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Abstract— Identification of time-invariant linear dynamic
systems is a mature subject. In this contribution we focus on
the interplay between methods that use time and frequency
domain data, respectively. The frequency domain data could be
either input/output Fourier transforms or frequency functions.
We explain how these different kinds of data types are used to
fit models, and how closely related the methods are. Of special
interest is how transients (initial conditions and deviations
from periodic signals) are handled. Direct estimation of time-
continuous models is also discussed, as well as software aspects.

I. INTRODUCTION

A linear dynamic system in discrete or continuous time
can be described by

y(t) = G(σ)u(t) + v(t) (1)

where σ is the differentiation operator p in continuous time
and the shift operator q in discrete time. The identification
problem is to find the transfer operator G and possibly also
the spectrum of the additive noise v. There is an extensive
literature on this problem, see among many books, e.g. [4],
[15], [10], and [14].

Basically, the approach to find such transfer functions
contains four steps:

1) Collect observed data from the actual system.
2) Select a class of models.
3) Select that member in the model class that describes

the observations “best” (according to some criterion).
4) Validate the resulting model to see if it will be “good

enough” for its purpose. If necessary, go back to
earlier steps and revise some choices.

For linear systems and models the interplay between time
and frequency domain methods is well known and much
utilised in, for example, control design. Indeed, this duality
is a cornerstone in many design and analysis methods.

For linear system identification the links between time-
and frequency domain methods are equally important. How-
ever, the tools have traditionally not been quite integrated.
Of course, methods to directly estimate frequency responses
from time domain data, through various spectral analysis
techniques are classical. They belong to the standard kit
of tools since the 1960’s. At the same time one can
distinguish one “community” (mostly control people) that
basically works with data in the time domain and primarily
estimates parametric time domain models (state-space and
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denominator/numerator transfer function models) and occa-
sionally complements that with spectral analysis. Another
community (mostly “instrumentation and measurement”
people) uses frequency domain data, periodic inputs and
well controlled experiments to build models of similar kind
(transfer functions) as well as refined frequency function
estimates. Frequency analysers are often used to collect and
compress data. Vibration and modal analysis are common
applications of this type.

Over a period of time, there was not so much contact
between these communities. For example, the fact that
the input not necessarily is periodic was perceived as an
obstacle to use frequency domain techniques.

Recently, the true duality between time- and frequency
domain methods have become clear. Estimating “initial
conditions” in the frequency domain can fully compensate
for non-periodic data, and so called subspace methods
originally developed for time domain data can also be
applied to frequency domain data. The importance and
implications of various inter-sample properties (like zero
order hold or band-limited) of the input has also been
clarified. The relative merits of periodic and non-periodic
data have been studied carefully. See for example [4] and
[10] for comprehensive treatments.

In the latest version of MATLAB’s SYSTEM IDENTIFICA-
TION TOOLBOX, [6], this clarified duality has been used to
create an estimation and validation framework that is fully
symmetric with respect to the time and frequency domains.

II. A BASIC PROBLEM: CURVE FITTING

The topic of model and parameter estimations is a very
rich subject with many approaches, theories and techniques.
It may be a good idea to go back to the roots and consider
for a while “Gauss’s perspective” of the problem in terms
of curve fitting.

To bring out the basic features, let us study a simple
example. Suppose the problem is to estimate an unknown
function g0(x),−1 ≤ x ≤ 1. The observations we have are
noisy measurements y(k) at points xk which we may or
may not choose ourselves:

y(k) = g0(xk) + e(k) (2)

The disturbance e is typically described as a zero-mean
stochastic variable with variance

Ee2(k) = λk (3)

How to approach this problem?



A. Parametric Methods

Global Parameterisations: One way or another, we must
decide “where to look for” g. We could, for example, have
the information that g is a third order polynomial. This
would lead to the – in this case – grey box model structure

g(x, θ) = θ1 + θ2x + θ3x
2 + . . . + θnxn−1 (4)

with n = 4, and we would estimate the parameter vector
θ from the observations y, using for example the classical
least squares method.

Now suppose that we have no structural information at
all about g. We would then still have to assume something
about it, e.g. it is an analytical function, or that it is
piecewise constant or something like that. In this situation,
we could still use (4), but now as black-box model: if we
assume g to be analytic we know that it can be approximated
arbitrarily well by a polynomial. The necessary order n
would not be known, and we would have to find a good
value of it using some suitable scheme.

Note that there are several alternatives in this black-box
situation: We could use rational approximations:

g(x, θ) =
θ1 + θ2x + θ3x

2 + . . . + θnxn−1

1 + θn+1x + θn+2x2 + . . . + θn+m−1xm−1

(5)

or Fourier series expansions

g(x, θ) = θ0 +

n
∑

`=1

θ2`−1 cos(`πx) + θ2` sin(`πx) (6)

These are only a few examples of how the model class can
be parametrised in a global way.

Local Parameterisations: Alternatively, we could ap-
proximate the function by expanding it into function ex-
pansions with basis functions with local support:

g(x) =

d
∑

n=1

θkgk(x) (7a)

Here, gk(x) could be a local function around a certain center
point γk so that

gk(x) = 0 if |x − γk| > βk (7b)

Paramaterizations like these are the basis for neural network
models, e.g. [4], Chapter 5.

