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Abstract— This paper addresses two important issues in
modeling Closed Kinematic Chains (CKC) as singularly per-
turbed systems, namely, the validity domain and the error char-
acterization. The Singular Perturbation Formulation (SPF) is
obtained by replacing the algebraic constraint equation in an
index-1 Differential Algebraic Equations (DAE) model with an
artificial fast dynamics. We first show that the SPF model has
a larger validity domain than the DAE model, and boundaries
of the domain are easy to determine. We then characterize the
error between the SPF model and the DAE model by deriving
explicit error bounds. Sufficient conditions that guarantee
exponential convergence of the model error are established.
We verify the analysis by simulating the dynamics of a CKC
mechanism, the Rice Planar Delta Robot, and validating the
simulation results with experimental data obtained on the real
robot.

I. I NTRODUCTION

The dynamics of Closed Kinematic Chains (CKC) are
conventionally described by differential-algebraic equations
(DAE). Dynamic equations in DAE form pose difficulties for
simulation and control design. The DAE that characterize
CKC are of index-3 and they are difficult to simulate due
to numerical ill-conditioning [1]. On the other hand, the
difficulty with control of the DAE formulation of CKC lies
in the fact that most control design techniques are devised
for explicit state space models.

Efforts have been made to extend the wealth of re-
sults from the control of Open Kinematic Chains (OKC)
to the control of CKC. A recent result is the “reduced
model” proposed in [2], which is in terms of independent
coordinates and enables model-based control design and
implementation [3]. This model also presents two chal-
lenges. First, it is based on an implicit transformation from
independent coordinates to dependent coordinates, which is
valid only (locally) in a compact domain. As a prerequisite
for stability analysis, the boundaries of the compact domain
need to be explicitly characterized. This is no easy task for
general closed chains. Nevertheless, conservative estimates
have been developed in [2] and [3]. The second chal-
lenge is that, since the transformation is implicit, effective
numerical schemes must be devised for real-time control
implementation. The above difficulties suggest the need for
an alternative to directly considering the DAE formulation
as the basis for control design.

In [4], an index-1 DAE formulation of the dynamics
of CKC, from which the reduced model is derived, was
combined with a realization method from [5] to construct
a singularly perturbed system as an ODE approximation
to the DAE system. The idea consists of replacing the
algebraic constraints in the DAE system with artificially
introduced fast dynamics characterized by a small pertur-
bation parameterε. The transformed system is thus called
Singular Perturbation Formulation (SPF). The motivations
are first the well-known asymptotic connection between
singular perturbation systems and corresponding reduced
DAE systems [6] [7], and second the reality that more
established control design and stability analysis techniques
are available for singularly perturbed ODE systems than
for DAE systems [8]. The proposed SPF model was shown
to have the following properties that can facilitate control
design [4]:

• P1 The DAE characterizing a CKC are approximated
using a singularly perturbed formulation in which the
slow second-order differential equations are equal in
number to the degrees of freedom (DOF) of the system.

• P2 The validity domain of this singularly perturbed
system contains the entire singularity-free workspace
of the CKC. This property is investigated in this paper.

For the SPF model to be a valid approximation to the
index-1 DAE model, the error between these two systems
needs to be characterized. We will give explicit upper bound
for the model error and compare our results to those from
the standard Tikhonov’s theorem. In this paper, we make
three main contributions:

• C1 Explicit bounds for the error between the SPF
model and the original DAE model are derived. Suffi-
cient conditions for the exponential convergence of the
error are established.

• C2 Numerical simulations as well as experiments on a
closed chain mechanism, the Rice Planar Delta Robot
(RPDR), are performed to support the analytical results.

• C3 The validity domain of the SPF model is charac-
terized based on the work in [4]. The SPF model is
shown to have a larger domain than the index-1 DAE
model, hence much larger than the reduced model.

The remainder of the paper is organized as follows.



