theorem 2.1:If Assumption 2.1 holds, then there exist a

bounded, concave and continuous functionh: Ψ → R and
an optimal ergodic costρ such that(ρ, h(·)) is a solution
of the dynamic programming equation:

ρ+ h(ψ) = min
u∈U

{
c̃(ψ, u) +

∫
Y
h(ψ′)K(dψ′|ψ, a)

}
.

(II.4)
Any measurable selectorπ of the minimizer in (II.4) is an
optimal policy in the sense of the long-run average cost.

III. M AIN RESULT

An immediate example failing to meet Assumption 2.1
is the completely observable system, which is a special
case of the partially observable system and is well known
on the existence of its optimal control policy under mild
conditions. To deal with this issue, Assumption 2.1 is
modified as follows.

Assumption 3.1:There exist constantsε > 0, Nb ∈ N
andβ0 < 1 such that∀β ∈ [β0, 1) we have

max
1≤k≤Nb

Pπβ

ψ∗
{T (ψ∗, Y k, Uk−1) ≥ εT (ψ∗, Y k, Uk−1) ,

V (ψ∗, Y k, Uk−1) ≥ εV (ψ∗, Y k, Uk−1)} ≥ ε ,

where ψ∗ := argmaxψ∈Ψhβ(ψ). V (ψ, yk, uk−1) and
T (ψ, yk, uk−1) are defined similar toV (ψ, y, u) and
T (ψ, y, u) in Section II except for the multi-step transition
kernelQu

k−1

yk := Qu0
y1 · · ·Q

uk−1
yk .

Theorem 3.1:In Theorem 2.1, if Assumption 2.1 is re-
placed by Assumption 3.1 then its result still holds.

Now we study an example to compare several assump-
tions proposed in the literature.

Example 3.1:Consider a machine with its state space
X= {0, 1, 2} where 0,1 and 2 representsgood, need
maintenance, anddown, respectively; and action spaceU=
{0, 1} where 0 and 1 means tocontinueand to replace,
respectively. Assume that the relation between the costs
c(x, u) for various kinds of combinations ofx ∈ X and
u ∈ U is 0 ≤ c(0, 0) < c(1, 0) < c(2, 0) < c(x, 1) < ∞.
Suppose action ’0’ and ’1’ influence the evolution of the
machine state according to the transition matrixP0 andP1,
respectively, where

P0 =

[
θ1 θ2 1− θ1 − θ2

0 θ3 1− θ3

0 0 1

]
, P1 =

[
1 0 0
θ4 1− θ4 0
θ5 1− θ5 0

]
,

and there exists a probability of erroneous observation
between state 0,1 and 2, then the process is partially observ-
able with observation spaceY=X and the transition kernel
Quy = PuOy, with Oy = diag[q1y, q2y, q3y], the diagonal
matrix with [Oy]ii = qiy ≥ 0 and

∑
y∈Y qiy = 1 for i ∈ X.

Assume all of theθi’s are lower-bounded by a positive
constant, then we are able to show thatπβ(ψ∗)=0 where
ψ∗ = [ 1 0 0 ] or [ 0 1 0 ], depending on the parameters in
the transition kernels and the cost function. Ifψ∗ = [ 1 0 0 ],
we considerCase 1: there exists an observationy ∈ Y
such thatq1y, q2y, and q3y are all lower-bounded by a
positive number; andCase 2: the wrong observation could
just happen between state 0 and 1 in the sense that we can
expressO1 = diag[q, 1− q, 0], O2 = diag[1− q, q, 0], and
O3 = diag[0, 0, 1] with q ∈(.5, 1).

In Case 1 Assumption 2.1 is satisfied but renewability
condition in [4] fails. In Case 2 we have a mixed observation
possibility since both partial and complete observation can
occur. In this case information state[ 0 0 1 ] serves as a
recurrent state for the overall process so the renewability
condition in [4] is satisfied. However, the information state
ψt will never enter the interior of simplexΨ for t ≥ 1, so
Assumption 2.1 fails. Finally, we note that in either case
the positivity assumption in [6] or detectability condition
in [4] is not satisfied due to the appearance of zeros in the
transition kernels, but Assumption 3.1 can be checked to
hold in either case.
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