
Recursive Pointwise Design for Nonlinear Systems

Kazuo Tanaka, Hiroshi Ohtake and Hua. O. Wang

Abstract— This paper presents a recursive pointwise design
(RPD) method for a class of nonlinear systems represented by
dx(t)/dt = f(x(t))+g(x(t))u(t). A main feature of the RPD method
is to recursively design a stable controller by using pointwise
information of a system. The design philosophy is that f(x(t))
and g(x(t)) can be approximated as constant vectors in very
small local state spaces. Based on the design philosophy, we
numerically determine constant control inputs in very small
local state spaces by solving linear matrix inequalities (LMIs)
derived in this paper. The designed controller switches to
another constant control input when the states move to another
local state space. Although the design philosophy is simple and
natural, the controller does not always guarantee the stability
of the original nonlinear system dx(t)/dt = f(x(t))+g(x(t))u(t).
Therefore, this paper gives ideas of compensating the approx-
imation caused by the design philosophy. After addressing
outline of the pointwise design, we provide design conditions
that exactly guarantee the stability of the original system. The
controller design conditions requires to give the maximum
and minimum values of elements in the functions f(x(t))
and g(x(t)) in each local state space. Therefore, we also
present design conditions for unknown cases of the maximum
and minimum values. Furthermore, we construct an effective
design procedure using the pointwise design. A feature of the
design procedure is to subdivide only infeasible regions and to
solve LMIs again only for the subdivided infeasible regions.
The recursive procedure saves effort to design a controller. A
design example demonstrates the utility of the RPD method.

I. INTRODUCTION

Stability analysis (e.g., [1]) for fuzzy control systems has
been mainly discussed in the framework of fuzzy model-
based control using Takagi-Sugeno fuzzy systems [2]. A
main feature of the Takagi-Sugeno fuzzy systems is to have
linear systems in consequent parts. Hence, it is represented
by fuzzy blending of the linear systems. It is especially
true from theoretical analysis and design points of view
that it has been difficult to find clear differences between
Takagi-Sugeno fuzzy model-based control and recently de-
veloped linear parameter varying (LPV) control. One of
future research directions in fuzzy control is to seek a
new approach that differs from Takagi-Sugeno fuzzy model-
based control. This paper provides a new approach based on
pointwise design that utilizes (fuzzy) pointwise information
of a nonlinear system.

This research was partially supported by the Ministry of Education,
Science, Sports and Culture, Grant-in-Aid for Scientific Research (C),
15560217, 2003.

K. Tanaka and H. Ohtake are with the Department of
Mechanical Engineering and Intelligent Systems, The University
of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo
182-8585 Japan ktanaka@mce.uec.ac.jp & ho-
htake@rc.mce.uec.ac.jp

H. O. Wang is with the Department of Aerospace and Mechanical
Engineering, Boston University, 10 Cummington Street, Boston, MA
02215 USA wangh@bu.edu

Sugeno and his co-authors [3], [4], [5], [6] have presented
an analysis and design method using pointwise information
of a nonlinear system. This work gives excellent stability
results and brings us a very interesting and important fact
to design a controller using pointwise information of a
nonlinear system. In this work, pointwise information of
a nonlinear system is described as a type of fuzzy models
(the so-called TYPE II fuzzy model) that is different from
Takagi-Sugeno fuzzy model. Their studies have not explic-
itly addressed model discrepancies caused via the fuzzy
model approximation. That is, although the controllers
designed in [3], [4], [5], [6] guarantee the stability of the
type of fuzzy model, they do not always guarantee the
stability of an original system. In addition, the conditions
derived in [3], [4], [5], [6] become complicated (also may be
hard to be solved) when a system has many state variables.
A simple and effective design is preferred in real system
applications.

A pointwise design proposed in this paper achieves a
stable controller design for an original system with control
input saturations (constraints). Control input constraints
have not been discussed in [3], [4], [5], [6]. The pointwise
design is simple and can be easily applied even to systems
with a large number of states. In addition, to save design
effort of a controller, an effective design procedure is
constructed by recursively applying the pointwise design.

