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Abstract
On-line approximation based control methods seek im-
proved performance for poorly modeled nonlinear systems
by approximating the unknown nonlinearities as a part of
the control design. Such on-line approximators cannot be
perfect, so there will always remain some inherent approx-
imation error. Recent articles have improved the robust-
ness and convergence properties of such methods by also
estimating a function that bounds the approximation error
and including terms in the control law to compensate for
any approximation errors less than the estimated bound.
In this article, we present new algorithms for estimating
the bounding function that enhance the local accuracy of
the bounding function. The same improvements in ro-
bustness and convergence properties are achieved as for
the existing results, but with less conservatism. Lyapunov
stability analysis and numerical simulations are included.

Keywords: Adaptive control, local learning adaptation,
nonlinear systems, adaptive bounds.

1 Introduction
There has been a great deal of research in the adaptive
nonlinear control systems involving on-line approximation
structures. The theory for approximation based nonlin-
ear control is provided in [1, 2, 4, 6, 7, 8, 10, 11]. The
design and analysis of adaptive systems have been exten-
sively addressed in [2, 8, 10], including controller struc-
ture selection, automatic adjustment of the control law,
and complete proofs of stability. Its application based on
feedback linearization method is developed in [6, 7]. On-
line approximation based control by backstepping meth-
ods is considered in [4]. Since on-line approximation based
control can never achieve an exact modeling of unknown
nonlinearities, the estimation of a global bound on the
inherent approximation errors is discussed in [4, 8, 9].

The problem of learning control, referred to herein as on-
line approximation based control, has been studied since
the 1960s. The main difference between adaptive and
learning control [3] is that an adaptive controller adjusts
the parameters of a local model to maintain its local accu-
racy at the present operating point of a nonlinear system.
Even in applications where the operating point frequently
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returns to similar locations, such a local mode is not capa-
ble of retaining model accuracy as a function of operating
condition. A learning controller uses a more capable func-
tion approximation structure, for example using weighted
combinations of local models, that is able to retain ap-
proximator accuracy as a function of the operating point.
Such an approach allows the on-line approximator to be
tuned in a local region without affecting the approxima-
tion accuracy previously achieved in other regions.

In [9], a robust adaptive control design for a class of non-
linear uncertain systems is proposed based on the main
assumption that the unknown functions satisfy a so-called
triangular bound condition. The global uniform ultimate
boundedness is guaranteed by using on-line approxima-
tion of the unknown bounding function in the control.
The advantage of the adaptive bounding approach is that
only the functional dependence of the unknown bound is
required to be known, not its magnitude. However, the
bounding parameter adaptation derived in [9] has global
features. Any knowledge learned from past experience is
not retained for future use.

In this paper, we extend the existing theory by deriving
and analyzing localized bounding parameter adaptation
laws. The stability and robustness results are theoreti-
cally the same as those already in the literature; however,
the estimate of the bound is tighter, the region of uniform
ultimate boundedness is smaller, and the bounding and
function approximation information is retained as a func-
tion of operating point even as the operating point moves
around the operating envelope.

2 Problem Formulation
We consider a first order SISO plant defined as

ẋ = fo(x) + f(x) + g(x)u. (1)

We will only consider the case where g(x) = 1. This
restriction is mainly to simplify the presentation. The
extension for g(x) 6= 1 has been considered, in the case
of a global bound, in [10]. Higher order systems have
been considered in [4]. In this notation, fo(x) is a known
design model and the function f(x) represents nonlinear
effects that are unknown at the design stage. The goal
of the control system design is to select u to cause x(t)
to track the reference input xd(t), where xd(t) and ẋd(t)
are continuous and available signals. We will assume that
xd(t) ∈ D for all t > 0 where D is a compact domain of
operation that is known at the design stage.



