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Abstract- A Lyapunov-based discontinuous friction
compensation technique is developed for the position
regulation of a hydraulic actuator. The control scheme is
capable of asymptotic position regulation with no steady-
state error despite friction effects. Although, no knowledge
of actuator friction, servovalve dynamics, or hydraulic
parameters is required for control action, stability and
effectiveness of the control scheme considering hydraulic
nonlinearities, servovalve dynamics, and realistic friction
model is verified both analytically and experimentally. Due
to the discontinuity of the control law and the friction
model, the control system is nonsmooth. Therefore,
existence, continuation and uniqueness of the Filippov’s
solution are, first, proven using Filippov’s solution theories.
The extension of LaSalle’s invariance principle to
nonsmooth systems is then employed to prove the
asymptotic convergence of the system trajectories to the
equilibria. Experimental results verify the effectiveness of
the proposed controller in counteracting frictional effects
and asymptotic convergence of the system to the desired
position with no steady state error. ⋅

1 Introduction
Hydraulic systems have been widely used in many
industrial positioning applications such as assembly tasks,
heavy-duty manipulators, and material testing equipments.
Unlike their electrical counterparts, hydraulic systems
exhibit highly nonlinear characteristics [1]. Previous studies
on hydraulic systems have demonstrated that nonlinear
control schemes can achieve a better performance than the
conventional linear controllers [2,3]. Most of  recent studies
within the context of hydraulically actuated position control
are, therefore, based on the advanced nonlinear control
theories such as feedback linearization [1], adaptive control
[2, 4-6], variable structure control [7], and direct
Lyapunov-based control [8,9]. However, they did not
consider dry friction that is a major disturbance in hydraulic
cylinders and compensating it could improve the
positioning performance [3]. In fact, feedback control for
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precise positioning has been a challenging task due to the
presence of actuator friction.

Friction effects on hydraulic systems are of more
importance compared to electrical systems. Degrading
effects of friction (especially in small motions at low
speeds) dominates the behavior of position control systems,
making precise position control difficult to achieve. This is
due to the fact that hydraulic actuators operate under high
supply pressures and tight sealing is required to prevent
them from internal leakage. Typical errors caused by
friction include steady-state errors in position regulation
(caused by static friction), tracking lags (caused by viscous
friction) [10], limit cycles, and undesired stick-slip motion.
Friction effects may even cause instability during position
or force feedback control [6]. Compensating friction in
hydraulic systems is, however, difficult since the control
input drives the derivative of the actuator force and
therefore one cannot directly cancel friction term as is
commonly done in electric motors.

Armstrong-Helouvry et al. [11] conducted an extensive
survey on existing friction compensation techniques
divided into two major non-model based and model based
compensation categories. Since the physical nature of
friction is such that it can be rarely determined a priori with
the required accuracy and even if estimated it often changes
with time, most of the model-based methods entail on-line
estimation of the friction using observers [10,11]. An
alternative approach has been employing Lyapunov’s direct
method to develop a nonlinear discontinuous compensation
technique that stabilizes the system at the desired position
[12]. The present study follows the latter idea to enable
exact position regulation in hydraulic actuators in spite of
actuator friction.

Within the context of friction compensation in hydraulic
systems, Lischinsky et al [6] used a nonlinear PI-type
controller in the inner torque loop of an outer position
control of a hydraulic manipulator. Neglecting the valve
dynamics, they provided the stability proof of the position
control system. Tafazoli et al. [5] established an adaptive
friction compensation technique by combining observer-
based friction estimation with an acceleration feedback
control. They did not include the valve dynamics and the
stability analysis was somewhat less rigorous. Yao et al. [2]



included the dynamics of servovalve and proposed a
discontinuous adaptive robust controller supported by a
rigorous stability proof for position tracking. In case of
position regulation, however, complete stability analysis
was not provided; nor they provided a solution analysis of
the nonsmooth system under study. Sohl and Bobrow [9]
obtained a nonlinear control law using the Lyapunov
stability analysis. Their control law required knowledge of
some system parameters (valve coefficients, fluid bulk
modulus, Coulomb friction) whose values may change
during the position control process.

