
 
 

 

  ABSTRACT 

Adaptive control of nonlinear time-delay system with low 
triangular structure is considered in this paper. Based on 
Lyapunov stability theory and Lyapunov-Krasovskiifunctio- 
nnal, an adaptive controller was proposed by the backstepp- 
ing technique and parameter estimation method. The adapt- 
ive controller can make the closed-loop system uniformly 
asymptotically stable. 
Key words:Time-delay system, Adaptive control, Parameter  
estimation, Backstepping, Low triangular structure. 

I. INTRODUCTION 
It is well known that in many physical systems, biological 

systems, especially in industrial chemical process[1], both 
diverse nonlinearities and diverse time-delay phenomena 
coexist in the controlled object. Some results such as stabil- 
ity analysis[2], robustness analysis and disturbance decouple- 
ing[3] have been obtained by generalizing the methods of 
dealing with linear time-delay systems and nonlinear syste- 
ms, or by the famous Razumikhin-type theory�an importa-  
nt approach to investigate the delay systems. When dealing 
with time-delay systems, we often construct two kinds of c- 
ontrollers, which have their virtues and shortcomings respe- 
ctively[4]. One is the memory controller[5], which is depend- 
ent on the past state, and the other is the memoryless 
controller, which is only connected with the current state.  

It is not avoidable to include uncertain parameters and 
disturbance in practical systems due to modeling errors, 
linearization approximations, and so on. During the past 
recent years, the problem of robust stabilization of uncertain 
dynamical systems has received considerable attention of 
many researchers, and many solutions approaches have been 
developed. In [6], the authors tried to construct a memory- 
less controller to stabilize time-delay system with triangular 
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structure, However, there are some fatal errors whether on 
assumptions or in reasoning process[7]. The conditions are 
decreased in [8] in which a memory controller was obtained 
and generalized to nonlinear system with the nested structu- 
re[9]. When the dynamical system with delayed state perturb- 
bation is dealt with, the upper bound of the delayed state 
perturbation norm is generally supposed to be known, and 
such bound is employed to construct some types of stabilizi- 
ng state feedback controllers, or to develop some stability 
conditions. However, in the practical control problems, the 
bounds of the delayed state perturbations might not be exac- 
tly known. Therefore, for such a class of uncertain time-de- 
lay dynamical systems whose uncertainty bounds are partia- 
lly known, adaptive control schemes should be introduced to 
update these unknown bounds. Adaptive output feedback 
practically stable controller designing scheme was presented 
in [10] for uncertain time-delay systems with unknown bou- 
nds for the uncertainties. Adaptive state feedback controller 
for uncertain systems with unknown multiple constant time- 
delays perturbation was studied in [11]. 

In this paper, an adaptive state feedback controller for the 
systems with low triangular structure is proposed by using 
backstepping  technique and parameter estimation 
method[12] based on Lyapunov stability theory. The 
controller can make the closed-looped asymptotically stable. 

II. SYSTEM DESCRIPTION AND PROBLEM 
FORMULATION  

Consider a class of dynamical systems described by the 
following differential equations: 
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where Rt ∈ is the time, Rtu ∈)( denotes the input; 

,)](,),(),([)( 21
rT

r Rtttt ∈= ζζζζ L   ),([)( 1 txtxi =  

),(2 tx iT
i Rtx ∈)](,L   denote the current vector value 

of state variables; 0>id ,,,1, ni L= are known constant 

delays, and .00 =d θ  is an unknown positive constant. 

,,,1   ),(),(),(0 niGF ii L=⋅⋅⋅ φ are some known smooth 

functions which satisfy   0)0,,0()0,,0(0 == LL iF φ , 

))(,),(( 1 txtxG ii L ni ,,1 ,0 L=≠ . We aim to design 
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III. MAIN RESULTS 

Lemma:  Consider the smooth function ),,( 21 nxxxE L  
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Theorem:  Consider the system (1) satisfying the 
assumption. Then under the following adaptive feedback 
controller )(tu  described by (3)  
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the closed-loop system of (1) is uniformly asymptotically 
stable in the presence of the unknown parameter θ . )(⋅iϕ  

is the virtual controller designed in step i ,and 0)(0 =⋅ϕ . 

Remark: It is fair to say that the backstepping technique has 
been a great success in nonlinear free time-delay robust 
control. It is not only applied to systems in lower triangular 
form, namely the strict feedback form but also applied to the 
systems in nested structure. In this paper, we will shown that 
may be applied successfully to time-delay systems with strict 
feedback form. Parameter estimation and tuning function 
are two classic methods in designing the adaptive controller. 
We will adopt the first method although it has certain 
shortcomings[12] .  

Proof:   
Step 1 Suppose )()( 11 tztx = , and )(1 tx  is 
measurable, then the first two equations of the system (1) 
changed into 
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Consider the following Lyapunov-Krasovskii function 
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where 0c1
sj ≥ , 01 ≥jc , 01 >a  are some constants to be 

determined next . 1
�θ  is the first estimation of θ  Then 1V  

has the time derivative along the trajectories of systems (4) 
as following 
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smooth function, therefore following from Lemma, 
there exist smooth functions 
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From (2), (6), (7) and (8), we can obtain  
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Similar to the proof of step 1, from (9) and (10) we can 
obtain 
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Continue the computation similarly to the step 2 till step 
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known real numbers or functions. From (13), we can know 
that the closed-loop system of (12) is asymptotically stable. 
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we can drawn conclusion that the closed loop system of (1) can 
be uniformly asymptotically stabilized under the adaptive 
controller )(tu described by (14)  

IV. CONCLUSION 
The problem of adaptive control of nonlinear time-delay 

systems with triangular structure is dealt with in this paper. 
Based on Lyapunov stability theory and Lyapunov-Krasovs- 
kii functional, an adaptive controller was designed by 
backstepping and parameter estimation approach. The 
controller can guarantee the closed-loop dynamical system 
asymptotically stable under the unknown constant 
parameter. More emphasis should be put on the 
simplification of the complicated procedure later . 
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