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Abstract—This paper addresses two important issues in  In [4], an index-1 DAE formulation of the dynamics
modeling Closed Kinematic Chains (CKC) as singularly per- of CKC, from which the reduced model is derived, was
turbed systems, namely, the validity domain and the error char- combined with a realization method from [5] to construct

acterization. The Singular Perturbation Formulation (SPF) is . larl turbed t ODE imati
obtained by replacing the algebraic constraint equation in an a singuiarly perturbed system as an approximation

index-1 Differential Algebraic Equations (DAE) model with an 0 the DAE system. The idea consists of replacing the
artificial fast dynamics. We first show that the SPF model has algebraic constraints in the DAE system with artificially

a larger validity domain than the DAE model, and boundaries  introduced fast dynamics characterized by a small pertur-
of the domain are easy to determine. We then characterize the bation parametee. The transformed system is thus called

error between the SPF model and the DAE model by deriving . . . -
explicit error bounds. Sufficient conditions that guarantee Singular Perturbation Formulation (SPF). The motivations

exponential convergence of the model error are established. are first the well-known asymptotic connection between
We verify the analysis by simulating the dynamics of a CKC singular perturbation systems and corresponding reduced

mechanism, the Rice Planar Delta Robot, and validating the DAE systems [6] [7], and second the reality that more
simulation results with experimental data obtained on the real established control design and stability analysis techniques
robot. . .

are available for singularly perturbed ODE systems than
for DAE systems [8]. The proposed SPF model was shown
to have the following properties that can facilitate control

The dynamics of Closed Kinematic Chains (CKC) ardesign [4]:

conventionally described by differential-algebraic equations , p; The DAE characterizing a CKC are approximated

(DAE). Dynamic equations in DAE form pose difficulties for using a singularly perturbed formulation in which the
simulation and control design. The DAE that characterize  gow second-order differential equations are equal in

CKC are of index-3 and they are difficult to simulate due  n,mper to the degrees of freedom (DOF) of the system.
to numerical ill-conditioning [1]. On the other hand, the | p> The validity domain of this singularly perturbed
difficulty with control of the DAE formulation of CKC lies system contains the entire singularity-free workspace

in the fact that most control design techniques are devised of the CKC. This property is investigated in this paper.
for explicit state space models. For the SPF model to be a valid approximation to th
Efforts have been made to extend the wealth of re-. o ¢ ode’ 1o be a valid approximation 1o the

sults from the control of Open Kinematic Chains (OKC hdex-1 DAE model, the error between these two systems

. o eeds to be characterized. We will give explicit upper bound
to the control of CKC. A recent result is the reduceqor the model error and compare our results to those from

mode! proposed in [2], which is in terms of mdepe'nde%% standard Tikhonov's theorem. In this paper, we make
coordinates and enables model-based control design Tﬂree main contributions:

implementation [3]. This model also presents two chal- o
lenges. First, it is based on an implicit transformation from * CI Explicit bounds for the error between the SPF

independent coordinates to dependent coordinates, which is Model and the original DAE model are derived. Suffi-

valid only (locally) in a compact domain. As a prerequisite cient conditions for the exponential convergence of the
for stability analysis, the boundaries of the compact domain  €rror are established.

need to be explicitly characterized. This is no easy task fore C2 Numerical simulations as well as experiments on a
general closed chains. Nevertheless, conservative estimates ¢/osed chain mechanism, the Rice Planar Delta Robot
have been developed in [2] and [3]. The second chal- (RPDR), are performed to support the analytical results.
lenge is that, since the transformation is implicit, effective * C3 The validity domain of the SPF model is charac-

numerical schemes must be devised for real-time control terized based on the work in [4]. The SPF model is

implementation. The above difficulties suggest the need for Shown to have a larger domain than the index-1 DAE
an alternative to directly considering the DAE formulation ~ Model, hence much larger than the reduced model.