Section II describes the singular perturbation approach and
characterizes the validity domain of the SPF model. Section
III gives explicit error bounds and establishes stability
properties which guarantee exponential convergence of the
error. In section IV we illustrate the analysis by simulating
the dynamics of the RPDR and validating the simulation
results with experimental data. Finally, section V concludes
this paper and outlines future work.

II. A S INGULAR PERTURBATION MODEL FORCLOSED

K INEMATIC CHAINS

In [4], an index-1 DAE model originated in [2] was used
to develop the singular perturbation approach. In this section
we first review the SPF model developed in [4], and then
characterize its validity domain.

As shown in [2], ann DOF closed chain is considered to
be ann′ DOF holonomic system (free system containing
only open chains) to whichp = n′ − n independent
holonomic constraints are imposed. The dynamics of the
constrained system is completely described by the following
index-3 DAE{

D′(q′)q̈′ + C′(q′, q̇′)q̇′ + g′(q′) = φT
q′(q′)λ

φ(q′) = 0
(1)

where 1 q′ ∈ V′ ⊂ <n′
is the vector of dependent

generalized coordinates, typically representing all the joint
positions, andV′ denotes the singularity-free workspace in
<n′

(as defined below).φ(q′) = 0 denotes thep constraints,
whereφ(q′) is at least twice continuously differentiable.λ is
the p-vector of Lagrange multipliers.D′(q′) represents the
n×n inertia matrix,C′(q′, q̇′)q̇′ represents the Coriolis and
centrifugal terms,g′(q′) represents the gravity terms.

Due to the constraints, the generalized coordinatesq′ are
confined to the reachable workspace

U′ = {q′ ∈ <n′
: φ(q′) = 0} ⊂ <n′

, (2)

and the constrained system hasn degrees of freedom. Hence
there exists a minimum set ofn−independent generalized
coordinatesq ∈ <n which can describe the constrained
dynamics. The independent coordinatesq can be chosen to
satisfy the twice continuously differentiable parameteriza-

tion q = α(q′). We further defineψ(q′)
4
=

[
φ(q′)
α(q′)

]
,

ψq′(q′)
4
= ∂ψ

∂q′ , ψ(q′,q)
4
=

[
φ(q′)
α(q′)

]
−

[
0
q

]
, and

ψq′(q′)
4
= ∂ψ

∂q′ . It can be shown [2] thaṫq′ = ρ(q′)q̇ with

ρ(q′) = ψ−1
q′ (q′)

[
0p×n

In×n

]
. This leads to the definition of

1In this paper, we use the following standard notation and terminol-
ogy: < denotes the set of real numbers, and<n denotes the usual
n-dimensional vector space over< endowed with the Euclidean norm

‖x‖ =
{∑n

i=1
xi

2
} 1

2 . <n×m denotes the set of alln × m matrices
with real elements. Unless otherwise specified, forM ∈ <n×n, ‖M‖ is
the induced–2 matrix norm ofM corresponding to the Euclidean vector
norm on<n.

the singularity-free workspace

V′ = {q′ ∈ U′ : det[ψq′(q′)] 6= 0} ⊂ U′. (3)

The principle of virtual work was used in [2] to eliminate
the Lagrange multipliers in the index-3 DAE (1). The
resulting equations of motion is in the form of an index-
1 DAE 

D(q′)q̈ + C(q′, q̇′)q̇ + g(q′) = 0
D(q′) = ρ(q′)TD′(q′)ρ(q′)
C(q′, q̇′) = ρ(q′)TC′(q′, q̇′)ρ(q′)

+ρ(q′)TD′(q′)ρ̇(q′, q̇′)
g(q′) = ρ(q′)Tg′(q′)
q̇′ = ρ(q′)q̇
φ(q′) = 0

(4)

whereq′ ∈ V′ ⊂ <n′
, q ∈ α(V′) ⊂ <n. Note that the

above index-1 DAE model is the common basis from which
the reduced model of [2] and the SPF model of [4] are
derived.

