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Abstract— Linear matrix inequality (LMI) based optimization
methods are applied to the problem of designing a model pre-
dictive controller for an uncertain constrained linear system.
The control signal is specified in terms of both feedback and
feedforward components, where the feedback is designed to
maintain the state within a prescribed ellipse in the presence
of unknown bounded disturbances and system perturbations.
The feedforward component drives these ellipses to a desired
reference state. The LMI characterization allows exact specifi-
cation of ellipsoidal and hyperplane constraints on the inputs,
states and outputs.

I. INTRODUCTION

Model predictive control (MPC) was initially developed

for the control of large constrained systems with slow

dynamics, and has found application in the process control

industries. Advances in real-time computational abilities

are making this approach attractive for a wider range of

applications. There is a significant body of literature on

MPC; see for example the survey papers of Rawlings [1],

Mayne et al. [2], Chen and Allgöwer [3], Morari and

Lee [4], and the detailed book of Maciejowski [5].

Theoretical results on stability and optimality of MPC are

relatively recent [6]. There are several methods currently

used to introduce a guarantee of stability into the design

optimization. These include: the use of an infinite prediction

horizon; the addition of particular terminal cost functions

or terminal constraint sets; the selection of a sampling

time to meet stability constraints; and the augmentation

of the system with a stabilizing feedback controller. The

inclusion of plant uncertainty in the problem has only

recently been addressed. Some early work—most of it based

on FIR models—can be found in [7], [8], [9]. A more

general approach, using a rich class of perturbation based

models1, is developed in the work of Kothare et al. [10].

LMI methods have been widely used in the robust control

community for control design with guaranteed robustness

to plant uncertainty, and [10] applies them to MPC. The

disadvantage of this particular LMI approach is that con-

straints are handled only by approximate and potentially

conservative methods. Some aspects of this work are similar

to that of Kouvaritakis et al. [11], which uses feedforward

control and finds an invariant ellipse bounding the state.

1This model class is widely used in robust control design.

Motivated by [10], we also present LMI based MPC tech-

niques. The most significant difference is that [10] develops

LMI constraints involving the term (AQ + BY ), where

Q = QT > 0 and Y are the optimization variables.

This effectively finds an invariant ellipsoid containing the

current state, a feedback gain, K, and a Lyapunov func-

tion proving stability. Recent work [12] has involved time

varying terminal set specification to enlarge the allowable

set of initial conditions. However the resulting controller

is parameterized in terms of K = Y Q−1, and the use of

the inverse of the optimization variable makes it difficult

to augment the problem with input and state constraints.

In [11] a feedforward component is optimized to ensure

constraint satisfaction. The method presented in this paper

develops an LMI which is linear in K, allowing input, state

and output constraints to be included in a non-conservative

manner.

Another difference between this work and that in [10],

[11] is the use of general quadratic functionals to specify

regions of the state space. This allows us to specify ellipses

which are not necessarily centered at the origin, allowing the

optimization to take advantage of asymmetric features in the

constraints. The use of quadratic functionals as constraints

also allows linear constraints as a special case.

The approach taken here does have a potential disadvan-

tage. The feedback calculated guarantees that a prespecified

ellipse, containing the state and moving with each feedfor-

ward control, is maintained. This may not be the optimal

feedback control for future state transitions as it does not

account for potential reductions in the size of the guaranteed

ellipse. However, using this approach in an MPC context

gives us the opportunity of recalculating both the size of the

state bounding ellipse and the feedback gain at each time

step. This removes most of the disadvantages associated

with using the approach to precalculate an entire control

trajectory.

II. PROBLEM DESCRIPTION

The objective is to control the state of a linear system from

x(k) at time k, to a desired reference, xref. The nominal

dynamics of the system are given by,

x(k + 1) = Ax(k) + Bu(k),
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Figure 1. Illustration of the control approach using u(k) = K(x(k) − z(k)) + v(k). The feedback, K, acts on x(k + i) − z(k + i) and shrinks the
size of each succeeding ellipse, Pk+i+1. The feedforward term, v(k + i) drives the ellipse centers, z(k + i +1), to the reference state, xref, in N time
steps.

and we will design a control signal with both feedback and

feedforward terms,

u(k) = K(x(k) − z(k)) + v(k). (1)

The state, x(k), is specified as lying within an ellipsoid,

Pk, with center z(k), defined by,

Pk =
{

x(k) (x(k)−z(k))T P−2

k (x(k)−z(k)) ≤ 1
}

,

where Pk = PT
k > 0. The feedforward component of

the control, v(k), will be used to drive the center of the

ellipsoid, z(k), to xref, within N time steps. The closed-

loop component, K(x(k)− z(k)), will be used to maintain

the next state, x(k+1) within a potentially smaller ellipsoid,

Pk+1, centered at

z(k + 1) = Az(k) + Bv(k), (2)

This approach is illustrated in Figure 1. The feedforward

component of this work is similar to that of Löfberg [13],

which relies on MPC recalculation to provide feedback.