This paper presents a recursive pointwise design (RPD)
method for a class of nonlinear systems ẋ(t) = f(x(t)) +
g(x(t))u(t) by taking into account pointwise information.
The design philosophy is that f(x(t)) and g(x(t)) can be
approximated as constant vectors in very small local state
spaces. Based on the design philosophy, we numerically
determine constant control inputs in very small local state
spaces. To facilitate the determination, design conditions are
represented in terms of linear matrix inequalities (LMIs).
The designed controller switches to another constant control
input when the states move to another local state space.
Although the design philosophy is simple and natural, the
controller does not always guarantee the stability of the
original nonlinear system ẋ(t) = f(x(t)) + g(x(t))u(t).
Therefore, this paper gives ideas of compensating the ap-
proximation caused by the design philosophy. After ad-
dressing outline of the pointwise design, we provide design
conditions that exactly guarantee the stability of the original
system. The controller design conditions requires to give the
maximum and minimum values of elements in the functions
f(x(t)) and g(x(t)) in each local state space. Therefore,
we also present design conditions for unknown cases of the
maximum and minimum values. Furthermore, we construct
an effective design procedure using the pointwise design.

A feature of the design procedure is to subdivide only
infeasible regions and to solve LMIs again only for the
subdivided infeasible regions. The recursive procedure saves
effort to design a controller. A design example demonstrates
the utility of the RPD method.

To lighten the notation, this paper employs the
following particular notions: R(s1, . . . , sn) = Rs,
x(s1, . . . , sn) = xs, u(s1, . . . , sn) = us, etc. Further-
more, xs(k1, . . . , kn) = x(s,k). We also shorten the
notation ∀s1, · · · , ∀sn as ∀s.

II. OUTLINE OF POINTWISE DESIGN

This section gives outline of the pointwise design. Con-
sider the nonlinear system with n states and m inputs.

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm denote the state and input
vectors, respectively. The control purpose is to stabilize the
system at x(t) = 0.

To discuss the pointwise design, we present a definition
of region in the state space.

Definition 1: Each region R(s1, . . . , sn) is defined as
R(s1, . . . , sn) = Rs

= {(x1, . . . , xn)| xmin
i + ∆Si · (si − 1)

< xi ≤ xmin
i + ∆Si · si i = 1, · · · , n},

where si = 1, · · ·, φi. φi is the number of partitioned
guild for xi axis. xmin

i and ∆Si denote the minimum value
and partitioned guild size of xi, respectively. Note that the
number of the region Rs becomes Πn

i=1φi.

For instance, in the case of n = 2, the regions
R(s1, . . . , sn) are divided as shown in Figure 1.

1 2 3 S1 S1+1

1
2

3
S

2
S

2
+

1

R(1,1)

R(1,2) R(2,2)

x(s,11) x(s,21)

x(s,12) x(s,22)

R(s1 , s2)

 S1

(x1 , x2)
x1

x
2

R(2,1)

min min

 S

2

Fig. 1. Definition of regions (two dimenstional case).

To stabilize the system (1), we employ the following
controller with control input constraints:

u(t) = u(s1, . . . , sn) = us (2)

Ejus < Eju
max
s , ∀j, ∀s (3)

Eju
min
s < Ejus, ∀j, ∀s (4)

at Rs, where Ej is a vector whose jth element is one
and other elements are zero. The maximum and minimum

values of control inputs us = [us1 · · · usm]T in each
region Rs are denoted as umax

s = [umax
s1 · · · umax

sm]T

and umin
s = [umin

s1 · · · umin
sm]T . Equations (3) and (4)

means that umin
sj < usj < umax

sj for j = 1, 2, · · · ,m. That
is, equations (3) and (4) represent control input constrains
such as actuator saturations. The constraint is important in
practical applications. An example of determining umax

s
and umin

s will be addressed in Remark 3. Equation (2)
means that the input u(t) is constant within each region.
The controller switches to another constant value when the
states move to another region.