Next we briefly review the reduced model of [2]. If we
solve the constraint equation in (4), equivalentlyψ̄(q′,q) =
0 for q′ in terms ofq, we end up with an ODE system.
For any given pointq′? ∈ V′, let ψ̄(q′?,q?) = 0. In [3]
an explicit estimate of a compact setΩ centered atq? was
characterized such that for eachq ∈ Ω, there exists a unique
q′ ∈ W′ ⊂ V′ satisfyingq′ = σ(q), whereW′ denotes the
corresponding set ofq′ centered atq′?. The reduced model
in terms of independent coordinatesq are given by [2] D(q′)q̈ + C(q′, q̇′)q̇ + g(q′) = 0

q̇′ = ρ(q′)q̇
q′ = σ(q)

(5)

whereq′ ∈ W′ ⊂ <n′
, q ∈ Ω ⊂ <n. Note that the reduced

model (5) is only valid inΩ where the transformation
q′ = σ(q) exists. This makes the reduced model different
from explicit models of open chain mechanical systems in
two aspects. First, as a prerequisite for control design and
stability analysis, the boundaries of the compact domain
Ω need to be explicitly characterized. This is not easy for
general closed chains. Explicit estimates of the domain have
been reported in [2] and [3]. Second, an effective numerical
algorithm for solving the nonlinear algebraic constraints
must be sought for implementing model-based control. This
problem is addressed in [3] where guaranteed convergence
to prescribed precision within a fixed number of iterations
is achieved using a modified Newton iteration.

An alternative to directly considering the index-1 DAE
(4) as a basis for control design is the singular perturbation
approach proposed in [4], where the index-1 DAE of (4)
was transformed into a singularly perturbed ODE system
(the SPF model). In practice, the independent coordinatesq
in (4) are often chosen as components ofq′ corresponding
to actuated joints. We denote the remaining components as
z and rewrite the index-1 DAE model in (4) as{

D(q, z)q̈ + C(q, q̇, z)q̇ + g(q, z) = u
φ(q, z) = 0. (6)



Next we replace the algebraic constraint in (6) with a
fast dynamics ODE in terms of violation of the constraints,

ẇ = − 1
εw, with w

4
= φ(q, z). Note thatε is a small positive

parameter. We obtain a singularly perturbed system,{
D(q, z)q̈ + C(q, q̇, z)q̇ + g(q, z) = u
εφz(q, z)ż = −φ(q, z)− εφq(q, z)q̇.

(7)

whereφz = ∂φ
∂z andφq = ∂φ

∂q .

q ∈ Ω ⊂ <n q′ ∈ W ⊂ V′ = (Ṽ
′ ∩U′) ⊂ <n′

Fig. 1. Relations among DomainsΩ,W′,V′, Ṽ
′

andU′

The proposed Singular Perturbation Formulation (SPF) in
(7) has two attractive properties.C1) The fast dynamics
of the constraint error always die out rapidly making the
overall SPF system converge to a slow subsystem with the
dimension equal in number to the DOF of the system.
Since a minimal-order dynamics model is preferred by
most existing control design techniques, once an appropriate
controller is devised based on the augmented SPF system
(7), it would be a promising candidate for the control of
the index-1 DAE system.C2) It can be shown that the
validity domain of the proposed SPF model, namelyṼ

′
,

contains the entire singularity-free workspaceV′. Thus the
SPF model is capable of approximating the index-1 DAE
model over the entire scope of its domain. Furthermore, this
property implies that the SPF system may be exploited as a
better basis for control design than the index-1 DAE model
because its domain of validity is much larger and much more
useful for performing stability analysis. Next we summarize
propertyC2 as the following Lemma.

Lemma 2.1:The validity domain of the augmented SPF
system (7), namelỹV

′
, is given by

Ṽ
′
= {(q, z) ∈ <n′

: det[φz(q, z)] 6= 0} ⊂ <n′
.

Furthermore, Ṽ
′

contains the entire singularity free
workspaceV′, i.e. V′ ⊂ Ṽ

′
.