B. Estimation Techniques and Basic Properties

It suggests itself that the basic least-squares method is a
natural approach for curve fitting:

θ̂N = arg min
θ

VN (θ)

VN (θ) =
N

∑

k=1

µk(y(k) − g(xk, θ))2
(8)

Here µk is a weight that in a suitable way reflects the

• “reliability” of the measurement k. This is typically
evaluated as the variance of e(k), so we would have
µk ∼ 1/λk, where λk is the variance of e(k).

• “relevance” of the measurement k. It could be that we
do not fully believe that the underlying model g(x, θ)
is capable of describing the data for all x. We could
then down-weigh a measurement at a point xk outside
a region of prime relevance for the model.

In case y and g0 are vector-valued (column vectors), the
criterion takes the form

VN (θ) =

N
∑

k=1

(y(k) − g(xk, θ))T Λ−1
k (y(k) − g(xk, θ))

(9)

where the matrix Λk takes care of the weightings. For the
reliability aspect, Λk would be the covariance matrix of
e(k).

It may be that a suitable weighting is not known off-hand.
An idea would be to let also the weights µk depend on the
parameter θ:

VN (θ) =

N
∑

k=1

µk(θ)(y(k) − g(xk, θ))2

A moment’s reflection shows that this will not work. Min-
imizing this criterion would be achieved by making the µk

“very small”, without necessarily giving priority to fit g(xk)
to y(k). The size of the weight must be counterbalanced in
some way. A clue to how this could be done is obtained by
the Maximum Likelihood method. Assume that the data are
generated according to

y(k) = g(xk, θ) + e(k) (10)

where e(k) in (2) is Gaussian with zero mean and (un-
known) variance λk(θ). Then y(k) has the distribution
(probability density function, pdf)

1

2π
√

λk(θ)
e−(y(k)−g(xk,θ))2/(2λk(θ)) (11)

If the noise terms e(k) are independent at different
k, the joint pdf for the observation vector Y N =
{y(1), . . . , y(N)} is obtained by taking the product of the
terms (11). The Likelihood function is the value of this pdf
with the observed values y(k) inserted. It is thus, for given
observations, a function of θ. The maximum likelihood
estimate of θ is the value that maximizes this function.
Alternatively we can take the logarithm of the likelihood
function, change sign, multiply by 2 and minimise the
result:

N
∑

k=1

[

(y(k) − g(xk, θ))2/λk(θ) + log λk(θ)
]

+ 2N log 2π

(12)



The suggestion is that in case a weighted least squares
criterion is used with adjustable weights, it is a good idea
to balance the criterion by

VN (θ) =

N
∑

k=1

µk(θ)(y(k) − g(xk, θ))2 − log µk(θ) (13)

A further comment that will be useful later: Suppose that
the measurements are scaled as in

y(k) = αkg0(xk) + e(k), Ee2(k) = λk (14)

with a known scaling αk. We could then interpret z(k) =
y(k)/αk as a measurement of the “curve-values”

z(k) = g0(xk) + v(k), Ev2(k) = λk/α2
k (15)

Applying the Least squares criterion to (15) gives

VN (θ) =

N
∑

k=1

µk(z(k) − g(xk, θ))2

If the weights are chosen as the inverse of the noise
variances, we get

VN (θ) =
N

∑

k=1

α2
k

λk
(z(k) − g(xk, θ)2 =

N
∑

k=1

(αkz(k) − αkg(xk, θ))2/λk =

N
∑

k=1

(y(k) − αkg((xk, θ))2/λk (16)

which, of course, is the corresponding weighted least
squares criterion applied to (14). This is very natural, but
it captures a principle, that we will apply later on.

C. Local Methods and Local Smoothing

A simple idea to form an estimate of the function value
g(x) at a point x is to form some kind of average of the
observations y(k) corresponding to xk in the neighbourhood
of x:

ĝ(x) =

N
∑

k=1

C(x, xk)y(k) (17)

where the weights C are chosen appropriately, and typically
being zero when the distance between x and xk is larger
than a certain value (“the bandwidth”). The choice of such
weights is the subject of an extensive literature in statistics.
See, among many references, e.g. [2], [16], [1], and [9].

The aspects of the weights are the same as on the weights
in (8), relevance and reliability. The relevance is typically
related to the distance x−xk as mentioned above, while the
reliability should reflect the variance of the additive noise
in (2). This suggests weights of the kind

C(x, xk) = c̃(x − xk, x)/λk (18)

normalised so that
N

∑

k=1

C(x, xk) = 1 ∀x (19)

Here λk is the variance of the measurement y(k). The
function c̃(ξ, x) is such that it is zero for |ξ| ≤ B(x),
where the bandwidth B(x) very well could depend on the
“target point” x. See also [12] for a recent discussion on
the choice of weights. One many also note that smoothing
the observations in this way has a close relationship with
adjusting locally parameterised models as in (7).

III. LINEAR DYNAMIC MODELS

A linear time-invariant system with input u and output y
can always be described by

y(t) = G0(p)u(t) + v(t) (20)

where G is the transfer function, p the differentiation opera-
tor and v(t) additive noise. Let the spectrum of v be denoted
by Φv(ω). All the following discussion is applicable to
systems with multiple inputs and multiple outputs (MIMO),
but in the notation we mostly will assume scalar inputs and
outputs (SISO).