2.1 Lyapunov Redesign
If a bounding function ∆(x) is available such that |f(x)| ≤
∆(x), then the Lyapunov redesign method [5] can be used
to select

u = −fo(x) + ẋd − kxx̃ − β(x, x̃) (2)

where kx > 0, x̃ = x − xd is the tracking error, and

β(x, x̃) = ∆(x)sgn(x̃) (3)

where sgn denotes the signum function. With these
choices, the time derivative of the Lyapunov function
V1(x̃) = 1

2

(
x̃2

)
along solutions of (1) satisfies

dV1

dt
≤ −kxx̃2. (4)

Since V1 is positive definite and its time derivative is neg-
ative definite, the state x̃ is shown to be asymptotically
stable. In fact, exponential stability can be proven.

This approach has two rather severe drawbacks. First, if
|f(x)| is large, then ∆(x) will be at least as large, and
the control signal will take on potentially large values.
This issue can be addressed through on-line approxima-
tion of f(x). Second, the β term of the control signal is
discontinuous. Such discontinuity not only causes theo-
retical difficulties (existence and uniqueness of solutions),
but may also cause chattering or excite high-frequency
unmodeled dynamics. Therefore, it is typical to use a
smooth approximation to the β function.

Let ε be a small positive constant, and let tanh(·) denote
the hyperbolic tangent function. A smooth β function
can be defined as

β(x, x̃) = ∆(x)tanh(x̃/ε). (5)

This β component is an approximation of the discon-
tinuous scheme described by (3). In particular, as ε
approaches zero, tanh(x̃/ε) will approach the function
sgn(x̃). With β selected according to (5) the time deriva-
tive of the Lyapunov function V1(x̃) along solutions of (1)
can be shown to satisfy

dV1

dt
= −kxx̃2 + x̃ [f(x) − ∆(x)tanh(x̃/ε)]

= −kxx̃2 + x̃ [f(x) − ∆(x)sgn(x̃)]
+x̃ ∆(x) [sgn(x̃) − tanh(x̃/ε)]

≤ −kxx̃2 + ∆(x) [x̃ sgn(x̃) − x̃ tanh(x̃/ε)]
≤ −kxx̃2 + ∆(x)ηε

where the lemma in the Appendix defining η ≈ 0.28 has
been used. With the smoothed bounding term defined
in (5), we are able to prove exponential convergence to a
neighborhood of the origin defined by x̃2 ≤ ∆̄ ηε

kx
where ∆̄

is a constant upper bound on ∆(x) for x ∈ D. The de-
signer can affect the size of this neighborhood mainly by

the size of the smoothing region ε. Note that decreasing
this neighborhood by increasing kx is possible, but not
desirable, since kx determines the bandwidth of the con-
trol system. Alternatively, the designer can approximate
f(x) on-line to decrease the size of ∆(x).

3 On-line Approximation
Let f(x) be approximated by a linear-in-the-parameter
function

f̂(x; θf ) = θT
f Φ(x) (6)

where x ∈ D ⊂ <, Φ(x) = [φ1(x), . . . , φN (x)]T : < 7→ <N

is a user specified regressor vector containing the basis
functions for the approximation, θf is the vector of pa-
rameters to be estimated to improve the accuracy of the
function approximation. Throughout this article, it will
be assumed that each element of the regressor vector is
non-negative for any x ∈ D. Splines, radial basis func-
tions, certain wavelets, and many other choices of basis
elements satisfy this assumption.

Define a theoretical optimal, but unknown set of approx-
imator parameters as

θ∗f = arg min
θf

(
sup
x∈D

∣∣f(x) − θT
f Φ(x)

∣∣) .

The parameter vector θ∗f is only used for analysis and is
not used in the implementation. With this definition of
θ∗f , f(x) can be expressed as

f(x) =
(
θ∗f

)T Φ(x) + δ(x)

where δ(x) is the minimum achievable absolute approxi-
mation error defined by

δ(x) = f(x) − (
θ∗f

)T Φ(x). (7)

The quantity δ(x) is referred to as the inherent approx-
imation error since its maximum value on D cannot be
decreased by choice of the parameters θf . By defining
the approximator parameter error as θ̃f = θf − θ∗f , the
unknown function f(x) can be represented as

f(x) = f̂(x; θf ) − θ̃T
f Φ(x) + δ(x). (8)

The form of eqn. (8) will be convenient in the analysis to
follow.