At first glance there does not appear to be a benefit in

specifying x(k) ∈ Pk when x(k) is measured and therefore

known. However when the problem includes both unknown

disturbance inputs and perturbations to the system state

space description, the feedback component of the control

signal is used to guarantee that at the next time step, the

state, x(k + 1), is within a prescribed ellipse. This leads

to both stability and performance bounds for the uncer-

tain system with disturbances, and illustrates the axiom

that feedback is only required to deal with the effects of

uncertainty in the system and its inputs.

We can also impose constraints on the control input, u(k +
i), i ≥ 0, the state, x(k + i), i ≥ 1, and the output y(k + i),
i ≥ 1. The constraints may be expressed as ellipsoids or

hyperplanes, and are applied without conservativeness. This

allows arbitrary polytopic constraints to be imposed on the

input, state or output spaces at each time step.

The methods we describe here guarantee that the local

feedback law, K, gives a stable closed-loop, A+BK, which

has the effect of shrinking the state ellipsoid at the next time

step. However, we are not able to take advantage of the

fact that the state ellipse has shrunk when calculating the

allowable trajectories and constraints for future times. This

is a disadvantage if this approach is used off-line. However,

the approach should work well in an MPC context as a

new feedback K and new feedforward controls, v(k + i),
i = 0, . . . , N − 1, are calculated at each time step k. The

reduction of the state ellipse can be taken advantage of in

the calculation performed at the next time step.

III. LMI OBJECTIVES AND CONSTRAINTS

Consider the single step control problem. We would like

to determine an ellipsoid, Pk+1, that contains all states,

x(k + 1), generated from x(k) ∈ Pk via the control, u(k)
in (1). The center of the ellipse, Pk+1 is defined by (2)



which gives,

x(k + 1) − z(k + 1) = (A + BK)(x(k) − z(k)).

The following theorem characterizes the resulting ellipse,

Pk+1, in terms of the controller gain K the feedforward

control input, v(k).

Theorem 1: All x(k) ∈ Pk are mapped, via the control

input,

u(k) = K(x(k) − z(k)) + v(k),

into an ellipse, x(k + 1) ∈ Pk+1 with z(k + 1) = Az(k) +
Bv(k), if and only if there exists λ satisfying 0 < λ < 1,

such that
[

−λP−2

k (A + BK)T

(A + BK) −P 2
k+1

]

≤ 0. (3)

Note that this inequality does not depend on x(k), v(k), or

x(k +1). Furthermore it is linear in K and P 2
k+1

, allowing

the search for control signals, and the resulting ellipsoids

to be formulated as an LMI. General results on intersecting

ellipsoids can be found in Boyd [14, p.45].

A. Stability and performance of the local feedback

The LMI condition in (3) simply establishes the relationship

between the local feedback gain K, and the ellipse that the

control u(k) in (1) generates. The results that follow will

depend on generating Pk+1 ⊂ Pk, which leads to stability

of the local feedback, A+BK. It is a simple matter to also

include a standard quadratic performance objective in terms

of Q = QT > 0.

J =
∞
∑

i=1

(x(k+i) − xref)
T Q(x(k+i) − xref).

Bounding each of the first N terms by γi, i = 1, . . . , N ,

and the sum of the remaining terms by γ∞, gives an upper

bound to the cost,

J ≤
N

∑

i=1

γk+i + γ∞. (4)

We will develop LMI conditions using the γi and γ∞
that can be used to optimize performance. The following

theorem gives the LMI constraint on γk+1 in terms of K,

z(k) and v(k).