In the present study we design and experimentally validate
a Lyapunov-based nonlinear friction compensation
technique for the asymptotic position regulation of a
hydraulic actuator with no steady-state error in the presence
of actuator friction. Although, no knowledge of the friction
effects, servovalve dynamics, or hydraulic parameters is
required for control action, stability and effectiveness of the
control scheme considering hydraulic nonlinearities,
servovalve dynamics, and the realistic friction model is
verified both analytically and experimentally. Due to the
discontinuous nature of the actuator friction model and the
proposed control law, the control system is nonsmooth. In
this study, the existence, continuation and uniqueness of
Filippov's solution [13,14] of the hydraulic position control
system in the presence of friction are investigated. The
extension of Lyapunov stability theory to nonsmooth
systems [15,16] is then employed to guarantee the global
asymptotic convergence of the entire system’s states
towards the equilibria. Experimental results show the
effectiveness and applicability of the proposed control.

2 Dynamic Model of the System
2.1 Model of Hydraulic System
Figure 1 shows the schematic diagram of the double-ended
hydraulic actuation system under study. The equation of
motion of the actuator is described by the following
second-order equation

fL FAPxm −=&&      (1)
where x is the piston displacement and Ff  is the friction
force. Parameters m and A are the mass of actuator’s
moving parts and piston area, respectively. PL=Pi-Po is the
load pressure. For valves with rectangular matched and
symmetric orifice areas, PL changes with time according to
the following relation (neglecting leakages) [17]:
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where x&  is the actuator velocity, w is the orifice area
gradient, ρ  is the hydraulic fluid density, Ps is the pump
pressure, and cd is the orifice coefficient of discharge. xsp is
the spool displacement and β4tVC =  is the hydraulic
compliance where Vt is the total actuator volume and β  is

the effective bulk modulus of the system. The function
)( spxsign  in (2) is defined as:
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The dynamics between the spool displacement, xsp, and the
input voltage, u, is modeled as a first-order system [18]:
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ksp and τ  are valve gain and time constant, respectively.

2.2 Friction Model
It is well known that the major components of friction are
Coulomb force, viscous force, and Stribeck effects.
Experiments have confirmed Tustin’s discontinuous model
that includes the above components in the friction model
[10]. The model is widely used in many general [11] as
well as hydraulic [5] position and force control systems:
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where FC is the Coulomb friction, FS is the stiction force
(the force needed to start the motion), sx&  is a threshold
velocity where the downward bend in friction appears after
the stiction (breakaway) force is surmounted, and d is the
viscous friction coefficient. At rest, the static friction
( )0sgn(SF ) is opposite to the applied force and can acquire
any value in the range of ],[ SS FF− . This opposing static
friction increases with the increase in the net external force
until it reaches the breakaway force, FS, where the piston
starts to slide and the friction drops due to Stribeck effect.
The function )sgn(x&  is, thus, defined as:
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3 Controller Design
In designing the friction compensation position control
scheme, the goal is to have the piston reach the desired
position, xdes, with no steady state error. Using the
Lyapunov’s direct method (detailed in Section 5), the
following position control law is proposed:
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where Kp and Kx are positive constant gains.
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Fig. 1 Schematic of the system configuration.

Ffx&



Measurements of the ram position, hydraulic line pressures,
supply pressure and the knowledge about the direction of
the valve spool displacement are the requirements for the
implementation of the above control algorithm. Existence
of the pressure feedback in the control law is recommended
by researchers for damping out the resonance of hydraulic
cylinder and achieving a higher bandwidth [5].

In order to constitute the state space model of the system,
the vector of error states are defined as Teeee ),,,( 4321=e
where

spLdes xePexexxe ===−= 4321 ,,, &      (8)
Combining equations (1)-(8) results in the following error-
space model of the system:
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The above model does not incorporate the dead-zone
nonlinearities caused by possible spool valve overlap.
Leakage flow across the actuator’s piston is also neglected
since it inherently has stabilizing effect by providing
damping for hydraulic resonant mode [1]. For the above
double-rod cylinder, directional nonlinearity is not an issue
and the servovalve saturation nonlinearity can also be
neglected if the valve is never allowed to saturate.

The equilibria of the above system are obtained by equating
the right-hand side of (9) to zero:
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where [ ]SSS FFF ,)0sgn( −∈  represents the static friction
during the steady state and is equal and opposite to the
external applied force. Thus, the equilibrium point of the
system is every T
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Therefore, despite friction effects, the equilibria of the
system shown in (9) are always where the piston position
approaches the desired position asymptotically.

Inclusion of the discontinuous friction model and the
discontinuous nature of the control law in the analysis
results in a nonsmooth system. Here, Filippov's solution
concept is used to investigate the solution of discontinuous
control systems under study.

