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Abstract— Moving horizon estimators based on an opti-
mization formulation have been proposed as an alternative
to extended Kalman filters for constrained nonlinear estima-
tion. An efficient approach to the solution of the nonlinear
dynamic optimization resulting from the Nonlinear Moving
Horizon Estimation (NMHE) problem is presented in this
paper. The dynamic optimization problem for the continuous
NMHE is transformed into a lower dimensional nonlinear
programming problem by eliminating the dynamic constraints
for a differentially flat nonlinear system. For the case where
the system is not differentially flat, a subset of the nonlinear
differential equations can be eliminated. The optimization
scheme is demonstrated for the disturbance estimation in a
nonlinear chemical reactor.

I. INTRODUCTION

In many chemical engineering processes, the primary
variables are controlled are not measurable. In such cases,
secondary variable measurements are often used to infer
the primary variables. For a review of nonlinear inferential
control, see Doyle III [1]. In addition to the primary
variables, it has been observed that estimates of unmeasured
disturbances can lead to improved controller performance,
when model based schemes such as nonlinear model predic-
tive control are used [2]. Common estimator formulations
include the Kalman filter, its nonlinear extensions (e.g.
Extended Kalman filter), and Luenberger observer. The per-
formance of the Kalman filter has been shown to degrade,
when constraints on the estimates and nonlinearities are
present [3]. Moving Horizon Estimators (MHE) involving
the solution of a dynamic optimization problem have been
proposed for such problems to handle the constraints.

A critical issue associated with MHE, particularly for
the nonlinear system, is the computational cost associated
with the solving the dynamic optimization problem. In this
study, an approach based on the structure of the nonlinear
process model is proposed for the solution of the MHE
optimization problem. The concept of differential flatness, a
property of the structure of the nonlinear process model, has
been exploited in the past for efficient dynamic optimization
in the context of model predictive control problem (the
dual of the nonlinear MHE) [4], [5], [6]. The idea has
been extended to the control of nonlinear process mod-
els that are not differentially flat through a combination
of the simultaneous approach [7] and the flatness based
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approach [8] (input elimination based approach). Herein,
a computationally efficient approach to the MHE problem
is proposed and compared to the traditional method based
on the simultaneous formulation. The two approaches are
demonstrated for disturbance estimation in a chemical re-
actor.

II. MOVING HORIZON ESTIMATION PROBLEM

Consider a process model of the following form:

ẋ = f(x,u,θ) + ω

yk = h(xk,θk) + νk

x0 = xe
0 + e0 (1)

where x ∈ R
n is the state vector, u ∈ R

m is the input
vector, y ∈ R

q is the output vector, f : R
n×R

m×R
l → R

n

and h : R
n → R

q are assumed to be smooth vector
functions, xe

0 is the vector of initial state estimate, x0 is
the actual process initial condition, θ ∈ R

l is the vector
of disturbances present in the process, ω ∈ R

n is the
vector of errors present in the process model, ν is the
vector of the errors present in the measurement equations,
the variables with subscript k refer to the values at a
discrete sampling instant (k), and e0 is the error in the
initial condition estimate. The objective of the MHE is to
reconcile the measurements (yk) obtained from the process
with the dynamic model predictions. In this case, a time
window extending from the current instant to a finite time
in the past is considered as the estimation horizon. The
time profile of the manipulated variable vector (u), the
measurements at the discrete sampling instants and the
vector of the initial state estimate (xe

0) are known in this
horizon. The corresponding dynamic optimization problem
is detailed below:

Max.
ω(t),θ(t),e0,x(t)

‖ PT
0 e0 ‖2 +

k
∑

i=p

‖ RTνi ‖2

+

∫ t

t−p∆t

‖ QTω ‖2 dt

s.t. ẋ = f(x,u,θ) + ω

νi = yi − h(xi,θi)

e0 = x0 − x
e
0 (2)

where p is the estimation horizon, P0, Q, and R are the
vectors of the weights associated with the error in the initial
condition, the error in the state equations and the error in
the measurement equations, respectively. These weights are
tuning parameters in the estimation formulation and can



be used to represent the relative significance of the model
error with respect to the measurement errors. In the current
study, it is assumed that model errors can be lumped into a
disturbance and thus the focus is on disturbance estimation
(θ(t) ∈ R

l ) hence, the errors in the process model (ω(t))
and the initial condition (e0) are neglected.