Theorem 2: For all x(k) ∈ Pk the next state, x(k + 1),
generated by

u(k) = K(x(k) − z(k)) + v(k),

satisfies

(x(k + 1) − xref)
T Q(x(k + 1) − xref) ≤ γk+1,

if and only if, there exists 0 < λ ≤ 1 satisfying,
2

4

λ−γk+1 (xref−Az(k)−Bv(k))T 0
xref−Az(k)−Bv(k) −Q−1 A+BK

0 (A+BK)T −λP−2

k

3

5 ≤ 0. (5)

This is an exact bound only for γk+1. To apply it non-

conservatively for additional terms, γk+i, i > 1, requires a

parameterization of both P 2
k+i and P−2

k+i, which would not

result in an LMI condition. It is a simple matter to formulate

a conservative condition by using Pk in place of Pk+i for

the LMI conditions for i > 1. This effectively applies the

constraint to a larger ellipse, centered at z(k+i). The degree

of conservativeness depends on how much the feedback, K,

shrinks each ellipse in going from Pk to Pk+i.

B. Terminal feedback control design

Assume that xref satisfies the given state constraints, and

for some vref, satisfying the input constraints,

xref = Axref + Bvref. (6)

The most straightforward means of accomplishing this

objective is to constrain the last of the ellipse centers to

be equal to the reference state, z(k+N) = xref. The means

of doing this is discussed in more detail in Section III-D.

The terminal control problem is now reduced to a feedback

design to stabilize the state xref. Doing this in a way which

bounds the performance objective term γ∞ is presented in

the following theorem.

Theorem 3: There exists γ∞ > 0 satisfying,




−P−2

k+N (A + BK)T I

(A + BK) −P 2
k+N 0

I 0 −γ∞Q−1



 ≤ 0, (7)

if and only if A+BK is stable. Furthermore, for all x(k +
N) ∈ Pk+N the closed-loop state trajectory satisfies,

∞
∑

i=0

(x(k + N + i) − xref)
T Q(x(k + N + i) − xref) ≤ γ∞.

This gives us the necessary bound on γ∞ for the perfor-

mance optimization. It also gives a stabilizing controller

proving stability for the entire MPC scheme. This LMI has

terms in P−2

k+N and P 2
k+N . It should be noted that Pk+N is

not a variable but defines the prespecified ellipse containing

the state.

C. Input, state and output constraints

Define an ellipsoidal constraint region, U , centered at u0,

U =
{

u (u − u0)
T U−2(u − u0) ≤ 1

}

,



where U = UT > 0. Satisfaction of the constraint u(k) ∈
U , is given by an LMI.

Theorem 4: For all x(k) ∈ Pk, the input

u(k) = K(x(k) − z(k)) + v(k),

satisfies u(k) ∈ U if and only if, there exists λ > 0
satisfying,





λ − 1 uT
0 − v(k)T 0

u0 − v(k) −U2 K

0 KT −λP−2

k



 ≤ 0. (8)

The linearity with respect to K and v(k) makes it easy

to apply this constraint to the design problem. Note that

the same result allows us to constrain u(k) to be in the

intersection of multiple ellipses of the form U . This fact

can be used to specify non-conservative constraints on

the individual components of u(k). This approach can be

further extended to hyperplane constraints, giving one LMI

per constraint.

Theorem 5: For all x(k) ∈ Pk, the input

u(k) = K(x(k) − z(k)) + v(k),

satisfies cT
u u(k) ≤ ubnd, if and only if, there exists λ > 0

satisfying,
[

−2ubnd + 2cT
u v(k) + λ cT

u K

KT cu −λP−2

k

]

≤ 0. (9)

A similar mechanism to the above gives an LMI for state

constraints. Define a state constraint ellipsoid via, x(k) ∈
X , where,

X :=
{

x (x − x0)
T X−2(x − x0) ≤ 1, X = XT > 0

}

.

(10)

Satisfaction of an ellipsoidal constraint of the form given

in (10) can be formulated as, for all, x ∈ Pk+1, x ∈ X .

Reformulation of this requirement yields an LMI which is

linear in P−2

k+1
, which cannot effectively be combined with

the other LMIs that are linear in P 2
k+1

. We instead consider

all x ∈ Pk, and apply the constraint x ∈ X to all

x(k + 1) = (A + BK)(x(k) − v(k)) + Az(k) + Bv(k).

This approach gives the following theorem.

Theorem 6: For all x(k) ∈ Pk, the state generated by

x(k + 1) = (A + BK)(x(k) − z(k)) + Az(k) + Bv(k),

satisfies x(k+1) ∈ X if and only if, there exists 0 < λ ≤ 1
satisfying (11).