as the basis for control design. The remainder of the paper is organized as follows.
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Section| T} describes the singular perturbation approach athé singularity-free workspace

characterizes the validity domain of the SPF model. Section , , . — ., ,

[T] gives explicit error bounds and establishes stability Vi={d € U detlyy (q)] # 0} C U )
properties which guarantee exponential convergence of thelhe principle of virtual work was used in [2] to eliminate
error. In sectiorf 1Y we illustrate the analysis by simulatinghe Lagrange multipliers in the index-3 DAK](1). The
the dynamics of the RPDR and validating the simulatioresulting equations of motion is in the form of an index-
results with experimental data. Finally, sectjoh V concludgs DAE

this paper and outlines future work. D(q)dq+C(qd,q)q+g(q) =0
N NTTY (~/ /
Il. A SINGULAR PERTURBATION MODEL FORCLOSED D(q,) » old) ,DT(q/)p,(q.), ,
KINEMATIC CHAINS Cld,4) = p(, )T (; ((,1 4 ),p(., )
_ o _ p(d) D (d)p(d’, q) (4)

In [4], an index-1 DAE model originated in [2] was used g(d) = p(d) g’ (q)
to develop the singular perturbation approach. In this section q = pld)q
we first review the SPF model developed in [4], and then o(d)=0

characterize its validity domain. h , , o , n hat th
As shown in [2], am DOF closed chain is considered to¥"€r€d’ € V' € %", g € a(V’) c R". Note that the

be ann’ DOF holonomic system (free system containinq]boveCiimle)(;'1 D’Z‘EI m?del is tf;e ﬁommon basdislfrofm which
only open chains) to whichh = n’ — n independent e reduced model of [2] and the SPF model of [4] are

holonomic constraints are imposed. The dynamics of tﬁgnved. . .

constrained system is completely described by the followin%'\lext we bnefly review Fhe reduced njodelfof ,[2]' If we

index-3 DAE solve the constraint equation in| (4), equivalentlyy’, q) =
o L 0 for q' in terms ofq, we end up with an ODE system.

{ D'(d)d' + C'(d',4)d +g'(d) = ¢p (d)A (1) For any given poinig, € V', let ¥/(d,q,) = 0. In [3]

¢(q') =0 an explicit estimate of a compact $etcentered at, was
weref] o V' i i the vector o aepencen 7T S LY oo € e o e
gen_e_rahzed cogrdmates, typ'C?”y representing all the lod rresponding set aff’ centered aty,. The reduced model
positions, andV’ denotes the singularity-free workspace ir

® (as defined below)s(q') — 0 denotes the constraints, in terms of independent coordinatqsare given by [2]

whereg(q') is at least twice continuously differentiableis P/(q/)fi +C(d,q)a+g(d) =0
the p-vector of Lagrange multiplierdd’(q’) represents the q = p(d)q (5)
nxn inertia matrix,C’(q, ')’ represents the Coriolis and q' =o(q)
i (! i ,
centrifugal termsg’(q’) represents the gravity terms. whereq' € W' C R, q € Q C ™. Note that the reduced

Due to the constraints, the generalized coordingtesre

: model is only valid inQ) where the transformation
confined to the reachable workspace (% y

q' = o(q) exists. This makes the reduced model different
U ={q¢ R é(q) =0} C éR”', @) from explicit mpdels of open chgilj mechanical systgms in
two aspects. First, as a prerequisite for control design and
and the constrained system hadegrees of freedom. Hencestability analysis, the boundaries of the compact domain
there exists a minimum set of—independent generalized() need to be explicitly characterized. This is not easy for
coordinatesq € ™ which can describe the constrainedjeneral closed chains. Explicit estimates of the domain have
dynamics. The independent coordinaéesan be chosen to been reported in [2] and [3]. Second, an effective numerical
satisfy the twice continuously differentiable parameterizaigorithm for solving the nonlinear algebraic constraints
fion q = a(q’). We further definey(q’) 2 [pcﬁ(Qi) ~ must be sought for implementing model-based control. This
) a(q) problem is addressed in [3] where guaranteed convergence
by (d) o(d,q) = { ¢(q/) } _ { } and [© pregcrlbed precision v_w_thln a fixed _numl_)er of iterations
a(q’) is achieved using a modified Newton iteration.
@q/ (d) A gé/l)’ It can be shown [2] thad/ = p(q)g with An alterna_ltive to directly c_ons_idering_the index-1 DAE
0 (@) as a basis for control design is the singular perturbation
p(q) = w;l(q’) [ I”X" } . This leads to the definition of approach proposed in [4], where the index-1 DAE [df (4)
nxm was transformed into a singularly perturbed ODE system
the SPF model). In practice, the independent coordinates