A discrete time system can be described by the same
expression, except that the differentiation operator p is
replaced by the shift operator q.

A. Model Parameterisations

A model of a linear dynamic system is, one way or
another, a parameterisation of its transfer function:

G(s, θ), s is the Laplace variable in continuous time
(21a)

G(z, θ), z is the Z-transform variable in discrete time
(21b)

Alternatively, we can consider parameterisations of the
frequency function by replacing s by iω and z by eiωT

(T being the sampling interval.)
The model can possibly come together with a parameter-

isation of the additive noise spectrum

Φv(ω, θ) = λ|H(iω, θ)|2 (22)

where the second step shows the spectrum factorised using
a monic, stable and inversely stable transfer function H .

Comparing to the simple curve fitting perspective of Sec-
tion II, the parameterised frequency function G(iω, θ) plays
the role of the function g(x, θ). The spectrum Φv(ω, θ) will
relate to the weighting coefficients, µk, λk, as will become
clear later.

The actual parameterisation can be done in many different
ways. The underlying description could be a discrete time
ARMAX model

A(q)y(t) = B(q)u(t) + C(q)e(t)



with the coefficients of the polynomials (in q−1) A,B and
C comprising θ. This gives

G(eiω, θ) =
B(eiω)

A(eiω)

H(eiω, θ) =
C(eiω)

A(eiω)

Note the similarity with the basic forms (4) and (5) for
x = e−iω .

A physically parameterised, continuous time state space
model

ẋ(t) = A(θ)x(t) + B(θ)u(t) + w(t);

Ew(t)wT (s) = Q(θ)δ(t − s)

y(t) = C(θ)x(t) + D(θ)u(t) + e(t);

Ee(t)eT (s) = R(θ)δ(t − s)

corresponds to

G(iω, θ) = C(θ)(iωI − A(θ))−1B(θ) + D(θ)

H(iω, θ) = C(θ)(iωI − A(θ))−1K(θ) + I

Φv(ω.θ) = H∗(iω, θ)Λ(θ)H(iω, θ)

where K(θ) and Λ(θ) are computed from A,C,Q and R
as the steady state Kalman filter’s gain and innovations
variance.

Simple process models are obtained by parameterisations
of the kind

G(iω, θ) =
K

1 + sT1
eiωτ , θ = {K,T1, τ} (23)

with static gain, dominating time constant and time delay
as the parameters.

Many other types of parameterisations are of course
possible.

Note that these model parameterisation issues are entirely
independent of the domain in which the “curve-fitting” will
be made.

IV. THE DATA

A. Data Formats

Identification of linear time invariant models can be seen
as fitting the parameterised frequency function to data.

What are then the data? Several cases can be distin-
guished:

a) Sampled time domain input-output data: The data
are obtained by sampling the input and output with the
(constant) sampling interval T :

ZN = {u(T ), y(T ), u(2T ), y(2T ), . . . , u(NT ), y(NT )}
(24)

This is no doubt the most common situation, and also the
information source for several of the other data formats, as
we shall discuss in Section V. While the data collection in
practice always happens in discrete time, it may in general
not necessarily be based on a constant sampling rate.

b) Frequency domain data from continuous measure-
ments:

ZN = {UN (iω1), YN (iω1), . . . , UN (iωN ), YN (iωN )}
(25)

where U(iω) and Y (iω) are the (continuous time) Fourier
transforms of the input and the output:

UN (iω) =

∫

∞

0

u(t)e−iωtdt (26)

Clearly, in practice we neither have infinite nor continuous
time data records. Still, the Fourier transform above could
be evaluated under some circumstances. See Section V-A
below.

c) Frequency domain data from sampled measure-
ments:

ZN = {UN (eiω1T ), YN (eiω1T ), . . . ,

. . . , UN (eiωN T ), YN (eiωN T )}
(27)

where UN and YN are the discrete time Fourier transforms
of sampled inputs and outputs:

UN (eiωT ) =
1√
N

N
∑

k=1

u(kT )e−iωkT (28)

If these transforms are computed on the “DFT-grid”

ωk = 2πk/(NT ), k = 0, 1, . . . , N − 1 (29)

the data (27) will become the DFT (Discrete Fourier
Transform) of the time domain data (24) (with a special
normalisation).

It is interesting to note (see, e.g. Theorem 14.25 in [10])
that under weak assumptions UN (ω) and YN (ω) will have
an asymptotically (as N → ∞) normal distribution. The
values will also be (asymptotically) independent at different
values of ωk on the DFT grid.

d) Measurements of the continuous time frequency
response function: The observations from the system could
also be delivered as

ZN = {Gm(iω1), . . . , Gm(iωN )} (30a)

where Gm(iω) is some measurement of the system’s contin-
uous time frequency function G0(iω). Possibly, these data
could be complemented with some uncertainty estimate W
of the measurements:

ZN
U = {W (iω1), . . . ,W (iωN )} (30b)

e) Measurements of the sampled frequency response
function: This is quite analogous to the continuous time
case, but we deal with measurements of a sampled-data
frequency function G(eiωT ):

ZN = {Gm(eiω1T ), . . . , Gm(eiωN T )} (31a)

ZN
U = {W (iω1), . . . ,W (iωN )} (31b)