To begin with, we consider a simpler case, where it is
assumed that f(x(t)) ≡ f(s1, . . . , sn) = fs and g(x(t)) ≡
g(s1, . . . , sn) = gs at Rs. This means that f(x(t)) and
g(x(t)) in each region are replaced with the constant vectors
fs and gs, respectively. Hence the original system (1) is
approximated as

ẋ(t) = fs + gsu(t) (5)

in each region.
This approximation is practically reasonable if the ∆si’s

are small, i.e., if the regions are small. Theorem 1 gives a
stability condition for the approximated system (5). Clearly,
Theorem 1 is not sufficient for ensuring stability of the
original system (1) due to the approximation.

We also assume that the system (A, B) linearized around
x(t) = 0 are stabilizable, i.e., there exist a positive
definite matrix P and a feedback gain H such that (A −
BH)T P + P (A−BH) < 0, where A = ∂f

∂x (x(t))|x=0

and B = ∂g
∂x (x(t))|x=0. This means that the feedback

u(t) = −Hx(t) stabilizes the system around x(t) = 0.
We give P > 0 satisfying the above condition in advance
and solve conditions in Theorem 1. By the procedure,
conditions in Theorem 1 become LMIs with respect to us.
In other words, P is not an LMI variable in Theorem 1.
Only us are LMI variables. The procedure often causes
conservative results. However, it provides us the reduction
of the number of LMIs to be solved simultaneously. It is
an advantage of deigning a controller for a system with
a large n. We will address it in Remark 2. In addition,
to avoid the conservatism, we bring an interesting idea in
design procedure. The idea is to subdivide only infeasible
regions and to apply Theorem 1 again only to the subdivided
infeasible regions. The recursive procedure also save design
effort drastically when n is large. The details will be
presented in Section IV

Theorem 1: The nonlinear system (5) is stabilized by the
controller (2) if there are the control inputs us satisfying
the following conditions. The designed controller satisfies
the input constraints (3) and (4).

(fs + gsus)T P x(s,k) < 0, ∀s, ∀k (6)

Ejus < Eju
max
s , ∀j, ∀s (7)

Eju
min
s < Ejus, ∀j, ∀s (8)

x(s,k) is constant defined as

x(s,k) = xs(k1, · · · , kn) =




xmin
1 + ∆S1ξk1(s1)

...
xmin

n + ∆Snξkn(sn)


 ,

ξ1(si) = si − 1, ξ2(si) = si, ki = 1, 2.
(proof) The proof is omitted due to lack of space.

Remark 1: Theorem 1 is not sufficient for ensuring the
stability of the original system (1) due to the approximation
(5). We will strictly discuss the stability of the original
system (1) in Section III.

Remark 2: The number of LMIs in Theorem 1 is (2n +
2m)Πn

i=1φi. Note that we do not have to solve all the LMIs
simultaneously. It is enough to simultaneously solve a set
of (2n +2m) LMIs (6)-(8) for each region. This means that
the set of (2n + 2m) LMIs for each region can be solved
independently since a common P is given in advance. This
is an advantage for control system designs with a large
number of n. Computational requirements are drastically
reduced when n is large.

Remark 3: Any values of umax
s and umin

s such that
umin
sj < umax

sj for j = 1, 2, · · · ,m can be separately
selected in each region Rs. The easiest selection is to
employ the same values for all the regions, i.e., umin

sj =
umin

j and umax
sj = umax

j , according to actuators saturation,
mechanical constraints, etc., where umin

j and umax
j are

constants such that umin
j < umax

j for j = 1, 2, · · · ,m.
Alternatively, we can select them so as to be proportional
to the distance from the origin (equilibrium point), i.e.,
umax
sj = αj

√
xcT
s xc

s and umin
sj = −αj

√
xcT
s xc

s for j =
1, · · · ,m, where xc

s is the central point in the region Rs
and αj is the constant.