Proof: Details are in [9].
Remark 2.1:A by-product of Lemma 2.1 is that the

boundary of Ṽ
′

can be found by solving the nonlinear
equation det[φz(q, z)] = 0. This can be achieved by
applying Newton iterations and in general requires less effort
compared to characterizing the boundary of the validity do-
main of the reduced modelΩ, where a one-to-one mapping
q′ = σ(q) needs to be guaranteed.

Figure 1 gives a conceptual representation of the rela-
tions among domainsΩ,W′,U′,V′, andṼ

′
. Note that the

singularity-free workspaceV′ of a parallel robot may be

physically not connected (see, e.g., [10]). We next consider
the Rice Planar Delta Robot (RPDR) as an illustrative
example for Lemma 2.1. Pictures of the RPDR are shown
in Figure 4 in section IV. We chooseq′ = [q1, q2, q3, q4]T

(thereforeV′ ⊂ <4 and Ṽ
′ ⊂ <4), q = [q1, q2]T and

z = [q3, q4]T . Here qi is defined as the angle made by
link-i with respect to the horizontal line. It can be shown
[4] that Direct Kinematics (DK) singularities occur when
det [φz(q, z)] = 0, i.e. q3− q4 = nπ for n = 0,±1,±2, . . ..
Figure 2 shows type-1 and type-2 singularities for odd and
evenn respectively. For the RPDR, the direct kinematics
has two solutions for each non-singularq, one of which
is depicted by region-2 and region-4 (darkly shaded) in
Figure 2, and the other is depicted by region-1 and region-3
(lightly shaded).

Denote the one-to-one mapping fromq to z by z = h(q).
Then the singularity-free workspaceV′ in (3) is given by
V′ = {(h−1(z), z) ∈ <4, z ∈

⋃4
i=1 Region-i}, and the

definition domain of the SPF model,̃V
′
, is given byṼ

′
=

{(q, z) ∈ <4, q ∈ <2, z ∈
⋃4

i=1 Region-i′}. Notice that
the unreachable area-2 forV′ is ”reachable” forṼ

′
since the

kinematic constraint as in (4) may or may not be satisfied
for the SPF model. Thus Figure 2 and Figure 3 clearly show
that for the RPDRV′ ⊂ Ṽ

′
.

III. M ODEL ERRORANALYSIS

In this section, we derive explicit upper bounds for the er-
ror between the SPF model (7) and the index-1 DAE model
(4), or equivalently(6) in the context of trajectory tracking.
In the analysis of singularly perturbed systems, the Implicit
Function Theorem (IFT) is traditionally invoked to insure
solvability of the algebraic equation obtained by setting the
perturbation parameterε = 0 [7] [11] [12]. This results
in the fact that the solution of the algebraic equation, and
hence the entire singularly perturbed analysis, is valid in a
neighborhood set (open set,ε-neighborhood) of the solution.
While the existence of theε-neighborhood is insured by the
IFT, its boundary is not specified. In our analysis, we will
utilize a recent result from [3], where a compact subsetBq

2

of the solvability domain (i.e. the validity domainΩ), is
characterized with well defined boundaries. By definition the
domainΩ guarantees the existence of functionq′ = σ(q)
as introduced in Section II. Alsoz is a component ofq′,
therefore there exists a functionh : Bq → Bz, such that
φ(q,h(q)) = 0,∀q ∈ Bq. It follows that our analysis is
valid for anyq ∈ Bq ⊂ Ω, z ∈ Bz ⊂ <p.

We consider the error of the SPF approach in the context
of trajectory tracking. Assume that, for the DAE system (6),
equivalently (4), the controlleru is chosen such that the state
x̄ = [q̄, ˙̄q]T exponentially follows a desired trajectoryxd =
[qd, q̇d]T . Examples of such controllers include e.g. the
inverse dynamics control law and the non-adaptive scheme
of [13].