It is worth while commenting on the difference between
(30) and (31): A physical interpretation of the frequency



functions G(iω) and G(eiωT ) is in both cases that they
describe the amplitude change and the phase shift of an
input sinusoid cos(ωt) or cos(ωkT ). The actual response of
the system to this input will depend on the intersample be-
haviour of the cosine. If it indeed is applied as a continuous
time signal, but only recorded at the sampling instants, it is
still G(iω) that describes the output signal. If, on the other
hand, the input follows a cosine at the sampling instants,
but is piecewise constant or piecewise linear in between,
the output will still be a sinusoid of the same frequency at
the sampling instants. However, it will not be G(iω) that
describes the amplitude change and the phase shifts, but
another frequency function, which we denote by G(eiωT ).
The exact relationship between G(iω) and G(eiωT ) will
depend on the intersample behaviour of the input. Clearly,
if T is small compared to the time constants of the system,
the difference will be small for interesting frequencies ω.

V. WHERE DO THE DATA COME FROM?

Each of the data formats (24), (25), (27), (30) and (31)
could be the starting point for model estimation. In this
section we shall discuss how these data sets may be obtained
from primary measurements.

The time domain data (24) is quite straightforward to
obtain. The same is true for the Fourier transforms (27) -
(28).

A. Frequency domain data from continuous measurement:

To get correct values for (25)-(26) in practice, it is
required that the whole continuous signal u(t), −∞ < t <
∞ can be reconstructed from the sampled, observed data
{u(T ), . . . , u(NT )}. This is the case if u is periodic and
bandlimited. (In the periodic case, the Fourier transform
values UN (iωk) will have to be interpreted as the Fourier
coefficients corresponding to the fundamental frequency and
its harmonics, resulting from applying (26) to one period of
data only.) That is to say, that the results of the simple DFT
transformation (28)+(29) can be interpreted as the Fourier
coefficients of the infinite signal obtained by making u(t)
periodic with period N , and making it time continuous by
trigonometric interpolation (no power above the Nyquist
frequency).

Even if the input u is periodic and bandlimited, the output
need not be that. However, y is the sum of Gu and v and
the component of y that originates from u is periodic and
bandlimited. Since the estimate of G only should depend
on this component, frequencies in y higher than the highest
frequency in u could be removed. Then the output could
be averaged over the periods to get accurate values of the
relevant components of YN (iωk).

Another, more pragmatic way is when the sampling
interval T is small compared to the interesting dynamics of
the system and compared to the rate of change in u. Then
the input could be considered to bandlimited in practice,
and the values from (28) (after suitable normalisation) will
be good estimates of UN (iω).

B. Frequency response function estimates.

The frequency function estimates Gm in (30a) or (31)
can be directly measured by certain hardware equipment,
frequency analysers. Such an equipment could implement
Fourier analysis as in (32) below, or could rely upon the def-
inition of frequency responses by directly measuring phase
and amplitude shifts for a number of different sinusioldal
inputs.

The frequency responses can also be esti-
mated/constructed from measured data either in the
time or the frequency domain. This is the topic of Spectral
Analysis, which is further dealt with in Section VII. Let us
comment on the simplest case of spectral analysis, vis. the
Empirical Transfer Function Estimate, ETFE. It is formed
as the ratio of the output and input Fourier transforms

ˆ̂
GN (iω) =

YN (iω)

UN (iω)
(32)

and correspondingly in the discrete time case

ˆ̂
GN (eiωT ) =

YN (eiωT )

UN (eiωT )
(33)

In case the observations y and u have been obtained from
a noise-corrupted linear system with frequency function
G0(iω) it can be shown that the ETFE has the following
statistical properties: (Lemma 6.1 in [4].)

E
ˆ̂
GN (iω) = G0(iω) +

ρ1√
NUN (iω)

(34a)

E| ˆ̂GN (iω) − G0(iω)|2 =
Φv(ω)

|UN (iω)|2 +
ρ2

N |UN (iω)|2
(34b)

Here Φv(ω) is the spectrum of the additive noise (at the
output of the system) and ρi are constant bounds that
depend on the impulse response of the system, the bound
on the input, and the covariance function of the noise.

All this means that we can think of the ETFE as a “noisy
measurement” of the frequency function:

ˆ̂
GN (iωk) = G0(iωk) + vk (35)

with vk being a zero mean random variable with variance
Φv(ωk)/|UN (ωk)|2. We have then ignored the terms with ρ
in the expressions above. Note that the variance of vk would
correspond to the uncertainty estimate W (iωk) in (30b).

Something must also be said about the frequency grid
in (35): If the Fourier transforms are obtained by DFT of
equidistantly sampled data, the natural frequencies to use
in (35) are the DFT grid:

ωk = 2kπ/(NT ); k = 0, . . . , N − 1 (36)

This gives two advantages:
• Frequencies in between these grid points carry no

extra information: they are merely (trigonometric) in-
terpolations of the values on the DFT grid. This also
determines the maximum frequency resolution of the
frequency function.



• vk are (asymptotically) uncorrelated on this grid.

In the case of p outputs, vk is a column vector and Φv

is a p × p matrix.
The expressions (32)-(33) assume that u is a scalar (single

input system). Formulas for multi-input systems are given
in [5].