lin this paper, we use the following standard notation and terminoi— .
ogy: ® denotes the set of real numbers, af? denotes the usual N (4) are often chosen as componentsgbfcorresponding

n-dimensional vectorlspace ovét endowed with the Euclidean norm to actuated joints. We denote the remaining components as
Il = {37, 22} 2. ®"X™ denotes the set of ah x m matrices z and rewrite the index-1 DAE model ifi](4) as

L2
= s

with real elements. Unless otherwise specified, fére R™>", ||M|| is .. R .
the induced2 matrix norm of M corresponding to the Euclidean vector D(q,z)q + C(q,4,z)q +g(q,z) =u (6)
norm onR". ¢(q,z) = 0.
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Next we replace the algebraic constraint [ij (6) with physically not connected (see, e.g., [10]). We next consider
fast dynamics ODE in terms of violation of the constraintshe Rice Planar Delta Robot (RPDR) as an illustrative

w = — 1w, withw 2 #(q, z). Note thate is a small positive example for Lemm 1. Pictures of the RPDR are shown
parameter. We obtain a singularly perturbed system,  in Figure[4 in sectio - We choos¢ = [q1, 42,3, 4]
. L B (thereforeV' ¢ R* and V. Cc R%), q = [q1,¢]" and
{ D(q’z)q.JlC(q’ 42)4 + g(q,2) - (7) z = [g3,q4]". Here g, is defined as the angle made by
€0:(q,2)2 = —¢(q, 2) — €6y(a,2)4. link-i with respect to the horizontal line. It can be shown
whereg¢, = g%’ and ¢, = g%_ [4] that Direct Kinematics (DK) singularities occur when

det[¢.(q,z)] =0,i.e.qg3—qa =nnforn=0,+1,£2, ...
Figure[2 shows type-1 and type-2 singularities for odd and
R evenn respectively. For the RPDR, the direct kinematics
has two solutions for each non-singulgr one of which
is depicted by region-2 and region-4 (darkly shaded) in
Figure[2, and the other is depicted by region-1 and region-3
(lightly shaded).

Denote the one-to-one mapping fragito z by z = h(q).
Then the singularity-free workspadé’ in @) is given by
V' = {(h(2),2) € ®*, z € J._, Regioni}, and the
definition domain of the SPF modeV’, is given by V' =

The proposed Singular Perturbation Formulation (SPF) fifa,z) € ®, q € %2, z € [J._, Regioni/}. Notice that
(7 has two attractive propertie€"1) The fast dynamics the unreachable area-2 fdf' is "reachable” forV' since the
of the constraint error always die out rapidly making thkinematic constraint as i |(4) may or may not be satisfied
overall SPF system converge to a slow subsystem with tfee the SPF model. Thus Figuré 2 and Figufe 3 clearly show
dimension equal in number to the DOF of the systenthat for the RPDRV’ cVv.
Since a minimal-order Qynamicg model is preferred py . M ODEL ERRORANALYSIS
most existing control design techniques, once an appropriate . ) i o
controller is devised based on the augmented SPF systeril? this section, we derive explicit upper bounds for the er-
(@, it would be a promising candidate for the control ofo" between the SPF modgl (7) and the index-1 DAE model
the index-1 DAE system(C2) It can be shown that the @, or eqqulentlﬂ_b) in the context of trajectory trackm_g._
validity domain of the proposed SPF model, naméf)//, In the analysis of singularly perturbed systems, the Implicit