2 The notationBv is used to denote a compact ball centered atv =
0,v ∈ <p, p interger, that is,Bv = {v ∈ <p : ‖v‖ ≤ ρv , ρv positive
real } ⊂ <p
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We first reformulate the original problem into the standard

singular perturbation forms. Definex
4
= [q, q̇]T , y

4
= z −

h(q) ande
4
= x − xd. Then the originalfull systemin (7)

can be rewritten in terms ofe andy,

ė = F(t, e + xd,y)− ẋd = F′(t, e,y), (8)

e(0) = x(0)− xd(0),
εẏ = G(e + xd,y, ε) = G′(t, e,y, ε) (9)

y(0) = ζ0 − h(θ0),

whereF(t,x,y) is given by

F(t,x,y)
4
=

[
q̇

−D−1(Cq̇ + g)

]
+

[
0

D−1u

]
andG(x,y, ε) is given by

G(x,y, ε)
4
= w(q,y) + ε [v(q, 0)− v(q,y)] q̇

with
w(q,y)

4
= −φ−1

z (q,y + h)φ(q,y + h),

v(q,y)
4
= φ−1

z (q,y + h)φq(q,y + h).

The correspondingboundary layer systemis

εẏ = G(x,y, 0) = w(q,y), y(0) = ζ0 − h(θ0). (10)

The reduced systemin the sense of singular perturbations is
obtained by settingε = 0 in (8)-(9), which turns out to be
the same as the index-1 DAE model introduced in Section
II. We definex̄

4
=

[
q̄, ˙̄q

]T
andē = x̄−xd. The DAE system

in (6) can be rewritten in terms of̄e

˙̄e = F(t, ē + xd, 0)− ẋd = F′(t, ē, 0), (11)

ē(0) = x̄(0)− xd(0),
0 = G′(t, ē, 0, 0). (12)

We have the following properties.
Remark 3.1:The constraint given byφ(q, z) in (6) is at

least twice continuously differentiable. The controlu and
the desired trajectoryxd are assumed to be smooth. Thus
the right hand sides of (8)-(9) contains only compositions of
smooth functions. Furthermore we assume that the desired
trajectoryxd and the controlu are selected such that the
functionsF′,G′,h and their partial derivatives up to order
2 are bounded for(t, e,y, ε) ∈ [0,∞)×Be ×Bρ × [0, ε0],
whereBe andBρ are compact domains ofe andy respec-
tively.

Property 3.1: The exponential stability of the origin of
the boundary layer system (10) can be concluded by con-
sidering the Jacobian matrix

{∂G(x,y,0)
∂y }y=0

= −{ ∂
∂y [φ−1

z (q,y + h)φ(q,y + h)]}y=0 = −Im,

where we used the fact thath(q) satisfies the constraint
equationφ(q,h(q)) = 0.

Property 3.2: The origin of the error dynamics of the
reduced system (11) is exponentially stable due to the
assumption of an appropriate controlleru.

Under the above conditions and Properties, the infinite-
time version of Tikhonov’s theorem [7] applies to the
problem and gives the following error estimates

q(t, ε)− q̄(t) = O(ε),
q̇(t, ε)− ˙̄q(t) = O(ε),
z(t, ε)− z̄(t) = O(ε), ∀t > tb,∀ε < ε0.

Note that Tikhonov’s theorem is not a stability result and
hence the model error between the SPF solution and the



DAE solution is not guaranteed to converge to zero. In
general, one can only get the above error order statement by
using Tikhonov’s theorem. See, for example, an application
in [14].

The above result may be refined by taking into account the
specific structure of the full system (8)-(9). These are given
as follows.A) The initial conditions are independent of the
singular perturbation parameterε. B) The fast dynamics in
(7) guarantees exponential convergence ofy(t, ε) [9]. C) The
slow subsystem (8) is independent ofε. We now present the
following result which guarantees exponential convergence
of the approximation error,

Theorem 3.1:Under conditions of Remark 3.1, Property
3.1 and Property 3.2, the error between the solution to the
full system (8)-(9), or equivalently (7), and the solution to
the reduced system (11)-(12), or equivalently (6), has the
following explicit upper bound

‖q(t, ε)− q̄(t)‖ < εKde
−Kat

‖q̇(t, ε)− ˙̄q(t)‖ < εKde
−Kat

‖z(t, ε)− z̄(t)‖ < (C1 + εC2Kd)e−Kat,

∀t > 0,∀ε ≤ ε∗∗
4
= min{ε∗, α

2Ka
}

whereC1, C2,Kd,Ka, ε
∗ andε∗∗ are defined in [9]. There-

fore the error exponentially converges to zero.
Proof: Details are in [9].