C. Data Compression

An advantage with frequency domain data is that dif-
ferent frequency grids can be chosen, and the selection of
frequencies can be matched to regions of prime interest.

In this context one should note that there is a fundamental
difference between frequency domain data as input and
output Fourier transforms on the one hand, and frequency
response data on the other.

Frequency response function data could be rather “noisy”
estimates of a function that is known to be smooth. It is
therefore possible to compress the information in frequency
function data by smoothing the function and retain it in
fewer points. The techniques for that follow equation (49)
below. Often a logarithmic frequency grid is chosen in this
context, since that makes the frequency points equidistant
in a Bode plot.

However, a similar data compression cannot be applied
to the input and output Fourier transform values in (27)
without serious loss of information. Simply put, the phase
information in Y (iωk) and U(iωk) (which carry informa-
tion about the system’s phase at ωk) would be lost by such
smoothing.

VI. FITTING THE MODEL TO DATA

A. Time Domain Data

The discrete time domain version of the model (1), (22)
is

y(t) = G(q, θ)u(t) + H(q, θ)e(t) (37)

For equidistantly sampled data we can form the predic-
tion errors for this model as

ε(t, θ) = H−1(q, θ)(y(t) − G(q, θ)u(t)) (38)

Remark: Normally G(q) and H−1(q, θ) have infinite
impulse responses, so the above expression will require all
past inputs and outputs y(τ), u(τ), τ < t to compute ε(t).
Normally, the values prior to time t = 1 are not known.
Often these values are then set to zero, at the expense of
creating a transient or initial state error. We shall discuss
in Section VIII how to deal with this problem.

A natural approach to estimate θ will be to minimise the
size of these prediction errors:

VN (θ, ZN ) =

N
∑

k=1

ε2(t, θ) (39)

In the case of multiple outputs, where the prediction errors
have covariance matrix Λ, a natural criterion to minimise is

V (θ, ZN ) =

N
∑

k=1

εT (t, θ)Λ−1ε(t, θ) (40)

which equals the maximum likelihood criterion if Λ is
known and e is Gaussian. If Λ is unknown we can still
use the same criterion, but balance it with the additional
term like in (12):

V (θ, ZN ) =

N
∑

k=1

εT (t, θ)Λ−1ε(t, θ) + log det Λ (41)

B. Frequency Domain Data

Consider now the case that we are given Fourier trans-
form values of the inputs and the outputs as in (25) and (27).
The relationship between these values is obtained from (20):

YN (eiωT ) = G0(e
iωT )UN (eiωT ) + VN (eiωT )

E|VN (eiωT )|2 = Φv(ω)
(42)

where V is the transform of the noise, corresponding to
(28). The relationship is not exact, only approximate, since
there are transients and deviations due to the fact that the
data may not be periodic. For the moment we disregard the
transient term, which is dealt with in detail in Section VIII.

The relation (42) is like (14) (with α = UN ) and a direct
application of the weighted least squares criterion (16) gives

VN (θ, ZN ) =
N

∑

k=1

|YN (eiωkT ) − G(eiωkT , θ)UN (eiωkT )|2/Φv(ωk) (43)

In case the spectrum for v is not given, but parameterised
as in (22), we get a parameterised weighting, and should
balance that as in (13):

VN (θ, ZN ) =
N

∑

k=1

|Y k
N − G(eiωkT , θ)Uk

N |2/(λ|H(eiωkT , θ)|2) +

N
∑

k=1

log λ|H(eiωkT , θ)|2 (44)

where, for short, Y k
N = Y (eiωkT ). Indeed, as in (12), this

will be the true log likelihood function in case VN (eiωkT )
are Gaussian distributed and independent for different k.

Remark: It may be noted that
∫ π

−π

log |H(eiω)| = 0 (45)

for any monic, stable and inversely stable transfer function
H . This means that the last sum in (44) is almost θ-
idependent for large N and equidistant frequency points.



Analogously, if we have continuous time Fourier trans-
forms of input and output given, as in (25), the continuous
time frequency function could be fit directly:

VN (θ, ZN ) =
N

∑

k=1

|YN (iωk) − G(iωk, θ)UN (iωk)|2/Φv(ωk) (46)

In this expression we assumed Φv(ω) to be known (or
estimated separately), but the extension the a parameterised
noise spectrum would be analogous to (44).

C. Frequency Response Data

Suppose now that the data is given in terms of measured
frequency response function values, (30a) or (31). A clear
cut curve fitting approach to estimating the model would be
to form the analog of (8):

VN (θ, ZN ) =

N
∑

k=1

|Gm(iωk) − G(iωk, θ)|2/W (iωk) (47)

where we used the uncertainty measure in (30b) for the
weights. The corresponding expression holds for the dis-
crete time case.

In the case that the frequency function estimate is an
ETFE as in (32) we would use the uncertainty measure
(34b). This gives

|Gm(iω) − G(iω, θ)|2/W (iω) =

|YN (iω)

UN (iω)
− G(iω, θ)|2 |UN (iω)|2

Φv(ω)
=

|YN (iω) − G(iω)UN (iω)|2/Φv(ω)

This means that for these frequency function estimates, the
criterion (47) exactly coincides with (46).