Remark 4: In practice, we need to assign us = 0 at the
regions including x(t) = 0. However, if ẋ(t) = f(x(t)) is
unstable, the controller never stabilizes the system. There-
fore, if ẋ(t) = f(x(t)) is unstable, we introduce the
feedback

u(t) = −Hx(t) + ū(t). (9)

Then, the system (1) is rewritten as

ẋ(t) = f̄(x(t)) + g(x(t))ū(t), (10)

where f̄(x(t)) = f(x(t)) − g(x(t))Hx(t). The feedback
system (10) reduces to the original system (1) if f̄(x(t))
and ū(t) are replaced with f(x(t)) and u(t), respectively.
Hence, after introducing the feedback u(t) = −Hx(t) +
ū(t), ū(t) in region Rs can be determined by applying
Theorem 1 to (10).

Of course, selection of P (and also H) directly relates
to control performance. Therefore, for instance, we may
determine P and H by solving the Riccati equation for the
linearized system (A, B).

In the use of the feedback, umax
s and umin

s should be
selected carefully. The constraint on ū(t) can be considered

as that on u(t) + Hx(t). Since the feedback gain H is
given, it is possible to select umax

s and umin
s for ū(t).

III. DESIGN CONDITIONS BASED ON FUZZY MODEL

REPRESENTATION

As addressed in Remark 1, Theorem 1 is not sufficient
for ensuring the stability of (1) due to the approximation. In
Theorem 2, we guarantee the stability of the original system
(1) instead of the approximated system (5) by introducing
the following fuzzy model representation:

f(x(t)) =
2∑

η1=1

wf1(x(t)) · · ·
2∑

ηn=1

wfn(x(t))f (s,η),

g(x(t)) =
2∑

θ11=1

wg11(x(t)) · · ·
2∑

θnm=1

wgnm(x(t))g(s,θ),

where

f (s,η) = fs(η1 · · · ηn) = [ψsf1(η1) · · · ψsfn(ηn)]T ,

g(s,θ) = gs




θ11 · · · θ1m

...
. . .

...
θn1 · · · θnm




=



ψsg11(θ11) · · · ψsg1m(θ1m)

...
. . .

...
ψsgn1(θn1) · · · ψsgnm(θnm)


 ,

ψsfi(ηi) =
{

maxx(t) fi(x(t)), x(t) ∈ Rs if ηi = 1
minx(t) fi(x(t)), x(t) ∈ Rs if ηi = 2

ψsgij(θij) =
{

maxx(t) gij(x(t)), x(t) ∈ Rs if θij = 1
minx(t) gij(x(t)), x(t) ∈ Rs if θij = 2

Theorem 2: The nonlinear system (1) is stabilized by the
controller (2) if there are the control inputs us satisfying
the following conditions. The designed controller satisfies
the input constraints (3) and (4).

(f (s,η) + g(s,θ)us)T P x(s,k) < 0, ∀η, ∀θ, ∀s,∀k (11)

Ejus < Eju
max
s , ∀j, ∀s (12)

Eju
min
s < Ejus, ∀j, ∀s (13)

(proof) The proof is omitted due to lack of space.

Remark 5: The number of LMIs in Theorem 2 is
(22n+mn +2m)

∏n
i=1 φi. The number of LMIs in Theorem

2 are larger than that in Theorem 1. As mentioned in
Remark 2, we do not have to solve all the LMIs simul-
taneously. It is enough to simultaneously solve a set of
(22n+mn + 2m) LMIs for each region.

In most of cases, we can find f (s,η) and g(s,η) as in
an example later. Even if we can not find these values, we
can employ Theorem 3 instead of Theorem 2. The design
strategy is to find the maximum value of βv such that the
stability conditions in Theorem 2 are satisfied.

