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Abstract— The application of control loop performance
assessment and benchmarking techniques to multivariable
industrial process control loops is considered. The results for
assessing the performance of Multiple-Input, Multiple-Output
(MIMO) control loops against the Generalized Minimum
Variance (GMV) benchmark, using routine operating data
and the knowledge of the interactor matrix, are presented.
Then, assuming knowledge of the system model, the optimal
controller is restricted to be of a low-order classical structure
so that a more realistic benchmark is obtained. The technique
may also be used to determine the best structure to use for a
multivariable controller. This paper presents an extension of
the existing results to the cases of multivariable data-driven
GMV benchmarking and multivariable model-based RS-GMV
benchmarking.

I. I NTRODUCTION

Minimum variance criteria have been used in stochas-
tic performance assessment since the subject of control
loop benchmarking was introduced by Harris [10]. The
later research by Desborough and Harris [2] and Stanfelj
et al. [16] built on this work, showing how time-series
analysis can be used to estimate the minimum achievable
variance of the controlled variable from routine operating
data, and defining the ”controller performance index” as
the ratio of the minimum achievable variance to the actual
variance. This early work was focused mostly on assessing
SISO control loops against the Minimum Variance (MV)
controller.

The ”Generalized Minimum Variance” criterion (derived
by Clarke and Hastings-James [1] and re-derived by Grim-
ble [6] using an unconditional cost function) addressed
some of the problems related with the MV control (ag-
gressive control action, poor robustness) by considering a
combination of the weighted error and control signals. The
GMV benchmarking results for the scalar case were later
presented in Grimble [8]. In the first part of this paper, these
results are extended to multivariable systems, following the
approach used by Huang and Shah [12] for the case of
multivariable MV benchmarking. Essentially, we pose the
GMV problem as a generalized MV problem and then make
use of the results derived by these authors.

In practice, industrial processes are usually controlled by
multi-loop PI/PID controllers, without taking into account
interactions existing between loops. A question then arises
how to adequately interpret the value of the calculated
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performance index: is it so low because the controller
is poorly tuned or simply because it is not possible to
obtain a better result with the existing controller structure?
A natural solution may be to pre-specify the admissible
controller structure in which case the optimal benchmark is
actually achievable by the existing controller. The second
part of the paper describes such a ”restricted-structure” (RS)
GMV benchmarking algorithm. It must be stressed here
that while the RS benchmarking procedure provides a more
meaningful performance assessment, it also requires full
information of the process model – system identification
is therefore an important step.

The paper is organized as follows: in Section 2, the
system description and the GMV cost function are in-
troduced; in Section 3, the optimal multivariable GMV
controller is derived; Section 4 deals with the estimation
of the controller performance index from routine operating
data; Section 5 outlines the algorithm for restricted-structure
GMV benchmarking; Section 6 includes a simulated ex-
ample of the application of the presented benchmarking
techniques to a simple multivariable plant; the paper closes
with conclusions in Section 7.

II. STOCHASTIC SYSTEM DESCRIPTION ANDGMV
PERFORMANCECRITERION

The discrete-time system of interest is a multivariable
stochastic feedback control loop as shown in Fig. 1, and
the plant, disturbance and reference left matrix fractions
are defined as:

[W Wd Wr] = A−1[B Cd E] (1)

The multivariable plantW may in general havem inputs
andr outputs and is controlled by anm×r linear controller
C0 = C0nC−1

0d . Both the reference and disturbance signals
are modeled as outputs from linear dynamic systems excited
by zero-mean independent white-noise vector sequences of
unity covariance matrix.

A. Interactor matrix

The delay structure of the multivariable plant has a
direct effect on the minimum achievable variance and is
characterized by the so-calledinteractor matrix([17], [3]).