III. SIMULTANEOUS FORMULATION

In the simultaneous formulation, all the states and the
disturbance variables are parameterized using orthogonal
collocation on finite elements [7]. A notable difference
between the NMHE problem and the corresponding control
problem (NMPC) is that in the case of NMHE, the manip-
ulated variable profile is known and the decision variables
are the states and the disturbance variables. Therefore all
the states and the disturbances are parameterized in this ap-
proach. The differential equations of the nonlinear process
model are imposed at the roots of the orthogonal polynomial
through the approximation of the time derivative of the
state as a linear combination of the states at specific time
instants. The dynamic optimization problem is converted to
a nonlinear programming problem (NLP). The mathematical
formulation is summarized below:

Max.
θ(t),x(t)

k
∑

i=p

‖ RTνi ‖2

s.t. A(tj)X = f(x(tj),u(tj),θ(tj))

νi = yi − h(xi,θi) (3)

where A(tj) is the derivative weight at the time instant
(tj) corresponding to the roots of the orthogonal polynomial
in each finite element, ti is the sampling instant, and X
is the stacked vector of the states at the time instants of
parameterization (tj). Here, n + l variables corresponding
to the states and the disturbances are the dynamic decision
variables. The number of nonlinear differential equation
constraints in this case is n. These are converted into
the nonlinear equality constraints in the transformed NLP
problem.

IV. FLATNESS BASED FORMULATION

A. Differential Flatness

The idea of differential flatness was first introduced by
Fliess and coworkers [9], [10]. This allowed an alternate
representation of a system, where trajectory planning and
nonlinear controller design become straightforward. These
ideas have been applied to a variety of nonlinear systems
across the various engineering disciplines for formulating
efficient control and optimization algorithms [11], [12],
[13], [14]. The definition of the property of differential
flatness is given below:

ẋ = f(x,u) (4)

A system of ordinary differential equations (4) is said to
be differentially flat, if there exist variables (denoted the flat
outputs, ξ) such that:

a) These variables are functions of the states, inputs
and finite derivatives of the inputs of the form ξi =
ζi(x,u,u

(1), . . . ,u(δ)), i = 1, . . . ,m.
b) All the states and inputs can be expressed in
terms of the flat outputs and their derivatives by
equations of the type x = χ(ξ, ξ(1), . . . , ξ(η)) and
u = Υ(ξ, ξ(1), . . . , ξ(κ)).
c) There is no differential equation of the form
ϕ(ξ, ξ(1), . . . , ξ(ρ)) = 0. This leads to the restric-
tion that the number of the flat outputs (m) be
equal to the number of the manipulated variables.

It should be noted that the vector function f in equa-
tion (4) is assumed to be smooth. The flat outputs and their
derivatives provide an alternate representation of the system
dynamics such that if the profile of the flat outputs are
known as a function of time, then one can obtain the profiles
of all the system states and the corresponding inputs. This
property is used to calculate the flat output’s trajectories.
These trajectories are then mapped to the inputs (u) and
the states of the process. It should also be noted that the
set of flat outputs and the measured outputs need not have
any common elements.

B. Transformed NMHE Formulation

The decision variables in the dynamic optimization prob-
lem described in Equation (2) include the process model
errors (ω(t)), the disturbances (θ(t)), the states (x(t)) and
the initial condition errors (e0). Here, the process errors are
neglected and thus, the dimension of the dynamic decision
variables is l + n, and the number of nonlinear dynamic
equality constraints is n. However, if one can find ξ ∈ R

l

flat outputs, then the dynamic optimization problem can be
transformed using the concept of differential flatness for
improved computational efficiency in solving the estimation
problem. The transformed optimization problem for NMHE
is shown in the following equation:

Max.
ξ(t),ψ(t)

‖ PT
0 e0 ‖2

+
k
∑

i=p

‖ RTνi(ξ, , ξ
(1), . . . , ξ(κ)) ‖2

s.t. c(ξ, ξ1, . . . , ξ(κ)) ≤ 0 ∀t ∈ [t0, tf ]

ξ
(r1)
1 = ψ1

...
ξ
(rl)
l = ψl

θ = Θ(ξ, ξ(1), . . . , ξ(τ))

x = χ(ξ, ξ(1), . . . , ξ(η)) (5)

where ψi are the fictitious inputs and are typically param-
eterized as piece-wise constants, ri are the controllability
indices, c are the nonlinear constraints on the estimated
states and ξ̂ is the vector of flat outputs, η, and τ are
the vector of the highest derivative of the flat outputs that
occur in the state and the disturbance transformations, and



Θ and χ are smooth nonlinear functions that transform
the flat outputs and their derivatives into the state and the
disturbance vector. In this case, the solution of the dynamic
equations is obtained through analytic integration of the
transformed differential equations as ψ is known. Therefore
the nonlinear equality constraints in Equation (3) can be
eliminated resulting in computational efficiency. The state
and the disturbance profiles are calculated from the flat
outputs through the inverse transformation. It should be
noted that the flat outputs and their derivatives are obtained
through the analytic integration of the dynamic equations in
Equation (5), and consequently, the noise in the measured
outputs does not lead to amplification in the derivatives of
the flat output.