Theorem 3: The nonlinear system (1) is stabilized by the
controller (2) if there are the control inputs us satisfying the

following conditions. The designed controller satisfies the
input constraints (3) and (4). εv’s are weighting parameters
satisfying

∑n+mn
v=1 εv = 1.

maximize
us

n+mn∑
v=1

εvβv

subject to βv > 0, (12), (13) and
(
(fs + vfη) + (gs + vgθ)us

)T
Px

(s,k)
< 0,

∀η, ∀θ, ∀s,∀k, (14)

where

vfη = [(−1)η1β1 · · · (−1)ηnβn]T ,

vgθ =




(−1)θ11βn+1 · · · (−1)θ1mβn+m

...
. . .

...
(−1)θn1βn+m(n−1)+1 · · · (−1)θnmβn+nm


 ,

ηi = 1, 2 and θij = 1, 2.
(proof) The proof can be completed in the same proce-

dure as in Theorem 2.

Remark 6: Theorem 3 says that the closed-loop stability
is guaranteed if the (convex) vertices made by fs + vfη

and the (convex) vertices made by gs +vgθ include f (s,η)

and g(s,θ) in the region Rs, respectively.

β1, · · · , βn+mn can be separately determined in Theorem
3. By assuming that β1 = · · · = βn+mn = β, we can
simplify Theorem 3 as follows:

Theorem 4: The nonlinear system (1) is stabilized by the
controller (2) if there are the control inputs us satisfying
the following conditions. The designed controller satisfies
the input constraints (3) and (4).

maximize
us

β

subject to β > 0, (12),(13) and
(
(fs + βhfη) + (gs + βhgθ)us

)T
Px(s,k) < 0,

∀η, ∀θ, ∀s,∀k, (15)

where

hfη = [(−1)η1 · · · (−1)ηn]T ,

hgθ =




(−1)θ11 · · · (−1)θ1m

...
. . .

...
(−1)θn1 · · · (−1)θnm


 . (16)

Remark 7: In Theorems 2, 3 and 4, we can select umax
s

and umin
s in the same way in Remark 3. In fact, we will

utilize umax
sj = αj

√
xcT
s xc

s and umin
sj = −αj

√
xcT
s xc

s for
j = 1, · · · ,m in Section V.

IV. DESIGN PROCEDURE

We need to give a common P > 0 in advance and solve
the conditions in Theorem 1, 2, 3 or 4. As mentioned before,
by the procedure, the conditions in Theorems 1, 2, 3 and
4 become LMIs with respect to us. The procedure often
causes conservative results. However, it provides us the re-
duction of the number of LMIs to be solved simultaneously.
It is an advantage of deigning a controller for a system with
a large n. In this section, to avoid the conservatism, we
bring an interesting idea in design procedure. The idea is to
subdivide only infeasible regions and to solve LMIs again
only for the subdivided infeasible regions. The recursive
procedure saves effort to design a controller. To perform the
subdivision, we introduce a variable L that represents the
level of subdivision. In the design procedure, Lmax denotes
the maximum number of L to quit the algorithm.

The design procedure consists of five steps.
[Step 1] Set L=1. Determine Lmax. Determine xmin

i , ∆Si

and φi for i = 1, · · · , n. Find a positive definite matrix P .
If necessary, introduce the feedback (9).
[Step 2] Solve a set of the LMIs in Theorems 1, 2, 3 or 4
and obtain the local control inputs us

[Step 3] If the LMIs are feasible in all the regions, end. If
not so, go to Step 4
[Step 4] If there exist regions such that the LMIs used in
Step 2 are infeasible, subdivide the infeasible regions into
smaller some regions. The way to subdivide the infeasible
regions will be presented later. If L ≥ Lmax, then go to
Step 5, else L = L+ 1 and go to Step 2
[Step5] Find another P or increase Lmax and go back to
Step 2.

L=1 L=2

L=3 L=4

Fig. 2. An example of generating subdivided regions.