Select the on-line approximation based control law as

u = −fo(x) − f̂(x; θf ) + ẋd − kxx̃ − β. (9)

The term β will be defined later to address the inherent
approximation error function δ(x). Substituting (9) into
(1) yields the dynamic equation for the tracking error

˙̃x = −kxx̃ − θ̃T
f Φ(x) + δ(x) − β. (10)



In the approach proposed in [8, 10], the approximator
parameters were adjusted according to

θ̇f = ˙̃
θf = Γf

[
x̃Φ(x) − σf

(
θf − θo

f

)]
(11)

where Γf > 0, σf > 0 and θo
f are design parameters. The

disadvantage of this adaptation law is that when either
x̃ or φi(x) are zero, then θf,i will converge toward θ0

f,i.
This causes the approximated function to lose its local
accuracy as the operating point x leaves any local region.
This is demonstrated in the example section.

4 Local Bound Results
Since δ(x) represents inherent approximation error for the
unknown function f(x), neither δ(x) or a function that
bounds it are known. Therefore, the bound is estimated
on-line [8, 10]. In particular, we assume that

|δ(x)| ≤ [ψ∗
1 · · ·ψ∗

N ]




φ1

...
φN


 (12)

where ψ∗ = [ψ∗
1 · · ·ψ∗

N ]T is an unknown vector con-
stant,with each element being non-negative. The elements
of the vector ψ∗ are not unique since any ψ̄∗ > ψ∗ sat-
isfies (12). To avoid confusion, ψ∗ is defined to be the
vector with the smallest ∞-norm such that (12) is satis-
fied. Since ψ∗ is unknown, we will use ψT Φ(x) as a bound
on |δ(x)| where the vector ψ is estimated on-line1. With
this upper bound, β is selected as

β = ψT Φ(x)tanh (x̃/ε) = ψT Ω (13)

where Ω = [ω1, . . . , ωN ]T with ωi = φi(x)tanh (x̃/ε).
Note that this β function has significantly smaller mag-
nitude than the β of Section 2.1, since the β of eqn. (13)
need only bound the inherent approximation error δ(x)
and |δ(x)| ¿ |∆(x)|.
Define an unknown constant vector ψM

i =
max{ψ∗

i , ψ0
i }, i = 1, · · · , N , where ψ0 =

[
ψ0

1 · · ·ψ0
N

]T

is a vector design constant with positive elements that
appears in the adaptive law

ψ̇ = Γψ(x̃Ω − σψ(ψ − ψ0)). (14)

In this adaptive law Γψ is a positive definite matrix and
σψ > 0. Both are design parameters. Note that in (14)
the x̃Ω term is always nonnegative. Therefore, each el-
ement of ψ increases until either x̃ is zero or it is bal-
anced by the corresponding element of the second term
σψ(ψ − ψ0). The term σψ(ψ − ψ0) is used to ensure the
boundedness of ψ. If any element ψi achieves a steady

1Note that we have chosen to use the same regressor Φ for the
bound as was used for the on-line approximation. This choice is
motivated by the fact that both functions are being approximated
over the same region and we therefore achieve computational savings
by using the same regressor.

state value, the steady state value will be at least as large
as ψ0

i . Let ψ̃T = [ψ1 · · ·ψN ]− [
ψM

1 · · ·ψM
N

]
be the bound-

ing parameter estimation error.

The disadvantage of adaptation law (14) is that when
either x̃ or φi(x) are zero, then ψi will converge toward
ψo

i . This causes the bounding function to lose its local
accuracy as the operating point x leaves any local region.
This will also be demonstrated in the example section.
We continue with the analysis nonetheless, as it will serve
as a basis for the analysis of the subsequent sections.