contains the entire singularity-free workspaéé Thus the Fulnctti)(?l_rl Thfe(r)]reml (”;T), is tradi_tionaItI)y i_nvc:jkgd to i_nsurs
SPF model is capable of approximating the index-1 pagolvability of the algebraic equation obtained by setting the

model over the entire scope of its domain. Furthermore, trﬁgrturbaﬂon parameter = 0 [7] [11] [12]. This results

property implies that the SPF system may be exploited a nathe fact that the solution of the algebraic equation, and

better basis for control design than the index-1 DAE mod fnce the entire singularly pe_rturbed analysis, is vali.d in a
because its domain of validity is much larger and much moPé?'thorhoof’ set (open setn(_alghborhood) O.f the solution.
useful for performing stability analysis. Next we summarizg\/h'l? the eX|stenge of thene|_g.hborhood IS msur(_ad by th‘?
property C2 as the following Lemma. IF_T_, its boundary is not specified. In our analysis, we will

Lemma 2.1:The validity domain of the augmented sppitilize a recen_t_result frqm [_3]’ where a compact S_UB@
system @), nameIW/, is given by of the sollvab|I|t_y domain _(|.e. the vahcpty domalﬁ).,_ls

characterized with well defined boundaries. By definition the

v = {(q,2) € R det[¢.(q,2z)] # 0} C ' domain {2 guarantees the existence of functigh= o(q)

y _ _ . _ as introduced in Sectign|ll. Alsa is a component ofy,
Furthermore, V' contains the entire singularity freetherefore there exists a functidn : B, — B., such that
workspaceV’, i.e. V' C V.. #(q,h(q)) = 0,Yq € B,. It follows that our analysis is
Proof: Details are in [9]. valid for anyq € B, € Q, z € B, C ®*.

Remark 2.1:A by-product of Lemma[ 2]1 is that the e consider the error of the SPF approach in the context
boundary of V. can be found by solving the nonlinearof trajectory tracking. Assume that, for the DAE systéf (6),
equation det[¢.(q,z)] = 0. This can be achieved by equivalently[(#), the controller is chosen such that the state
applying Newton iterations and in general requires less effatt= [q, q]” exponentially follows a desired trajectogy; =
compared to characterizing the boundary of the validity dog,;, ¢,]”. Examples of such controllers include e.g. the
main of the reduced modél, where a one-to-one mappinginverse dynamics control law and the non-adaptive scheme
d' = o(q) needs to be guaranteed. of [13].

Figure[1 gives a conceptual representation of the rela, _ _
. . ) ovrl <ot =/ The notationB,, is used to denote a compact ball centereds at
tions among domaing, W', U’, V', and'V . Note that the | c e ), interger, that isBs = {v € R : [[v]| < pu, po positive
singularity-free workspacd/’ of a parallel robot may be real} c ®?

q'=olq)

qeENCR” q’eWCV’:(V’mU’)CW"

Fig. 1. Relations among Domaiss, W, V’, V' and U’
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Fig. 3. Projections oV’

We first reformulate the original problem into the standard/e have the following properties.

singular perturbation forms. Define £ [q,4]", y 2 z — Remark 3.1:The constraint given by(q,z) in (§) is at

h(q) ande & x4. Then the originafull systemin @) Iﬁas:j tvv_lce‘;-j con_tlnuously dlfferentlab(;e. Tge contmnrl]andh
can be rewritten in terms af andy, the desired trajectorx, are assumed to be smooth. Thus

the right hand sides of [(8)4(9) contains only compositions of

é = F(t,et+xqy)—%=F(tey), (8 smooth functions. Furthermore we assume that the desired
e(0) = x(0) — x4(0), trajectory x, and the controlu are selected such that the
ey = Gle+x4y,6 =G (tey,e) 9) functionsF’, G’, h and their partial derivatives up to order