In Step 4, if there exist regions such that the LMIs are
infeasible, the infeasible regions are subdivided into smaller
some regions. The easiest way is to subdivide all the regions
into smaller regions by decreasing the partitioned guild size
∆Si and to solve the LMIs for all the regions. However, it is
really inefficient. Hence, to save the design effort, we sub-

divide only the infeasible regions into smaller some regions
and solve again the LMIs only for the subdivided infeasible
regions with the same common P . As mentioned in Remark
2, we do not have to solve all the LMIs simultaneously, i.e.,
the LMIs for each region can be solved independently since
P is given in advance and the same common P is shared
among all the regions. It can drastically save effort to design
a controller when n is large. We subdivide equally the
infeasible regions into 2n smaller regions. Figure 2 shows
an example of generating subdivided regions in the case of
n = 2. The black regions show infeasible regions. If some
of the generated smaller regions are infeasible regions, we
apply the same procedure to the (generated and smaller)
infeasible regions again. Thus, it is expected that all the
regions become feasible regions by recursively subdividing
infeasible regions. This fact will be found in Section V. The
recursive procedure is much more effective than the easiest
way mentioned above.

V. DESIGN EXAMPLE

Consider the following nonlinear system [7]:{
ẋ1 = −2x1 + ax2 + sinx1

ẋ2 = −x2 cosx1 + u cos 2x1,
(17)

where a = 1. From (17),

f1(x(t)) = −2x1 + ax2 + sinx1,

g1(x(t)) = 0
f2(x(t)) = −x2 cosx1,

g2(x(t)) = cos(2x1),

where
x = [x1 x2]T ,
f(x(t)) = [f1(x(t)) f2(x(t))]T ,
g(x(t)) = [g1(x(t)) g2(x(t))]T .

For this system, the following controller can be designed
using nonlinear control theory [7]. It can be seen that the
controller works only for −π

4 < x1 <
π
4 .

u(t) =
1

cos(2x1)
(−2ax2 − 2 sinx1

− cosx1 sinx1 + 2x1 cosx1) (18)

Figure 3 plots the surfaces of f1(x(t)), f2(x(t)) and
g2(x(t)). It is clear from Figure 3 that f (s,η) and g(s,η)

can be found if we divide the regions with x1 = π
4 ×k (k is

an integer) and x2 = 0. Therefore, Theorem 2 is employed
to design a controller. In this example,

xmin
1 = −4π, ∆S1 = π

4 , φ1 = 32,
xmin

2 = −3, ∆S2 = 0.5 and φ2 = 10.
The input constraint, umax

sj = αj

√
xcT
s xc

s and umin
sj =

−αj

√
xcT
s xc

s for j = 1, · · · ,m, is used as shown in
Remark 3, where αj = 10.

Executing the design procedure, we can design a con-
troller such that all the regions are feasible when L = 4.
Figures 4-7 show generated subdivisions and infeasible
regions for each L. We note that the feasible region (stable

0
-1

0

1
-10

0

10

x1
x2

f 1

0
-1

0
1

-1

0

1

x1

x2

f 2

0
-1

0
1

-1

0

1

x2

g 1

0
-1

0

1
-1

0

1

x1

x
2

g
2

Fig. 3. Surfaces of f1(x(t)), f2(x(t)), g1(x(t)) and g2(x(t)).

-10 -5 0 5 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x
2

L=1

Fig. 4. Generated subdivisions and infeasible regions for L = 1.

region) becomes larger by increasing L. (In L = 4, black
regions are not infeasible region. Those are feasible regions.
Due to very small subdivions (the boundary lines overlap
each other), it seems to be black regions.)

Figures 8 and 9 illustrate the control inputs us and
control trajectories on phase plane, respectively.

Remark 8: In this example, we give the result for L = 4
and the ranges (−4π ≤ x1 ≤ 4π and −3 ≤ x2 ≤ 2). It
is confirmed that, with L = 10, we can design a stable
controller for −20π ≤ x1 ≤ 20π and −5 ≤ x2 ≤ 2.45.
Thus, it is generally possible to expand the stable region by
increasing L.