V. INPUT ELIMINATION BASED FORMULATION

A. Input Elimination Based Approach

The approach presented in the previous section was
limited to the class of differentially flat nonlinear systems.
However, the differential flatness property cannot be rigor-
ously confirmed for an arbitrary nonlinear system. For such
systems, the input elimination based approach has been used
for formulating efficient algorithms. In this approach, the
decision variable in the differential equation is eliminated
through rearrangement to obtain the decision variable as
a function of the states and their derivatives. The details
of this approach for the formulation of efficient algorithms
for the Nonlinear Model Predictive Control problem is
presented in [8]. A brief summary of the input elimination
based approach to dynamic optimization is included below.

In this approach, the inputs are eliminated by using a
subset of the dynamic equations to solve for the input
transformations. In this case, all the states are chosen as
the outputs and one obtains the following set of n − m
differential equations:

˙̂
ξ = f(ξ̂,u,θ) (6)

A subset of the differential equations is chosen and the
inputs (the disturbance variables in this case) are expressed
in terms of the outputs (ξ̂) and their derivatives. Thus, a sub-
set of the dynamic equations are eliminated. The remaining
differential equations must be imposed as dynamic equality
constraints.

B. Transformed NMHE Formulation

For the estimation problem, the dynamic decision vari-
ables are the disturbances and they are eliminated using
a part of the model equations. Here, the n states (ξ̂) are
parameterized and the l disturbances are obtained as a
function of the states and their derivatives by rearranging l
model differential equations. The remaining n−l differential
equations are imposed as nonlinear equality constraints
at the roots of the orthogonal polynomial as described
in section III. The estimation formulation based on input

elimination is detailed below:

Max.
ξ(t)

‖ PT
0 e0 ‖2 +

k
∑

i=p

‖ RTνi(ξ, ξ
(1)) ‖2

s.t. c(ξ, ξ(1)) ≤ 0 ∀t ∈ [t0, tf ]

ξ̂
(rl+1)
l+1 = Φl+1(ξ, ξ

(1))

...
ξ̂(rn)
n = Φn(ξ, ξ(1))

θ = Ξ(ξ̂, ξ̂
(1)
, . . . , ξ̂

(τ̂)
) (7)

where τ̂ is the vector of the highest derivative of the flat
outputs that occur in the disturbance transformations.

VI. EXAMPLE: NON-ISOTHERMAL VAN DE VUSSE
REACTOR

A. Process Model

An extensively studied benchmark problem for nonlinear
process control is the van de Vusse kinetic scheme in a
continuous stirred tank reactor. The nonlinear process model
for a chemical reactor with the van de Vusse reactions are
shown below:

dCA

dt
=

V̇

VR

(CAO − CA) − k1(T )CA − k3(T )C2
A

dCB

dt
= −

V̇

VR

CB + k1(T )CA − k2(T )CB

dT

dt
=

V̇

VR

(TO − T ) −
Q̇

ρCpVR

−
∆̂H

ρCp

∆̂H = k1(T )CA∆HRAB + k2(T )CB∆HRBC

+k3(T )C2
A∆HRAD

ki = kioe
( −Ei

T+273.15 ) (8)

The model parameters used are those presented in Engell
and Klatt [15]. The output is the concentration of the
product B (CB) and the input is the rate of energy removed
from the reactor (Q̇). The nominal values for the input and
the jacket inlet temperature (TO) are 5.1kJ/hr and 130 C,
respectively. It is assumed that only the reactor temperature
is measured every 0.01 hr. The variation in the jacket
inlet temperature is treated as a disturbance. The nonlinear
process model is not differentially flat, and therefore the
estimation was carried out using the simultaneous and the
input elimination based approaches.