Define the Lyapunov function as

V =
1
2
x̃2 +

1
2
(θ̃T

f Γ−1
f θ̃f ) +

1
2
(ψ̃T Γ−1

ψ ψ̃). (15)

The derivative of V along (1), (10), and (14) is

V̇ = −kxx̃2 − σf θ̃T
f (θf − θ0

f ) + α (16)

where α = x̃δ(x) − x̃β + ψ̃T Γ−1
ψ ψ̇. Then,

α ≤ [ψM
1 · · ·ψM

N ]




(|x̃| − x̃tanh(x̃/ε))φ1

...
(|x̃| − x̃tanh(x̃/ε))φN




−[ψ̃1 · · · ψ̃N ]




x̃ω1

...
x̃ωN


 + ψ̃T Γ−1

ψ ψ̇. (17)

Using the lemma from Appendix 1, we have:

[ψM
1 · · ·ψM

N ]




(|x̃| − x̃tanh(x̃/ε))φ1

...
(|x̃| − x̃tanh(x̃/ε))φN




≤ ηε[ψM
1 · · ·ψM

N ]




φ1

...
φN


 = ηε

N∑
i=1

ψM
i φi. (18)

Therefore,

V̇ ≤ −kxx̃2 − σf θ̃T
f (θf − θ0

f ) − σψψ̃T (ψ − ψ0)

+ηε

N∑
i=1

ψM
i φi. (19)

The discussion will now be divided into three parts.

4.1 No Leakage (i.e., σf = σψ = 0)
The previously stated adaptive laws for θf and ψ include
leakage terms to prevent parameter drift toward unbound-
edness. However, the previous discussion pointed out that
at time t > 0 these leakage terms cause forgetting of both
the bound and approximator in all regions of D where all
φi(x(t)) are zero. This forgetting could be eliminated by
letting σf = 0 and σψ = 0.



Based on the above Lyapunov function derivative (16), if
we select the adaptive laws for θf and ψ as

θ̇f = ΓfΦ(x)x̃ and ψ̇ = ΓψΩ(x)x̃ (20)

for |x̃| >
√

1
kx

ηε
∑N

i=1 ψM
i φi. Then the inequality (19)

reduces to: V̇ ≤ −kxx̃2+ηε
∑N

i=1 ψM
i φi, which is negative

definite whenever kxx̃2 > ηε
∑N

i=1 ψM
i φi. Therefore, we

can show that x̃ is ultimately bounded by

|x̃| ≤
√√√√ 1

kx
ηε

N∑
i=1

ψM
i φi. (21)

However, the adaptive law for ψ in (20) results in ψ being
nondecreasing, which is not desirable.

4.2 Leakage (i.e., σf 6= 0 and σψ 6= 0)
By completing the square, it can be shown [8, 9] that

θ̃T
f (θf − θ0

f ) =
1
2
‖θ̃f‖2 +

1
2
‖θf − θ0

f‖2 − 1
2
‖θ∗f − θ0

f‖2

ψ̃T (ψ − ψ0) =
1
2
‖ψ̃‖2 +

1
2
‖ψ − ψ0‖2 − 1

2
‖ψM − ψ0‖2.

Then, the inequality (19) will reduce to

V̇ ≤ −kxx̃2 − σf

2
‖θ̃f‖2 − σψ

2
‖ψ̃‖2 + ηε

N∑
i=1

ψM
i φi

+
σf

2
‖θ∗f − θ0

f‖2 +
σψ

2
‖ψM − ψ0‖2. (22)

So that, we have

V̇ ≤ −cV + λ, (23)

where c = min{2kx,
σf

λmin(Γ−1
f

)
,

σψ

λmin(Γ−1
ψ

)
} and λ =

ηε
∑N

i=1 ψM
i φi + σf

2 ‖θ∗f − θ0
f‖2 + σψ

2 ‖ψM − ψ0‖2.

If we define ρ := λ
c , then (23) satisfies: 0 ≤ V (t) ≤ ρ +

(V (0)−ρ)e−ct. Therefore, x̃, θf , ψ are globally uniformly
ultimately bounded, with exponential convergence toward
the region of uniform boundedness. The tracking error is
ultimately bounded with |x̃| less than√√√√(

ηε
∑N

i=1 ψM
i φi + σf

2 ‖θ∗f − θ0
f‖2 + σψ

2 ‖ψM − ψ0‖2
)

kx
.