4 Solution Analysis
With reference to (9), the discontinuity surface of the
system is one of the following three surfaces:
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The subscript and superscript denote the dimension and the
number of the discontinuity surface, respectively. The
surface 2

1S  is the intersection of surfaces 3
1S  and 3

2S .

4.1   Existence and continuation of Filippov’s solution
Let region RR ×=Ω 4  and let D be an arbitrary compact
set in Ω . The right-hand sides of equations (9) are defined
everywhere in Ω , and are bounded by B(t). Let B(t)=L,
which is obviously integrable on D. Furthermore, each term
of the right-hand sides of (9) is measurable. Thus, the right-
hand sides of equations (9) satisfy condition B of the
Filippov's solution theory [13] and we have the local
existence of a solution which is continuable on ],[ 0 ftt .

4.2 Uniqueness of Filippov’s solution
The vector-valued function of the right-hand sides of
equations (9) is continuous up to the discontinuity surfaces
and the discontinuity surfaces are smooth and independent
of time t. Therefore, conditions A, B and C of Filippov’s
solution theory [14] are satisfied. Next, the analysis of the
uniqueness of Filippov’s solution must be carried out for
each discontinuity surface.

We first study the uniqueness of Filippov’s solution for the
discontinuity surface 3

1S . 3
1S  divides the solution region

into two parts: { }0:: 2 >=Ω+ ee  and { }0:: 2 <=Ω− ee . The
normal to this surface, denoted by 3

1S
N , is:

Defining the vector functions f+ and f- as the limiting values
of the right-hand sides of the state- space equations (9) in
regions +Ω  and −Ω , the projections of f+ and f- along the
normal to the discontinuity surface, 3

1S , are:
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Thus, according to Theorem 14 of Filippov [13], the
uniqueness of the Filippov's solution is guaranteed. The
uniqueness analysis for 3

2S  can be done in a similar way.
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Uniqueness analysis of  2
1S  requires heavier mathematical

machinery.

5 Stability Analysis
Although Lyapunov’s second method was originally
developed for smooth nonlinear systems, its extension to
nonsmooth systems based on Filippov’s solution theory
[15,16] has provided the theoretical foundation for proper
stability analysis of non-smooth systems. The stability
analysis of the system shown in (9) is conducted using the
extension method introduced in [16] and deriving a smooth
regular function for the system under study.

Let V be the positive regular function introduced for the
nonsmooth system given in (9):
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where ε  is an arbitrary small positive constant. The
derivative of the above function is

( )( ) 2
22

2
42

2
2)(

e
C
d

e
C

eFFF
e

CKk

wAc
V

sxe
CSC

xsp

d εε

ρ
−

−+
−−=

− &

&

344343 )()1( eesignPeeee
KC
KA

C
wc

s
x

pd −







+−− ε

ρ
   (17)

According to (17), in order to have negative semi-definite
V& , the following condition is imposed on the control gain
ratio:
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Not that since 10 <<< ε , equation (18) implies that the
lower limit on the control gain ratio is AC .

Equations (17) and (18) denote that V&  is continuous and
negative semi-definite throughout the solution region
except for the discontinuity surfaces. On 3

1S :
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where 
+3

1SV& and 
−3

1SV& are the limit values of V&  as a
solution trajectory approaches 3

1S  from both sides:
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Equations (20) imply that the convex set described in (19)
only contains one negative element. Thus, on the
discontinuity surface 3

1S :

Similar proof can be derived for the derivative of the V on

3
2S  and 2

1S - details are not presented for the sake of

brevity. We can, thus, conclude that V& is negative semi-
definite in both contact and noncontact regions of motion as
well as on the discontinuity surfaces. Therefore, according
to the extended LaSalle’s invariance principle to
nonsmooth systems, every solution trajectory in Ω
globally converges to the largest invariant set, M, as

∞→t .  Next, we prove that the largest invariant set, M,
contains only the points that belong to the set

( )Tsse 0,,0,0 3=eqe  with sse3  defined in (11). This can be
proven by contradiction.  Let R be the set of all points
within the solution region Ω  where 0=V& . With respect to
(17), 0=V&  requires that for all the points in R, 02 =e  and

04 =e . Thus, both 2e&  and 4e&  are zero. Let M be the
largest invariant set in R and contain a point where either

01 ≠e  and/or 3e  is not equal to the value shown in (11).
According to equations (9b) and (9d), this will result in
either 02 ≠e&  and/or 04 ≠e&  which necessitates the solution
trajectory to immediately move out of the set R and
certainly set M. But, this conclusion contradicts with the
initial assumption that M is the largest invariant set in R.
Thus, 1e  can only be equal to zero and 3e  can only be
equal to the value shown in (11). This discussion concludes
that every solution trajectory in Ω  will converge to the
largest invariant set M containing only the equilibria. The
control scheme is, thus, capable of asymptotic position
regulation with no steady-state error despite friction effects.