Theorem 2.1:[12]. For anyr×m proper, rational poly-
nomial transfer-function matrixT , there exists a non-
singularr × r polynomial matrixD, such that

(i) det [D(z)] = zn

(ii) lim
z−1→0

D(z) · T (z−1) = K, K finite and full rank



wheren is the number of infinite zeros ofT . The matrix
D is defined as the interactor matrix andD−1 is called the
inverse interactor matrix. 2

The interpretation of the interactor is that it is a part
of the transfer-function matrix that cannot be modified by
state feedback [14] and therefore constitutes a fundamental
performance limitation in the system. This is equivalent to
the role that the time delay plays in scalar systems; however,
the multivariable case is normally more complex due to
interactions between loops.

In the simple case, the interactor may have a diagonal
structure: D = diag(zk1 , zk2 , ..., zkr ) where ki is the
minimum delay between all the inputs and outputi. If all
the delays are equal, then the simple interactor matrix is
obtained:D = zkIr and this is the direct equivalent of the
scalar time delay. In general, however, the interactor can be
a full matrix.

The knowledge of the interactor matrix is a prerequisite
for the proposed controller performance assessment algo-
rithm. In this paper, we assume that the interactor has
already been calculated from the plant transfer-function
matrix (e.g. using the algorithm given in [15]) or estimated
from plant data [12].

The interactor matrix is not unique. A particularly use-
ful form is the unitary interactor matrixwhich satisfies
DT (z−1)D(z) = I. The important property of a unitary
matrix is that it does not change the spectral properties
of a filtered signal, i.e.‖Dx‖2 = ‖x‖2. In particular, the
variance of the filtered signal remains the same as that of
the original signal.

Fig. 1. Single Degree-of-Freedom Closed-Loop System

B. GMV cost function

By analogy with the ”Minimum Variance” control law,
the GMV control algorithm can be defined as one that
minimizes the following cost function:

J = E
{
φT

t φt

}
(2)

where the “generalized” output signalφt

φt = Pcet + Fcut (3)

is a sum of dynamically weighted error and control signals
(see Fig. 1). The multivariable dynamic weighting transfer-
function matrices are defined as:

Pc = PcnP−1
cd , Fc = FcnF−1

cd (4)

These weightings can be used to frequency-shape the re-
sponses produced by the controller.

Unlike the related LQG control law, there is an additional
restriction that must be imposed on the selection of the
dynamic weightings – they cannot be chosen arbitrarily. The
condition that must be satisfied is stated in Theorem (3.1)
and ensures the stability of the closed-loop system.

C. Generalized plant

Our approach will be to reformulate the GMV problem as
an MV problem for the generalized plant and subsequently
reduce it from the general to the simple interactor problem.
The expression for the controller error can be written as:

et = −D−1W̃ut + N ∈t (5)

whereD is the plant interactor matrix,̃W = DW is the
delay-free plant transfer-function matrix,∈t is a zero-mean,
identity-covariance white-noise sequence andN represents
the combined effect of all of the stochastic inputs.

The generalized output (3) can now be rewritten as
follows:

φt = Pcet + Fcut = Pc(−D−1W̃ut + N ∈t) + Fcut

= (Fc − PcD
−1W̃ )ut + PcN ∈t

Introducing new symbols for the generalized plant:WG =
D−1

G W̃G = Fc − PcW and the disturbance model:NG =
PcN , obtain

φt = D−1
G W̃Gut + NG ∈t (6)

which is in a form equivalent to (5). Note thatDG (the
unitary interactor matrix of the generalized plant) may in
general be different from the original interactor matrixD.

III. O PTIMAL GMV CONTROLLER AND BENCHMARK

COST VALUES

In order to simplify the problem, the analysis given
in [12] is followed. Consider the filtered signal

φ̃t = z−kDGφt = z−kW̃Gut + ÑG ∈t (7)

where ÑG = z−kDGNG and k is the order of DG

(the highest degree of its entries). Because of the unitary
property of the interactorDG, the spectrum of the signal
φ̃t is the same as that ofφt and the original problem (2) is
thus reduced to minimizing the variance of signalφ̃t.

The main step in the derivation of the GMV control law
is to split the cost function (2) into two terms, one of which
is independent of, and the other dependent on the controller.
The control law then results by simply setting that second
term to zero.