Roughly speaking, this theorem ensures that as long as the
original DAE system in (6) is stabilized by an appropriate
controller, the SPF model in (7) will exponentially approach
the DAE system in the infinite-time interval. The exponential
convergence of the error is a direct result of combining the
comparison principle [7] with the structure features A), B)
and C) of our case. This result is stronger than the error
order statement from Tikhonov’s theorem, which analysis is
based on more general assumptions (e.g. all initial conditions
are dependent onε [7]) and thus only guarantees that under
certain conditions,x(t, ε) and z(t, ε) will stay in an O(ε)
neighborhood of̄x(t) and z̄(t) respectively.

IV. SIMULATIONS AND EXPERIMENTAL STUDY

The Rice Planar Delta Robot (RPDR) is a two degree-of-
freedom parallel robot (See Figure 4 (a)). It was designed
and constructed at Rice University as a test-bed to perform
experiments on closed chain mechanisms. In previous work
we implemented on the RPDR a PD plus gravity compen-
sation set point control [2] and an inverse dynamics control
based on the reduced model [3]. A detailed derivation of
the singular perturbation model for the RPDR can be found
in [4]. Corresponding to foregoing analysis, we consider
the trajectory tracking of the RPDR. The inverse dynamics
control is used to force the end-effector to follow a circle
of diameter 6.0 inches that is centered 10 inches above the
axes of joints one and two (see Figure 4 (b)). Due to the
usage of the inverse dynamics control, the assumption on
the exponential stability of the origin of (11) is satisfied. In
simulation, we also included an initial configuration error

of e(0) = [2◦, 2◦]T (with respect to the exact starting
point on the circle). The error in the initialz(0) is δz0 =
[−15◦,−15◦]T . For the RPDR, the constraint equation in the
DAE model can be explicitly solved and the DAE model is
transformed into an explicit ODE model. The resulted ODE
was solved using ODE45 in MATLAB. The SPF model was
solved using the stiff ODE solver ODE15S. The tolerance
settings areRelTol = 10−8 andAbsTol = 10−12.

We first study the effect of changing the singular per-
turbation parameterε on the transient behavior of the SPF
model. Figure 5 shows that with a smallerε, the initial error
in z1 vanishes faster resulting in a better approximation
to the DAE model. On the other hand, decreasingε will
increase the stiffness of the SPF model and requires more
computational effort. Thus the choice ofε is a tradeoff be-
tween convergence rate and computational burden. We then
compare our simulation results forε = 0.01 to experimental
data obtained on the real robot. Figure 6 shows that motion
profiles from simulation are very close to experimental data.
Thus, the validity of the simulations is demonstrated. Figure
6 also shows that with an exponentially stabilized reduced
system, the solution of the SPF model approaches its DAE
counterpart rapidly and stay very close to it afterward, which
agrees quite well with the analysis in Section III.

V. CONCLUSION

Two important issues associated with the Singular Per-
turbation Formulation (SPF) model for Closed Kinematic
Chain (CKC) are investigated in this paper. The first is the
domain of validity. We showed that the SPF model has a
larger domain than the index-1 DAE model, hence much
larger than the reduced model, and the boundary of its
domain is easier to characterize. The second issue is the
characterization of the closeness between the SPF model and
the DAE model. Our analysis takes into account the special
structure of the SPF model and produces stronger results
than the statement by the Tikhonov’s Theorem in the sense
that it guarantees exponential convergence of the model
error. The analysis is supported by numerical simulation and
experimental data, indicating that the SPF approach is an
effective tool for modeling closed chain mechanisms. The
SPF model will be used to develop new control schemes for
closed kinematic chains.
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