D. Connections between time and frequency domains

Let us show the relationship between frequency domain
fit (43) and the time domain fit (39) using Parseval’s
relationship. The Fourier transform (28) of the prediction
error (38) is (neglecting transients or assuming periodic
data):

EN (eiωT , θ) =H−1(eiωT , θ)(YN (eiωT ) −
G(eiωT , θ)UN (eiωT ))

Applying Parseval’s relationship to (39), (38) and ignoring
transient effects (or assuming periodic data) now gives for
this criterion

V (θ, ZN ) =

N
∑

k=1

|YN (eiωkT ) − G(eiωkT , θ)UN (eiωkT )|2

/|H(eiωkT , θ)|2
(48)

Dividing this expression by λ and using (22) we see that
this expression is exactly equal to (43). Consequently, also
the time domain expression (39) can be interpreted as curve

fitting the parameterised model to the ETFE. We have also
displayed the nature of the noise model in (37): It just
provides the weighting in this fit.

VII. ESTIMATION OF FREQUENCY FUNCTIONS

The criteria of the kind (47) where a parameterised set
of frequency functions is fitted to a measured frequency
response Gm can be seen as a way to smooth the measured
response. Another way would be to locally smooth the
measured response as in (17) – (19).

If measurements of the frequency function along with
uncertainty information is given as in (31) and we follow
the basic idea (18), the following weighting is obtained:

C(ω, ωk) = c̃(ω − ωk, ωk)/W (iωk)

where c̃(ξ, ωk) defines the bandwidth – or frequency resolu-
tion – around the frequency ωk. If the measured frequency
response is the ETFE (32), the associated uncertainty mea-
sure is given by (34b)

W (iω) =
Φv(ω)

|UN (iω)|2

which gives the smoothed estimate corresponding to (17):

Ĝ(iω) =
N

∑

k=1

ˆ̂
GN (iωk)c̃(ω − ωk, ω)|UN (iω)|2/Φv(ω)

(49)

It is shown in [4], Section 6.4, that for a function c̃(ξ, ω) =
Wγ(ξ) (that does not depend on ω in a second argument),
this is equivalent to the familiar Blackman-Tukey spectral
analysis method. Wγ then corresponds to the “frequency
window” and its inverse Fourier transform is the “Lag
window” (e.g. of Hanning, Hamming, Parzen or Bartlett
type).

The simple and natural curve-fitting smoothing approach
(17) – (19), thus corresponds to well-known spectral analy-
sis when applied to the ETFE. The resolution of the method
is determined by the “width” of the smoothing window Wγ .
It follows from our discussion that this window, c̃(ξ, ω) very
well may depend on the “target frequency” ω, thus allowing
for Frequency dependent resolution.

VIII. TRANSIENTS AND INITIAL STATES

Let us go back to the basic relationship (1) and focus
on discrete time. The arguments below are applicable to
multi-input-multi-output system, even though the notation
suggests a SISO system.

Let us consider the noise-free part of the response

yu(t) = G(q)u(t) (50)

Generally speaking, we assume only a finite number of
samples of inputs and outputs (24) be known:

y(1), y(2), . . . , y(N)

u(1), u(2), . . . , u(N)



The inputs prior to t = 1 are thus not known. Lets us denote
by y̌u(t) what would be the output corresponding to a
particular assumption about u(t), t = −∞, . . . ,−2,−1, 0.
Two typical cases would be

y̌u(t) = y0
u(t) outputs of (50) if u(t) = 0, t ≤ 0

y̌u(t) = yp
u(t) outputs of (50) if u(t) is periodic

with period N from t = −∞ to t = N

Let now (50) be realized in state space form:

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

Whatever assumption about prior values of u(t) we have
made, it would have left us in a certain state x(0) = x̌ at
time t. (For example, all prior u:s being zero would give
x(0) = 0.) Let the actual, typically unknown, initial state
be x(0) = x∗. Then

yu(t) = y̌u(t) + ỹu(t)

ỹu(t) = C(qI − A)−1A(x∗ − x̌)δ(t)

δ(t) =

{

0 if t 6= 0

1 if t = 0

The term ỹu(t) is thus the response from the initial condi-
tions. Alternatively it can be seen as the impulse response
from an additional input, which is an impulse:

x(t + 1) = Ax(t) + Bu(t) + Rδ(t)

x(0) = x̌ (the assumed input behaviour prior to t = 0)
y(t) = Cx(t)

R = A(x∗ − x̌)

The consequence is that any (possibly erroneous) guess of
input behaviour prior to time t = 0 can always be made
up for by adding an extra input which is an impulse at
time 0. The dynamics from this input has the same poles as
the system but unknown zeros. Note that one extra input is
sufficient, even if there are several regular inputs.

The typical two cases for assumed prior behaviour of the
inputs are

1) In the time domain: Assume that all prior values of
u(t) are zero. This will give the simple predictor (38)
with all values of u and y prior to t = 1 being zero.

2) In the frequency domain: Assume that all prior values
of u are obtained by periodic continuation of u back-
wards in time. This will make the Fourier transformed
relation in (42) exact for the u-influence at the DFT-
gridpoints (29).

Now, for general data sets, these two assumptions are not
correct, but the point is that an extra input signal which is
an impulse will make them correct, if this input is passed
through a system with the same poles as the model, and the
zeros are adjusted to data (to match the assumption.) This
extra input can be neglected, only if we know that the input
is periodic in the frequency domain case, or past values are

zero in the time domain. For long data records, it may be of
less importance, since the effects of this impulse response
may decay quickly compared to the data length.