Remark 9: In [5], a controller was designed for (17).
However, their controller guarantees the stability of the type
II fuzzy model (that approximates the dynamics of (17))
for the regions −5/3π ≤ x1 ≤ 5/3π and −2 ≤ x2 ≤
2. Therefore, their controller does not always guarantees
the stability of the original system (17). As mentioned in
Remark 8, our controller guarantees the stability of the
original system (17) for much wider ranges (at least for
the regions −20π ≤ x1 ≤ 20π and −5 ≤ x2 ≤ 2.45).
As emphasized above, a larger L achieves extension of the
stable region. Lmax can be selected by taking into account

-10 -5 0 5 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x
2

L=2

Fig. 5. Generated subdivisions and infeasible regions for L = 2.

-10 -5 0 5 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x
2

L=3

Fig. 6. Generated subdivisions and infeasible regions for L = 3.

both extension of the stable regions and design effort.

VI. CONCLUSIONS

This paper has presented a recursive pointwise design
(RPD) method for a class of nonlinear systems represented
by ẋ(t) = f(x(t))+g(x(t))u(t). The design philosophy is
that f(x(t)) and g(x(t)) can be approximated as constant
vectors in very small local state spaces. This paper has
given ideas of compensating the approximation caused by
the design philosophy. We have provided design conditions
that exactly guarantee the stability of the original system.
The controller design conditions requires to give the max-
imum and minimum values of elements in the functions
f(x(t)) and g(x(t)) in each local state space. Therefore,
we have presented design conditions for unknown cases of
the maximum and minimum values. To save design effort
of a controller, we have constructed an effective design
procedure by recursively applying the pointwise design. A
design example has demonstrated the utility of the RPD
method.

We would like to thank Mr. M. Sakaguchi for his contri-
bution for this research.

REFERENCES

[1] K. Tanaka and H. O. Wang, ”Fuzzy Control Systems Design and
Analysis : A Linear Matrix Inequality Approach”, John Wiley &
Sons (2001).

-10 -5 0 5 10
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x1

x
2

L=4

Fig. 7. Generated subdivisions and infeasible regions for L = 4.

-15 -10 -5 0 5 10 15

-3

-2

-1

0

1

2

-40

-20

0

20

40

x
1

x
2

U

Fig. 8. Control input.

[2] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its
Applications to Modelling and Control”, IEEE SMC-15, pp. 116-132,
(1985)

[3] M. Sugeno, “On Stability of Fuzzy Systems Expressed by Fuzzy
Rules with Singleton Consequents”, IEEE TRANSACTIONS ON
FUZZY SYSTEMS, VOL.7, NO.2, pp.201-224, 1999.

[4] T. Taniguchi and M. Sugeno, Stabilization of Nonlinear Systems
based on Type II fuzzy models, Proceedings of the 2003 American
Control Conference, Denver, June, pp.1920- 1925 (2003).

[5] T. Taniguchi and M. Sugeno, Stabilizing Control of Type II Fuzzy
Systems, 18th Fuzzy System Symposium, pp.455-458, 2002, in
Japanese.

[6] M. Sugeno, A Piecewise Parametric Approximation Model for
Nonlinear Systems and Lyapunov Stability Conditions, 31th SICE
Symposium on Control Theory, pp.129-134, October, 2002.

[7] Jean-Jacques E. Slotine and Weiping Li, “Applied Nonlinear Control”
Prentice Hall, pp.213-216, 1991.

-15 -10 -5 0 5 10 15
-3

-2

-1

0

1

2

3

x
1

x
2

Fig. 9. Control trajectories on phase plane.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: WeA14.5
	Page0: 470
	Page1: 471
	Page2: 472
	Page3: 473
	Page4: 474
	Page5: 475