2 are bounded foft, e, y, €) € [0,00) x B. x B, x [0, €g],

y(0) = ¢o — h(fo), whereB,. andB, are compact domains ef andy respec-

whereF (¢, x,y) is given by tively.
A q 0 Property 3.1: The exponential stability of the origin of
F(t,x,y) = —DY(Cq+ g) } + { D-lu } the boundary layer systerp (10) can be concluded by con-

sidering the Jacobian matrix

andG(x,y,€) is given by G
{8 (X’ym}y:O

A .
G(x,y,¢) = w(q,y) +¢[v(a,0) = v(a,y)]q K
with . = —{3;l¢- (@ y +h)o(q,y +h)]}y—0 = —In,
w(q,y) = -9, (q,y + h)é(q,y + h), where we used the fact that(q) satisfies the constraint

N equations(q, h(q)) = 0.
v(ay) = ¢ (ay +higg(a,y +h). Property 3.2: The origin of the error dynamics of the

The correspondin@poundary layer systeris reduced system[ (11) is exponentially stable due to the
ey = G(x,y,0) = w(q,y), 0) = ¢o — h(6,). (10) @ssumption of an appropriate controlier
Y ¥,0) ) (@.y) ¥( )_ o (6o) (_ ) ~Under the above conditions and Properties, the infinite-
Thereduced systerim the sense of singular perturbations i§ine version of Tikhonov's theorem [7] applies to the

obtained by setting = 0 in (8)-(9), which turns out to be proplem and gives the following error estimates
e same as the index-1 DAE model introduced in Section

We definex = [q,4]" ande = x—x,. The DAE system a(t.e)—a(t) = O(e),
in (6 can be rewritten in terms &f qlt,e) —q(t) = O(e),
e = F(t,e+x4,0)—%4=F(te0), (11) z(t,e) —z(t) = O(e), Yt > ty, Ve < €.
e(0) =x(0) — x4(0), Note that Tikhonov’s theorem is not a stability result and
0 = G/(t,&0,0). (12) hence the model error between the SPF solution and the
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DAE solution is not guaranteed to converge to zero. lof e(0) = [2°,2°]7 (with respect to the exact starting

general, one can only get the above error order statementdnint on the circle). The error in the initia(0) is ézy =

using Tikhonov's theorem. See, for example, an applicatidn 15°, —15°]7". For the RPDR, the constraint equation in the

in [14]. DAE model can be explicitly solved and the DAE model is
The above result may be refined by taking into account tivansformed into an explicit ODE model. The resulted ODE

specific structure of the full systefn] (§)}(9). These are givamas solved using ODE45 in MATLAB. The SPF model was

as follows.A) The initial conditions are independent of thesolved using the stiff ODE solver ODE15S. The tolerance

singular perturbation parameter B) The fast dynamics in settings areRelTol = 10~8 and AbsTol = 10712,

@) guarantees exponential convergencg @f¢) [9]. C) The We first study the effect of changing the singular per-

slow subsysten {8) is independenteofe now present the turbation parameter on the transient behavior of the SPF

following result which guarantees exponential convergenagodel. Figuré b shows that with a smaltetthe initial error

of the approximation error, in z; vanishes faster resulting in a better approximation
Theorem 3.1:Under conditions of Remaik 3.1, Propertyto the DAE model. On the other hand, decreasingill

3.1 and Property 3|2, the error between the solution to tirerease the stiffness of the SPF model and requires more

full system [8){(9), or equivalently (7), and the solution t@omputational effort. Thus the choice ofs a tradeoff be-

the reduced systenp ([11)-(12), or equivalenfly (6), has thween convergence rate and computational burden. We then

following explicit upper bound compare our simulation results fer= 0.01 to experimental
la(t,e) — a(t)]| < eKaeKet datq obtained on thg real robot. Fig{ife 6 shows that motion

profiles from simulation are very close to experimental data.