This bound is greater than (21). In addition, the param-
eter adaptation with leakage as written in (11) and (14)
cause global forgetting as discussed previously.

5 Localized Adaptive Laws
To remove the issue of global forgetting that is caused by
the standard leakage approach, we incorporate {φi}N

i=1

into the adaptive laws as

θ̇f = Γf

(
x̃ − σf

[
diag

(
θf − θo

f

)])
Φ(x) (24)

ψ̇ = Γψ

(
x̃ tanh

(
x̃

ε

)
− σψ [diag (ψ − ψo)]

)
Φ(x) (25)

where diag(v) is the square diagonal matrix with diagonal
components equal to the vector v. This formulation local-
izes the effects of the leakage terms to the vicinity of the
present operating point. Thus eliminating the problems
with global forgetting. It also decreases the amount of
on-line computation, since all parameters associated with
zero elements of the Φ(x) vector are left unchanged.

The Lyapunov analysis then proceeds as follows

V̇ ≤ −kxx̃2 − σf θ̃T
f Q(θf − θ0

f ) − σψψ̃T Q(ψ − ψ0)

+ηε
N∑

i=1

ψM
i φi (26)

where Q = diag(Φ(x)). It can be shown that,

θ̃T
f Q(θf − θ0

f ) =
1
2
θ̃T

f Qθ̃f +
1
2
(θf − θ0

f )T Q(θf − θ0
f )

−1
2
(θ∗f − θ0

f )T Q(θ∗f − θ0
f )

ψ̃T Q(ψ − ψ0) =
1
2
ψ̃T Qψ̃ +

1
2
(ψ − ψ0)T Q(ψ − ψ0)

−1
2
(ψM − ψ0)T Q(ψM − ψ0). (27)

Then, Eqn.(26) becomes

V̇ ≤ −kxx̃2 + ηε

N∑
i=1

ψM
i φi +

σf

2
(θ∗f − θ0

f )T Q(θ∗f − θ0
f )

+
σψ

2
(ψM − ψ0)T Q(ψM − ψ0). (28)

It is clear that V̇ is negative definite whenever kxx̃2 >

ηε
∑N

i=1 ψM
i φi + σf

2 (θ∗f − θ0
f )T Q(θ∗f − θ0

f ) + σψ

2 (ψM −
ψ0)T Q(ψM − ψ0). Therefore, we can show that x̃ is ulti-

mately bounded by |x̃| ≤
√

1
kx

R, where

R = ηε

N∑
i=1

ψM
i φi +

σf

2
(θ∗f − θ0

f )T Q(θ∗f − θ0
f )

+
σψ

2
(ψM − ψ0)T Q(ψM − ψ0).

Due to the inclusion of the factor Q, this bound, which is
a function of the operating point, is significantly smaller
than the bound of Section 4.2.

6 Numerical Simulations
Consider for illustrative purposes the simple plant

ẋ = sin(x) + u (29)

where f(x) = sin(x) is assumed to be unknown to the
controller u. Gaussian Radial Basis Functions (RBF) with
fixed centers and widths are used to implement the re-
gressor vector. The domain of operation is specified as
D = [−3.5, 3.5]. The set of center locations are spaced
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Figure 1: Simulation results for localized adaptation algo-
rithm.

every 0.3 units between -3.6 and 3.6. The control gain is
selected to be kx = 0.3. The desired trajectory is given
by the output of the dynamical system

ẋd = 3(−xd + r) (30)

where r is the sum of 2 sin(0.1t+π/2) and a 0.5Hz square
wave oscillating between ±1.1. The various design param-
eters are given by θf (0) = [0 · · · 0]T , ψ(0) = [0.5 · · · 0.5]T ,
ε = 10−3, Γf = 10I, σf = 0.005, Γψ = 3I, σψ = 1/30,
θ0

f = [0 · · · 0]T , ψ0 = 0.005[1 · · · 1]T .