Splitting the disturbance term̃NG into unpredictable and
predictable components using the Diophantine identity:

ÑG = F + q−kR, (8)

equation (7) can now be rewritten as:

φ̃t = q−k
(
W̃Gut + R ∈t

)
+ F ∈t (9)



Because the two terms on the right-hand side do not overlap
in time, the expression for the optimal controller clearly
follows by setting the term in brackets to zero. This gives
the optimal control signal:

uopt
t = −W̃−1

G R ∈t (10)

and the generalized output under GMV optimal control:

φ̃opt
t = F ∈t (11)

In order to obtain an explicit expression for the controller,
combine (10), (11) and (3) to get:

uopt
t = −

(
FR−1W̃G + q−kDGFc

)−1

q−kDGPcet (12)

The minimum value of the cost function (minimum variance
of the generalized outputφt) follows from (11) as

Jmin = V ar [F ∈t] =
k−1∑

i=0

trace
(
FT F

)
(13)

and depends only on the combined disturbance/stochastic
inputs model and the interactor matrix of the generalized
plant.

A. Optimal GMV controller – polynomial matrix descrip-
tion.

Equation (12) provides an expression for the optimal full-
order GMV controller in terms of transfer-function matrices.
However, for the restricted-structure controller design pre-
sented in section 5 we will also need a polynomial matrix
version of this equation. This may be arranged following
the introduction of a few factorizations and identities.

First, recalling the common denominator description
in (1), we can writeÑG as a left matrix fractionÑG =
A−1Df , where the strictly Schur polynomial matrixDf is
the solution of the following spectral factorization problem:

DfD∗
f = EE∗ + CdC

∗
d (14)

The following left-to-right matrix fraction factorizations
are needed in the solution:P−1

cd A−1BFcd = B1A
−1
1 ,

D−1
f APcd = A2D

−1
2 , D−1

f BFcd = B2D
−1
3 .

The solution(G,H,F), minimum row degree with respect
to F, to the following coupled Diophantine equations is also
required:

FA2 + z−kG = P̃cnD2 (15)

FB2 − z−kH = F̃cnD3 (16)

where P̃cn = z−kDGPcn and F̃cn = z−kDGFcn. The
following theorem gives the GMV optimal control law in
terms of the polynomial matrices introduced above.

Theorem 3.1 (Multivariable GMV benchmark cost values):
The GMV cost function (2) can be decomposed as follows:

J = Jmin + J0 (17)

where
Jmin =

1
2πj

∮

|z|=1

trace{F ∗F}dz

z
(18)

J0 =
1

2πj

∮

|z|=1

trace{T ∗o To}dz

z
(19)

and

To = (GD−1
2 P−1

cd C0d−HD−1
3 F−1

cd C0n)(AC0d+BC0n)−1Df

(20)
The ”implied Diophantine equation” defining the character-
istic polynomial matrix of the closed loop system:

GD−1
2 B1+HD−1

3 A1 = DG(PcnB1−FcnA1) = Dc (21)

A necessary condition for stability is therefore that the
weighting matricesPc and Fc be selected so that the
polynomial matrixDc is strictly Schur. 2

Corollary 3.1 (Optimal GMV cost):SinceJmin is inde-
pendent of the controller parameters, the optimal GMV
controller is obtained by simply settingT0 to zero and the
minimum value of the cost function becomesJmin. 2

B. Selection of the weighting transfer-function matrices

As the properties of the benchmark controller depend on
the choice of the dynamic weightings (4), some guidelines
are needed to help in their selection. The weightings should
ideally reflect the requirements imposed on the control
system (regulatory performance, tracking/disturbance rejec-
tion, level of robustness) and these normally are process-
dependent. Some rules of thumb, however, do exist and may
be used as a starting point ([5], [7]).

In general, the frequency dependence of the weightings
can be used to weight different frequency ranges in the error
and control signals. The usual procedure is that the error
weighting Pc normally includes an integral term, which
leads to integral action in the controller, and the control
weightingFc is chosen as a constant, or as a lead term to
ensure the controller rolls-off in high frequencies and does
not amplify the measurement noise. An additional scalar
may be used to balance the steady-state variances of the
error and control signals.