This formulation is linear in K, z(k) and v(k) and does not

explicitly involve Pk+1, allowing it to be easily included

as an additional constraint in the design problem. Note

that it is slightly less conservative than constraining Pk+1

as our representation of Pk+1 involves Pk and may be

conservative.

We can also consider hyperplane constraints of the form,

cT
x x ≤ xbnd,

and develop nonconservative LMI constraints on K, v(k)
and z(k) as follows.

Theorem 7: For all x(k) ∈ Pk, the state generated by

x(k + 1) = (A + BK)(x(k) − z(k)) + Az(k) + Bv(k).

satisfies cT
x x(k+1) ≤ xbnd, if and only if, there exists λ > 0

satisfying,






λ + 2cT
x (Az(k) + Bv(k))

−2xbnd

cT
x (A + BK)

(A + BK)T cx −λP−2

k






≤ 0.

(12)

Output constraints for both of these cases follow trivially

from y(k + 1) = Cx(k + 1).

D. Feedforward sequence design

The objective of the design of v(k+ i), i = 0, . . . , N −1, is

to drive the ellipse centers, z(k+i+1) to a desired terminal

point, z(k+N). We express the relationship between v(k+
i) and z(k + i + 1) in terms of a constraint involving the

system dynamics. The linear dynamics satisfy,










z(k + 1)
z(k + 2)

...

z(k + N)











= Ψz(k) + Φ











v(k)
v(k + 1)

...

v(k + N − 1)











, (13)

where Ψ =
[

A A2 · · · AN
]T

and

Φ =











B 0
AB B

...
. . .

AN−1B · · · B











.

This is a linear equality constraint in terms of the unknown

variables v(k), · · · , v(k +N − 1), and z(k +1), · · · , z(k +
N). To apply the terminal constraint discussed in Sec-

tion III-B, we simply substitute z(k + N) = xref in (13).





λ − 1 xT
0 − z(k)T AT − v(k)T BT 0

x0 − Az(k) − Bv(k) −X2 A + BK

0 (A + BK)T −λP−2

k



 ≤ 0. (11)



E. MPC optimization calculation

Putting together the above results gives the optimization

problem to be solved at each sample time. Simply stated, it

involves minimizing the upper bound cost (4) over K, v(k+
i) and z(k + i), i = 1, . . . , N −1, subject to the constraints

on γi (5), γ∞ (7), and any input, state or output constraints

of the form (8) or (9). This will involve N sets of LMIs

each one differing only in the appropriate substitution of

v(k+i), z(k+1), i = 1, . . . , N . Including the linear equality

constraint, (13), ensures that the feedforward control brings

the center of the ellipses to the reference state, xref. It is a

simple matter to show that this combination of LMIs results

in a stabilizing controller irrespective of whether or not it

is recalculated at each subsequent time step.

IV. ROBUSTNESS AND DISTURBANCE REJECTION

A. System description

Uncertainty in the system will be modeled by a perturbation

description using linear fractional transformations. We will

follow the notation in [10] for ease of comparison. The

system is given by,

x(k+1) = Ax(k) + Bu(k) + Bdd(k) + Bpp(k),

q(k) = Cqx(k) + Dquu(k) + Dqdd(k),

p(k) = (∆q)(k).

The operator, ∆, is block diagonal, with its structure defined

by,

∆ ∈ ∆ = { ∆ ∆ = diag(∆1, · · · , ∆m } ,

and is assumed to be norm bounded by one. At each

time step ∆i(k) can be viewed as an unknown matrix

with σ̄ (∆i(k)) ≤ 1. This is equivalent to a set based

specification, (A, B) ∈ (A,B), where

(A,B) =

{ (A + Bp∆Cq, B + Bp∆Dqu) | σ̄ (∆) ≤ 1 } .

This perturbation framework for modeling uncertainty is

widely used in robust control.

The perturbed state equation also contains a disturbance

input, d(k), which is modeled as coming from a bounded

set, d(k) ∈ D. We will consider this to be specified by

an l2 norm bound on d(k) at each time, k, giving D =

{

d(k) d(k)T d(k) ≤ 1
}

. It is also possible to include more

general ellipsoidal or hyperplane bounds on d(k).