Fig. 1 shows simulation results using the control law (9)
and parameter adaptation laws (24-25). Plotted are x̃, the
17-th element of Φ, the 17-th element of θf and the 17-th
element of ψ. Element 17 is an arbitrary choice. The goal
of plotting the 17-th element of Φ, of θf and of ψ is to
illustrate the fact that when x(t) is outside the support
of φ17, then the corresponding parameters are left un-
changed. Since this is an example, we already know that
f(x) = sin(x); therefore, θ∗f and δ(x) can be computed
and used for illustrative purposes. The lower left subplot
of Fig. 1 indicates the value of the 17th element of θ∗f .

Fig. 2 shows simulation results using standard leakage in
the parameter adaptation laws. To simplify comparison,
we use the same approximator structure and the same de-
sign parameters Γf , Γψ, σf and σψ for both simulations.
It is clear that when φ17 = 0, the standard leakage terms
force the parameter estimates toward θ0

f and ψ0. This
shows that standard leakage terms for adjustment of θf

and ψ cause the approximators to forget (i.e., lose estima-
tion accuracy) in the i-th local region when φi = 0. But
the localized adaptive law can fix this issue by storing the
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Figure 2: Simulation results for the use of standard leakage
algorithm.

learned knowledge in memory for later reuse. Further-
more, for exactly the same design parameters, x̃ is much
smaller for the localized algorithm results of Fig. 1 than
the standard algorithm results in Fig. 2.

Fig. 3 and Fig. 4 provide additional information
about the differences in learning abilities between non-
localized and localized adaptation algorithms. For local-
ized adaptation, increasingly more accurate approxima-
tors are achieved as the time goes by and experience is
accumulated. Alternatively, only local accuracy improve-
ment, near the present operating point, is observed in Fig.
4. Since the non-localized adaptation algorithm is not ca-
pable of retaining the past learning, the adaptive bounds
obtained at the end of the simulations are distinctly differ-
ent for the two algorithms. The bound derived from local-
ized adaptation algorithm has almost the same shape as
approximator absolute error |sin(x)− θT

f Φ(x)|, while the
bound from the standard leakage algorithm is not similar
to |sin(x) − θT

f Φ(x)| except in the vicinity of the present
operating point.

7 Issues and Conclusions
In this paper, we have presented design, analysis and sim-
ulation results for an on-line approximation based control
system that incorporates locally accurate adaptive bound-
ing functions. Ultimately, after parameter convergence,
this would be a bound on the inherent function approx-
imation error. We have proved that the overall adaptive
scheme can guarantee ultimate boundedness, by apply-
ing the Lyapunov stability analysis. Numerical simula-
tions are provided to demonstrate the effectiveness of the
proposed controller in relation to the previously existing
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bound obtained at the end, when localized adap-
tation algorithm is used.

method. The results herein have focused on scalar sys-
tems with g(x) = 1, mainly to allow a straightforward
presentation and easily reproducible simulation results.
We expect that the methods presented herein can be ex-
tended to higher order systems and g(x) 6= 1. These ex-
tensions will be considered in the future.

The choice of the design parameter ψ0 and the interpre-
tation of ψ(t) is interesting for the localized algorithm. If
ψ(0) > ψ0 componentwise, then ψ(t) ≥ ψ0, ∀t > 0. If
ψ(0) < ψ0 componentwise, then ψ(t) will ultimately be
larger that ψ0 in any region where sufficient training sam-
ples are accumulated. The amount by which ψ(t)T φ(x)
exceeds (ψ0)T φ(x) in any region is a useful indicator of (i)
where additional training may be needed and (ii) where
the approximator θ(t)T φ(x) may not be capable of accu-
rately approximating f(x).

8 Appendix
Lemma. The following inequality holds for any ε > 0 and
for any u ∈ R, 0 ≤ |u| − u · tanh (u/ε) ≤ ηε, where η is a
constant that satisfies η = e−(η+1), i.e. η = 0.2785 [8, 9].
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