While selecting the dynamic weightings, one has to be
aware of the restriction stated in Theorem 3.1 - this stability
condition must be satisfied when actually designing the
GMV controller. Note that the benchmarking algorithm
will still return a controller performance index even if the
condition is not satisfied - this however will involve the
assessment against an inadmissible controller, effectively
underestimating the controller performance index.

IV. GMV CONTROLLER BENCHMARKING USING

ROUTINE OPERATING DATA

Huang and Shah [12] used the Filtering and Correla-
tion (FCOR) algorithm to estimate the minimum achievable
output variance from routine operating data. Although only
the minimum variance case has been considered by these
authors, it is relatively straightforward to extend their results
to the GMV case using the MV-GMV equivalence discussed
in section 2.



The idea behind the FCOR algorithm is to estimate
the coefficients of the matrix polynomialF and then use
(13) directly. This can be done by cross-correlating the
interactor-filtered generalized outputφ̃t with the estimated
white noise input (signal∈t), as outlined below.

FCOR algorithm (GMV case)
1) Filter the error and control signals to obtain the

generalized output signal:

φt = Pcet + Fcut

2) Estimate the interactor matrix of the generalized plant
DG and determine its orderk

3) Filter φt through the interactor matrixDG to obtain

φ̃t = q−kDGφt

4) Estimate the noise vector sequence∈t (whitening
process) – a common approach is to model the output
signal as a VAR (Vector Auto Regressive) time series
and then filter it to obtain the white noise ‘innova-
tions’ sequence:

∈t= A(q−1)φ̃t

5) Compute the cross-correlation between the output and
the estimated noise:

rφ̃a(0) = E[φ̃t ∈T
t ] = F0Σ∈

...
rφ̃a(k − 1) = E[φ̃t ∈T

t−k+1] = Fk−1Σ∈

whereΣ∈ = E
[∈t∈T

t

]
. The right-hand sides follow

from equation (9), and the coefficients ofF are thus
determined.

6) Calculate the optimum covariance matrix:

Σmv = F0Σ∈FT
0 + ... + Fk−1Σ∈FT

k−1

7) Compute the controller performance index:

η =
trace (Σmv)

trace
(
Σφ̃

) (22)

whereΣφ̃ = E
[
φ̃tφ̃

T
t

]
.

Another method of estimating the controller performance
index, which is closely related to the multiple coefficient of
determinationR2, was used by Desborough and Harris [2]
in the scalar case and then was extended to multivariable
case by Harris et al. [11]. This approach was also used by
Grimble [5] in a scalar GMV benchmarking paper.

V. RESTRICTED-STRUCTURE MULTIVARIABLE GMV
CONTROLLER BENCHMARKING

The GMV benchmark provides a more flexible perfor-
mance measure than the MV benchmark, however the op-
timal controller is normally high order and the comparison
with a PID controller may therefore be not realistic. This

section addresses this question by explicitly restricting the
controller structure to that of a filtered PID algorithm:

C0(z−1) = k0 +
k1

1− z−1
+

k2(1− z−1)
1− τdz−1

(23)

where τd is fixed. All elements of the controller transfer-
function matrix are restricted to be of this form.

A. The GMV restricted-structure controller benchmark

The multivariable GMV theorem defines the optimal
controller which minimizes the part of the cost functionJ0

given in (19). The optimal full-order controller setsJ0 to
zero – however, when the controller structure is restricted,
the minimum value of (19) will generally be nonzero.

The multivariable controller can be represented in the
matrix form as

C0 = K0 + K1
1

1− z−1
+ K2

(1− z−1)
1− τdz−1

(24)

whereKn = {kn
ij ; i = 1..m; j = 1..r}, and equivalently

in the right matrix fraction form asC0 = C0nC−1
0d .

The basic idea is to use a parametric optimization algo-
rithm to minimize the cost (19) with respect to the controller
parameters; then (24) gives the formula for the optimal
PID controller. Backsubstituting into the cost function and
comparing with the value obtained for the existing controller
results in the controller performance index.