This way to compensate for non-periodic frequency do-
main data was described in [11]. See also [13] for an
instructive discussion.

Example: The system

y(t) =
q−1 + 0.5q−2

1 − 1.5q−1 + 0.99q−2

was simulated noise-free over 150 data points with a
white noise input. Samples 101 to 150 were selected for
identification. Models were fit to these data both in the time
and frequency domains and both with and without adding
an extra input being an impulse. This gave the following
estimates:

Time domain and frequency domain with extra input:

y(t) =
q−1 + 0.5q−2

1 − 1.5q−1 + 0.99q−2

The “initial state” or numerator polynomial for the

input were B2(q) = −14.06q−1 − 1.079q−2

and B2(q) = −18.99 − 1.63q−1 respectively.

Time domain without extra input:

y(t) =
1.32q−1 − 0.26q−2

1 − 1.55q−1 + 0.94q−2

Frequency domain without extra input:

y(t) =
1.04q−1 + 0.68q−2

1 − 1.47q−1 + 0.87q−2

This illustrates clearly that erroneous assumptions about
past inputs (they are neither zero nor periodic in this case)
can give bad results even for noise-free data. However, they
can be handled with proper use of initial conditions (an extra
input impulse) both in the time and the frequency domains.

(The four models could be reproduced in [6] by the code

m0 = idpoly(1,[0 1 0.5],1,1,...
[1 -1.5 0.99]);

u = randn(150,1):
y = sim(m0,u);
z = iddata(y,u);
ze = z(101:150);
udel = [1;zeros(49,1)];
zed = ze;
zed.u = [ze.u udel];
m1 = oe(zed,[2 2 2 2 1 1],’ini’,’z’);
m2 = oe(fft(zed),[2 2 2 2 1 0],’ini’,’z’);
m3 = oe(ze,[2 2 1],’ini’,’z’);
m4 = oe(fft(ze),[2 2 1],’ini’,’z’);

(The pair ’ini’,’z’ is there to inhibit the default esti-
mation of initial states.))



IX. CONTINUOUS AND DISCRETE-TIME MODELS

An interesting advantage with frequency domain data
is that continuous time signals can be represented as the
Fourier transforms at a finite number of frequencies. This
opens up the possibility to estimate directly continuous
time models as in (46) or (47). The crux is not really the
estimation method, but how to find the Fourier transforms of
the continuous time signals. This was discussed in Section
V-A. See also [3].

X. SOFTWARE ASPECTS

We have in this contribution showed the duality between
time and frequency domain data and methods for identifying
linear models. It is natural and desirable that the duality
is handled in a transparent way in software packages for
identification. In this section we shall describe how this is
done in the System Identification Toolbox (SITB) [6]). The
goal of the syntax is to handle time domain data, frequency
domain input-output data, and frequency response data in
entirely analogous fashions both for estimating and validat-
ing models.

A. Input-Output Fourier Data

The iddata object contains input – output data. In the
time domain case, (24), the definition of the object from
data vectors or matrices is straightforward:

dat = iddata(Y,U,Ts)

where Ts is the sampling interval. The object also allows
definition of input/output data in the frequency domain over
arbitrary frequencies as in

dat = iddata(Y,U,’Frequencies’,W,...
’Domain’,’Freq’,’Ts’,0);

This corresponds to (25) and (27). Note that the sampling
interval, T , (’Ts’) is still relevant, since it has information
of how the signal Fourier transforms Y and U have been
computed from time domain data. Discrete time Fourier
Transforms conceptually have the frequency argument eiωT .
Note however, that frequency domain data, unlike time do-
main data allow continuous time signals (T = 0). Compare
the discussion in Section V-A.

With frequency domain data objects, several MATLAB
commands are naturally overloaded:

DF = fft(dat)
dat = ifft(DF)
da = abs(dat)
df = phase(dat)

etc.

B. Frequency Response Data

Frequency response data as in (30) and (31) can be
stored in the idfrd object in the SITB. It corresponds to
the frequency response data object frd in the CONTROL
SYSTEMS TOOLBOX. The object is formed by

dat = idfrd(G,fre,Ts,’cov’,W)

Comparing with (31), G contains the response data Gm,
and fre the frequencies ωk. Ts is the sampling interval T
(Ts = 0 denotes continuous time) and W is the uncertainty
measure (31b), which can be omitted if not known.

C. Estimation and Validation

The point now is that whatever the format of dat,
estimation and validation of models follow the same syntax:

m1 = oe(dat,[2 2 1])
m2 = n4sid(dat,3)
m3 = pem(dat)
compare(dat,m1,m2,m3)
resid(dat,m1)

etc. The prediction error approaches (oe, pem etc) imple-
ment the routines of Section VI, while the subspace esti-
mation command n4sid is described in [8] for frequency
domain data. (See also [7].)

Arbitrary weighings ck in the frequency domain fits,
replacing 1/Φv(ωk) in (43) and 1/W (iωk) in (47), can be
obtained by

m = oe(dat,[2 2 1],’focus’,c)

By default, initial states are always estimated, as described
in Section VIII. This estimation can be inhibited by

m = oe(dat,[2 2 1],’InitialState’,’zero’)

If the frequency domain data is denoted as continuous
time, a continuous time model is estimated directly (without
d2c transformations). Compare also [3].