: & —K, . ) > .
la(t.e) —a)ll < eKge ™! Thus, the validity of the simulations is demonstrated. Figure
|z(t,e) —z(t)| < (C1+eCoKy)e Kot also shows that with an exponentially stabilized reduced

e} ) system, the solution of the SPF model approaches its DAE
2K, counterpart rapidly and stay very close to it afterward, which

whereCy, Cs, K4, Ko, ¢* ande** are defined in [9]. There- agrees quite well with the analysis in Sectjon IlI.
fore the error exponentially converges to zero.
Proof: Details are in [9].

Roughly speaking, this theorem ensures that as long as thdwo important issues associated with the Singular Per-
original DAE system in[(p) is stabilized by an appropriatéurbation Formulation (SPF) model for Closed Kinematic
controller, the SPF model ifi](7) will exponentially approackhain (CKC) are investigated in this paper. The first is the
the DAE system in the infinite-time interval. The exponentiglomain of validity. We showed that the SPF model has a
convergence of the error is a direct result of combining tHarger domain than the index-1 DAE model, hence much
comparison principle [7] with the structure features A), Blarger than the reduced model, and the boundary of its
and C) of our case. This result is stronger than the errd@main is easier to characterize. The second issue is the
order statement from Tikhonov’s theorem, which analysis @haracterization of the closeness between the SPF model and
based on more general assumptions (e.qg. all initial conditiote DAE model. Our analysis takes into account the special
are dependent oa[7]) and thus only guarantees that undestructure of the SPF model and produces stronger results
certain conditionsx(t,¢) andz(t,¢) will stay in anO(e) than the statement by the Tikhonov’s Theorem in the sense
neighborhood ofk(¢) andz(t) respectively. that it guarantees exponential convergence of the model

error. The analysis is supported by numerical simulation and
IV. SIMULATIONS AND EXPERIMENTAL STUDY experimental data, indicating that the SPF approach is an

The Rice Planar Delta Robot (RPDR) is a two degree-oéffective tool for modeling closed chain mechanisms. The
freedom parallel robot (See Figuré 4 (a)). It was design&bF model will be used to develop new control schemes for
and constructed at Rice University as a test-bed to perfogiwsed kinematic chains.
experiments on closed chain mechanisms. In previous work
we implemented on the RPDR a PD plus gravity compen- REFERENCES
sation set point control [2] and an inverse dynamics contrg; k. . Brenan, S. L. Campbell, and L. R. PetzoNumerical So-
based on the reduced model [3]. A detailed derivation of Ilution of Initial-Value Problems in Differential-Algebraic Equations
the singuar peturbtion model for he RPDR can be foun), TRSGSBie P SMLI onpnarg, voo
in [4]. Corresponding to foregoing analysis, we conside eling and set point control of closed-chain mechanisms: Theory and
the trajectory tracking of the RPDR. The inverse dynamics experiment|EEE Trans. Contr. Syst. Technolol. 8, no. 5, pp. 801
control is used to force the end-effector to follow a circle, = 815 September 2000.

. . . . }[% R. G_unawardana, F. Ghorbel_, and Z. Wa_ng, “Rgduced_ m.odel ba§ed
of diameter 6.0 inches that is centered 10 inches above t tracking control of robots with closed kinematic chains: analysis
axes of joints one and two (see Figlife 4 (b)). Due to the and implementationEEE Trans. Contr. Syst. Technohccepted for

usage of the inverse dynamics control, the assumption qn Publication. _ _ _
[4] J. Dabney, F. Ghorbel, and Z. Wang, “Modeling closed kinematic

the eXp_O”ent'a| Stab'_“ty of the O“Q'r_‘_‘ﬂlll) _'S Sat_'Sﬂed' In"" chains via singular perturbations,” iRroceeding of the American
simulation, we also included an initial configuration error  Control ConferenceAnchorage, AK, May 2002, pp. 4104 — 4110.
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