B. Solution of the parametric optimization problem

The optimization algorithm is a direct generalization from
the SISO case [5] and involves representing the integral (19)
in the frequency domain:

Min
C0

2π∫

0

trace{To(ejω)To(e−jω)}dω (25)

This nonlinear optimization problem has to be solved
numerically. One approach is to assume that the “denomi-
nator” matrix(AC0d + BC0n) is known from the previous
iteration and then perform the least-squares minimization,
approximating the integral in (25) with a summation. The
optimization is with respect to the parameters appearing
linearly in the “numerator” matrix, therefore such a problem
can be easily solved. This step is iterated a number of
times, and the whole procedure is known as a ”successive
approximation” algorithm. The details of the algorithm can
be found in [9] and [13], and its basic steps are summarized
in Fig. 2. A similar algorithm for the continuous-time
LQG case has been presented in [4]. Our experience shows
that the successive approximation algorithm is very fast at
finding the minimum - usually it takes less than 7 iterations
to converge to the optimal parameters, even if the cost
value for the initial point is not bounded. However, as
there is no convergence proof for this algorithm, we used it
in combination with the Quasi-Newton gradient algorithm,
which is guaranteed to converge although it requires a
stabilizing initial condition.



yes

Start: initialize C0

Calculate “denominator”  of To

Perform optimization assuming
constant “denominator”

Solution converged
OR

Maximum No. of
iterations reached?

Return C0 and stop

no

Fig. 2. Successive Approximation Algorithm

The nominal solution assumes that the controller has a
full structure with all the elements of the matrix being PID
controllers. However, restricting the structure (forcing some
of the parameters to be zero) is relatively straightforward
and does not lead to major modifications of the algorithm.
The additional constraint is of course that the closed-loop
system must be stable and this has to be verified e.g. by
calculating the closed-loop system poles.

C. Calculation of the controller performance index

The previous section described the algorithm for comput-
ing the optimal restricted-structure controller. To benchmark
the existing controller, there are a few steps remaining:

1) Calculate the minimum value of (19) corresponding
to the optimal RS controller (Jopt

0 )
2) Determine (19) for the actual controller (Jact

0 )
3) Calculate the ”Controller Performance Index”:

κ =
Jmin + Jopt

0

Jmin + Jact
0

(26)

with Jmin calculated from (18).
The controller performance index lies in the range0 . . . 1,

where “1” (optimum performance) is actually achievable
within the existing controller structure.

An interesting question that arises is the potential benefit
that may result from adding additional controllers into the
original multi-loop system. When this benefit appears to be
significant (relative to the estimated costs), then the tuning
parameters are readily available from the optimization step.

VI. SIMULATED EXAMPLE

The example that we use for illustration comes from [12]
and involves a2 × 2 system with time delays. First, we
show how to estimate the MV and GMV benchmark values
from sampled data, and then demonstrate the potential of
the restricted-structure design and benchmarking.

The process is described by equation (5), with the plant
and disturbance transfer-function matrices given as:

W =

[
z−1

1−0.4z−1
K12z−2

1−0.1z−1

0.3z−1

1−0.1z−1
z−2

1−0.8z−1

]

N =
[ 1

1−0.5z−1
−0.6

1−0.5z−1
0.5

1−0.5z−1
1

1−0.5z−1

]

Both set-points are assumed to be zero (pure regulatory
control). The parameterK12 determines the level of inter-
action between input 2 and output 1 and varies from 0 (no
interaction) to 1 (large interaction). Irrespective of K12, the
plant has a general interactor matrix

D =
[ −0.9578z −0.2873z

0.2873z2 −0.9578z2

]

A. Estimation of the minimum variance from operating data

In this subsection we assume only the knowledge of the
generalized plant interactor matrix. The existing controller
is the multi-loop minimum variance controllerC0 calculated
for the two single loops without considering the interactions.