B. Robust stability and performance

We are interested in whether or not the closed-loop system

is stable for all ∆, ‖∆‖ ≤ 1, or equivalently, for all

(A, B) ∈ (A,B). We are also interested in being able to

bound the performance cost in the perturbed case, and in

the disturbance rejection case. This issue is not quite as

straightforward as the nominal case considered in the pre-

ceding sections. As the only constraint on the disturbance is

that d(k) ∈ D for all k, it is usually the case that ‖d‖2 = ∞,

and we should not expect, limk−→∞ x(k) = xref, as was the

case for the nominal, undisturbed, system. This will mean

that we will not be able to find an infinite quadratic bound,

γ∞, for the state error, except in special circumstances.

The consequences of both the perturbations and the distur-

bances can be seen by examining the state update equation

at the terminal time. Consider the feedback to be, u(k) =
K(x(k) − xref) + vref, where xref and vref satisfy (6). This

leads to,

x(k+1)−xref =

(A + BK + Bp∆(Cq + DquK))(x(k)−xref)

+Bp∆(Cqxref + Dquvref) + Bdd(k),

where ∆ ∈ ∆, σ̄ (∆) ≤ 1 at each time step. In order to have

x(k + 1) −→ xref as k −→ ∞, it is necessary to consider

the case where d(k) = 0 and Cqxref + Dquvref = 0. The

condition on Cq, Dqu, effectively means that q(k) = 0 at

the equilibrium point. It is satisfied in general if we define

xref and vref such that they satisfy,
[

A − I

−Cq

]

xref =

[

B

Dqu

]

vref. (14)

This may be satisfied for some perturbation model struc-

tures, and/or reference point choices. Note that this is

trivially satisfied in the typical linear case where xref = 0.

In the general case (i.e. when (14) is not satisfied) we can

at least guarantee that the state remains within the terminal

ellipse, centered at xref.

Theorem 8: If there exists, λ0 ≥ 0, β > 0, and

Λ = diag(λ1I1, . . . , λmIm), λi > 0,













−λ0P
−2

k 0 0 (A + BK)T (Cq + DquK)T

0 −βI 0 BT
d DT

qd

0 0 β + λ0 − 1 0 (Cqxref) + Dquvref)
T

A + BK Bd 0 BpΛ
−1BT

p − P 2
k 0

Cq + DquK Dqd Cqxref + Dquvref 0 −Λ−1













≤ 0, (15)



such that (15) is satisfied, then for all x(k + N) ∈ Pk+N ,

∆ ∈ ∆, σ̄ (∆) ≤ 1, and for all d(k + N + i) ∈ D, the

subsequent states, x(k + N + i + 1) ∈ Pk+N for all i ≥ 0.

There are two ways in which this LMI condition is po-

tentially conservative. The first is through the use of more

than one multiplier in the S-procedure. The second is that

the condition uses Pk, which specifies the size of the initial

ellipse, rather than Pk+N which would specify a potentially

smaller ellipse.

The input, state and output LMIs Section III-C can be

augmented to provide a sufficient condition for constraint

satisfaction in the robust model case. For brevity the details

are omitted.

V. COMPUTATIONAL ISSUES

The formulation of this problem in terms of LMI constraints

shows that the resulting optimization is convex. General

purpose LMI solvers can be computationally demanding,

and application of this approach to MPC control will likely

require the development of specialized code. The potential

for efficient code can be seen by noting that most of

the LMIs presented differ in only several entries enabling

efficient low rank gradient updating.

The initial ellipse defined by Pk is not a variable in the

LMI optimization, which raises the question of it should

be chosen. One approach is to design a state feedback

controller for the unconstrained problem. This feedback

controller specifies an invariant ellipse which can then be

scaled so that the resulting feedback gains, and the states

contained within the ellipse, satisfy the input and state

constraints.

There are two features of this approach which are attractive.

The first is that the solution of the LMI problem generates

a local controller, K, and a sequence of feedforward inputs,

v(k), that is a feasible solution for every subsequent prob-

lem. This solution can be used as an initialization for the

optimization at subsequent time steps. It can also be used

as a contingency solution if a subsequent optimization does

not converge in sufficient time.

The second important feature arises from the convexity of

the problem. At each subsequent time step, the objective of

the optimization need only be to improve the performance

of the design by recalculating K and v(k). It is not

necessary to calculate the optimal K and v(k) in order to

derive benefit from the MPC approach. This means that the

early termination of an optimization method will yield some

performance improvement in the control design problem.
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