D. Direct Frequency Function Estimation by Local Smooth-
ing

The local smoothing technique, described in Section VII
– which is an extension of traditional spectral analysis
methods – is implemented in a new function that estimates
idfrd objects (frequency functions and disturbance spec-
tra) from time or frequency iddata objects:

g = spafdr(data)

This allows Frequency Dependent Resolution, with a loga-
rithmic frequency grid as default along with a resolution
that as adopted to the grid. This could be an efficient
way of compressing measured data. It is often the case
that a courser resolution (in rad/s) can be used at higher
frequencies, and that a constant relative resolution is to be
preferred. Figure 1 illustrates the effect of the frequency
dependent resolution.

E. Some Further Features

Frequency domain data offer useful potentials also for
other problems:

• A focus filter can be implemented as specific frequen-
cies for which the fit should be made. For example,
m = oe(dat,[2 2 1],’focus’,[0.2 1])
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Fig. 1. Estimate of the frequency function for the data set IDDATA1, using
SPA (above) and SPAFDR (below) with default arguments for frequency
vector and resolution. Thin line: the true frequency response.

will concentrate the fit to the pass band from 0.2 to 1
rad/s. The desired frequency bands may not necessarily
be known a priori, but could be selected from a pre-
liminary model, like using frequencies that correspond
to the Nyquist curve being in the third quadrant, or
being close to the critical point −1. Example:
m = n4sid(data,5);
f = idfrd(m);
ph = phase(squeeze(f.resp));
fs = fselect(f,find(ph>-pi & ph<-
pi/2));
mp = pem(fs,’p1d’);

• If the inter-sample input behaviour is band-limited,
moving to the frequency domain will be the easi-
est way to handle the sampling. The FFT (discrete
Fourier transform) of the input will then be equal
to the Fourier transform of the underlying continuous
time input signal. (Cf Section V-A.) The FFT of the
output will similarly correctly describe the continuous
time Fourier transform of that part of the output that
originates from the input, and we can directly fit a
continuous time model – in this case of the kind

G(s) =
b

s2 + f1s + f2

z = iddata(y,u,0.5);
zf = fft(z);
zf.Ts = 0;
mp = oe(zf,[1 2])

F. GUI support

The graphical user interface (GUI) has been extended
to be transparent wrt the data domain. Frequency domain
iddata and frequency response data as frd or idfrd
objects can be imported into the GUI in the same way as
time domain data. See Figure 2. The icons for the different
types of data sets are marked by different background
colours. The data preprocessing menus allow the

Fig. 2. The GUI

transformation between the various representations. Also
the use of data objects of different types for estimation and
validation is entirely transparent. For example, if an idfrd
object is chosen as validation data, the Model output
view shows the frequency responses of the models, to-
gether with the data.

XI. INDUSTRIAL APPLICATION EXAMPLE

Paulstra CRC, Grand Rapids, MI manufactures among
other things rubber dampers for the automotive industry.
Frequency response data were collected from a vehicle
model with four inputs and two outputs. The inputs are
locations of the body relative to the tires (at two points)
and to contact points with the damper (two other points)
and the outputs are the locations relative to the damper at
two relevant points. The frequency function data G(iω) is
thus a 2-by-4 matrix for each ω, and it was given at 152
frequency values.

Four of these 8 transfer functions are shown in Figures
3 and 4.

The frequency function data, which had no uncertainty
information, were fitted to a 6th order linear state-space
model using the criterion (47) with W ≡ 1. Since the
frequency functions are matrices, the norm in (47) is
interpreted as the Frobenius norm (sum of squares of all
the matrix elements). The fit is accomplished in [6] as

for ky = 1:2
for ku = 1:4

resp(ky,ku,:)=frf_ky_ku
end

end
g = idfrd(resp,freq)
m = pem(g,6,’nk’,[0 0 0 0])
bode(g,m)
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Fig. 3. The measured frequency functions from input 1 (thick line) and
the frequency function of the 6th order model (thin line). The lines almost
overlap. The upper plots are amplitude and the lower phase. The left figures
are to output 1 and the right ones to output 2. (The frequency scale has
been normalised.)
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Fig. 4. As figure 3, but from input 2.)

Here frf-ky-ku is the measured frequency response
from input ku to output ky and freq is the vector of
frequencies. Moreover, ’nk’,[0 0 0 0] indicates zero
delay from each of the inputs.

The last command generated the figures 3 and 4. They
show that a 6th order linear model gives a very good fit to
all 8 measured frequency functions.

XII. CONCLUSIONS

The duality between time and frequency domain data and
methods is a powerful asset in linear system identification.
Indeed, as stressed in [13], the question is not Time or
Frequency Domain? but the best attitude is the statement
Time and Frequency Domain!.

We have in this contribution outlined the basic ap-
proached and pointed out the equivalences between the
methods.

Phrasing standard methods for linear system identifica-
tion as curve fitting brings out several common features and
gives some additional insight. It also shows that the bottom
line in identification is quite simple and relies upon early
work in statistics. In particular the kinship between time
and frequency domain method, both parametric and non-
parametric are brought forward. All techniques can actually
be seen as different ways of smoothing the empirical
transfer function estimate (32).
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