Two choices of dynamic weighting functions have been
considered in this example:

Case (1):Minimum variance weightings:

Pc = I2, Fc = 0

Case (2):GMV static weightings:

Pc =
[

1 0
0 1

]
, Fc = −D−1

[
R1 0
0 R2

]
.

ParametersR1 andR2 determine the relative importance
attached to both control variances with respect to each other
and to the error variances. In this example they have been
fixed to R1 = 3 andR2 = 5. Also note that the weighting
Fc has been premultipled byD−1 and in this case the
interactor matrixDG simply equalsD.

The system has been simulated for different values of
K12 and 5000 samples of the error and control signal have
been collected in each case. Then the FCOR algorithm
has been applied to the interactor-filtered generalized
output and the benchmark cost evaluated. The controller
performance index (CPI) has also been calculated using
(22). The comparison of the error and control variances
for the optimal MV and GMV controllers is presented in
Table I, and the benchmarking results are shown in Figure 3.

Comments

• Although simplistic, the static GMV weightings do
provide a means of defining a benchmark with bal-
anced error and control variances. In this particular
example, the plant becomes non-minimum phase for
K12 > 2, resulting in the unbounded minimum vari-
ance control. The introduction of the control weighting
makes the benchmark realizable.

• As expected, the performance of the multi-loop MV
controller is close to 1 for small interactions between
loops and decreases when these interactions increase.

• The existing controller, however, is not so good if the
control variances are also of importance. This implies
that detuning the controller may be needed in practice.



TABLE I

ERROR AND CONTROL VARIANCES

K12 Controller Var[e1] Var[e2] Var[u1] Var[u2]

1
MV 1.387173 1.551406 0.798925 0.302076
GMV 2.824503 2.113715 0.182249 0.014378

5
MV 1.389516 1.551405 Inf Inf
GMV 3.230315 1.914557 0.207795 0.004998

10
MV 1.40381 1.551394 Inf Inf
GMV 3.387025 1.878119 0.24094 0.002577

Fig. 3. MV and GMV Controller Performance Indices

B. Restricted-structure controller design and benchmarking

We will now illustrate the technique of restricted-
structure design described in Section 5. The low-order
controllers are assumed to be of the filtered PID structure
with the derivative filter “time constant”τd = 0.5. In order
to compare ”like with like”, the existing controller will
also be of the above type. It will be a multi-loop PID
controller tuned using Ziegler-Nichols rules separately for
two loops. This controller has been assessed against the
full-order GMV controller, the optimal full-structure PID,
optimal diagonal PID and two optimal triangular PID’s. The
GMV weightings have been the same as in the previous
subsection. The values of the suboptimal termJ0 of the
cost function have been calculated for all these different
configurations and compared with the value obtained for
the existing controller. The results are collected in Table 2.
From the above results it is possible to tune the existing

TABLE II

RS BENCHMARKING RESULTS

Controller Multi-loop PID RS full RS diag.
J0 2.802634 0.015425 0.085873

Controller RS diag. 2 RS upper trian. RS lower trian.
J0 0.502203 0.03569 0.065818

PID controllers ”optimally” (in terms of the specified cost
function) or predict how additional controllers would affect
the performance of the system. This can be used as an
indication of the profitability of the possible investment.
In our case, it is clear that introducing feedback between
output 1 and input 2 (rather than between output 2 with
input 1) would bring greater improvement. This simple

example thus illustrates the potential of the technique in
analyzing structure, pairing the input-output variables and
as a tuning guidance.

VII. C ONCLUSIONS

Some aspects of multivariable controller performance
assessment, using the GMV controller as a benchmark,
have been presented. First, the multivariable optimal GMV
controller has been derived using the concept of the gen-
eralized plant and its interactor matrix. The algorithm was
then given for the data-driven controller performance assess-
ment against the GMV benchmark. Finally, the restricted-
structure version of the benchmarking algorithm has been
presented. The RS algorithm given here is simple to apply,
given the model of the system and its application for
structure assessment, controller tuning and benchmarking
have been indicated. A simple example has also been
presented to illustrate the discussed results.
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