6 Experimental Verification
Experiments were conducted on an electrohydraulic
actuator following a desired position. The goal is to verify
the theoretical conclusion drawn in Section 3 and show that
the proposed control scheme in this paper can effectively
counteract frictional effects and achieve the desire position
asymptotically. The first set of experiments was performed
with control gains chosen as ACKK xp ≅ . Realistically,
the exact values of C and A may not be available.
Therefore, the second set of experiments was conducted to
observe the performance of the control scheme if the
control gain ratio is almost twice AC . It is shown that the
controller proposed in this paper is still capable to regulate
the desire position asymptotically.

6.1 Test Rig
Figure 2 shows the schematic of the hydraulic test rig. The
hydraulic circuit consists of an actuator controlled by a
Moog D765 high-performance servovalve, mounted on a
reinforced steel table. The actuator has an annulus area of
0.98 in2 and a 24 in stroke. The servovalve can flow 34
L/min at 3000 psi and has a rise time of 2 ms. It uses a
mechanical feedback spring with a linear variable
differential transformer (LVDT) that measures the position
of the spool. Two Sensotech-FPG transducers measure the
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fluid pressure at the actuator chambers.  A   rotary   encoder
with a resolution of 1024 counts/revolution (linear
resolution of 0.0015 in) establishes the relative position of
the actuator. The data acquisition system is comprised of a
personal computer and a DAS-16F input/output board.

Fig. 2 Schematic of the experimental test rig.

6.2 Results
In all experiments, the actuator accelerated from the rest to
the desired position 8=desx  in under controller (7). The
first set of experiments was performed using the ratio of the
control gains ACKK xp ≅  which is the limit of stability
region for the control system (see Section 5). The hydraulic
compliance of the test rig was over-estimated as
C=7.14x10-5 psiin3 . Knowing A=0.98 in2, the control

gains were chosen to be Kx=0.1 inpsiV 21  and Kp=8x10-6

23psiV which do not saturate the actuator at the extreme
measurable limits of motion with the supply pressure equal
to Ps=2000 psi.

Figure 3 shows the response of the system. The position
response of the system demonstrates the convergence of the

system trajectory to the desired position with no steady
state error and verifies the friction compensation capability
of the proposed controller in a hydraulic actuator. Note that
the position steady state error in Fig. 3 is observed to be
0.0014 in which is within the resolution of measurements
and cannot be detected by the controller. Knowing the
experimentally derived value of the maximum static
friction, FS=314.72 lb, Fig. 3 also confirms that the steady-
state supply pressure is within the range denoted in (11).

In order to observe the performance of the control scheme
when the control gain ratio is greater than AC , the second
set of experiments with the same position regulation task
was setup with ACKK xp 2≅ . Increasing the gain ratio
was done by either increasing Kp or decreasing Kx. Figure 4
illustrates the system response in the first case. It is shown
that the proposed control system convergences to the
desired position with no steady state error. Comparing this
response (solid line) with the response of the system with

ACKK xp ≅  (dashed line) reveals that decreasing Kx

results in a slower response with larger rise time.

The gain ratio can also be doubled by doubling Kp and
keeping Kx unchanged. Figure 5 shows the system
response. It illustrates that although increasing Kp

 dampens
the system response (the position response of the system
with ACKK xp ≅  is shown by dotted line), the response
is still asymptotically converging to the desired position
without steady state error.

7 Conclusions
Extension of Lyapunov direct method to nonsmooth
systems was employed  to  design  a  friction  compensating
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position controller for hydraulic actuators. The control
scheme is capable of asymptotic position regulation with no
steady-state error in spite of friction effects. Although no
knowledge of the friction model, servovalve dynamics, or
hydraulic parameters is required for control action, stability
and effectiveness of the control scheme in the presence of
all these parameters is verified both analytically and
experimentally. Due to the discontinuity of the control law
and the friction model, the existence, continuation and
uniqueness of the solution were, first, proven using
Filippov solution theories. The extension of LaSalle’s
invariance principle to nonsmooth systems was then
employed to prove that all the solution trajectories converge
to the equilibria. Experiments conducted on a test bed
verified the effectiveness of the proposed controller in
position regulation in the presence of actuator friction.
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