In the input elimination based approach, the concentration
of reactant (CA), the concentration of product (CB), and
the temperature of the reactor (T ) are the states that are
parameterized. The disturbance variable (θ) is then obtained
in terms of the parameterized states and the known manip-



ulated variable profile (Q) as shown below:

ξ = x (9)

θ =

(

ξ̇3 − ∆HTot +
Q̇

ρCpVR

)

VR

V̇
+ ξ3 − TO

∆HTot =
k1ξ1∆HRAB + k2ξ2∆HRBC + k3ξ

2
1∆HRAD

ρCp

A term to penalize the changes in the disturbance estimate
was incorporated in the objective function to obtain smooth
disturbance estimates. The number of the finite elements
used in both the cases was 5 and a sixth order Legendre
polynomial was used. The input elimination based approach
to NMHE is formulated below:

Max
x(t),u(t)

J(d(t))

=

p
∑

j=0

∫ t

t−p∆t

‖ ξ3 − ξm
3 ‖2 δ(t− tj)dt

+w1

p
∑

j=1

‖ θj − θj−1 ‖2

s.t. tj = t− j∆t j = 0 . . . p

−30 ≤ θ ≤ 30 K ∀tj

ξ̇1 −
V̇

VR

[CAO − ξ1] + k1ξ1 + k3ξ
2
1 = 0

ξ̇2 +
V̇

VR

ξ2 − k1ξ1 + k2ξ2 = 0

(10)

Here, w1 = 0.001 is the weight corresponding to the
penalty on the rate of change of the disturbance, p is the
prediction horizion, ∆t = 0.01hr is the sample time, ξ3 is
the model prediction of the temperature of the reactor, ξm

3 is
the measured temperature, dj is the value of the disturbance
at the time instant tj .

TABLE I
COMPARISON OF THE OPTIMIZATION APPROACHES FOR THE SOLUTION

OF NMHE PROBLEM

Approach Number of
Parameters

Number of
nonlinear
equality
constraints

CPU time (s)
(MATLAB)

Simultaneous 104 63 115

Input
Elimination 78 42 45

VII. RESULTS

The results of the estimation using the simultaneous
approach and the input elimination based approach are
shown in the Figures 1 and 2. The error between the true
state and the estimate along with difference between the true
state and the state augmented with random noise is depicted

in the figures. The disturbance jacket temperature was
assumed to obey a first order response. It was observed that
the computational times for the open loop estimation were
approximately 115 s and 45 s for the simultaneous and the
input elimination based approach, respectively. The details
of the NLP problem for NMHE for both the simultaneous
and the input elimination based approach are summarized in
Table I. The fmincon function in MATLAB c©(Natick, MA)
was used to solve the NLP arising from the transformed
NMHE problems. All computations were carried out on a
Sun Blade 1000 machine with dual 750 MHz processors. It
can be seen from the Figures 1 and 2 that the estimates for
both the approaches are similar. It was found that decreasing
the penalty on the rate of change of the disturbance resulted
in rapid convergence of the estimates to their true values
at the cost of increased variability in the estimate. The
faster convergence could be the result of the elimination
of oscillatory solutions due to the increased penalty. Thus,
the input elimination approach for this case seems to be
computationally efficient while providing similar results to
the simultaneous approach.
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Fig. 1. Estimation results using the simultaneous approach.

VIII. CONCLUSIONS

An efficient algorithm for solving the dynamic opti-
mization associated with the moving horizon estimation is
presented. In this approach, the disturbance variables are
treated as independent variables, and the input elimination
based approach is employed to reduce the number of
variables in the optimization problem. This reduction in the
problem size leads to computational efficiency in solving the
resulting NLP problem. This approach has been succesfully
employed in the past to address the dynamic optimization
problem for the NLMPC problem. Here, a novel method
based on the input elimination approach is developed for
the efficient solution of the dynamic optimization problem
associated with NMHE. This approach is applicable to a
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Fig. 2. Estimation results using the input elimination based approach.

general nonlinear system as described by Equation (1).
The proposed method is applied for the estimation of the
inlet jacket temperature in a chemical reactor with van de
Vusse kinetics. The input elimination based approach was
compared with the simultaneous approach and was found
to be computationally favorable. The example studied here
was the problem of a single disturbance estimation that
resulted in the elimination of one of the dynamic equation
constraints in the input elimination based approach.

Extensions for the case of multiple disturbance would
involve the elimination of a larger set of dynamic equality
constraints at the cost of potentially increasing the com-
plexity and the nonlinearity of the reduced set of dynamic
equations. The current formulation, however, assumes that
the process model errors could be lumped into a disturbance
variable for estimation. If the estimation formulation is to
be extended to the case where process model errors are
present, issues related to the non-convexity and convergence
to local minima have to be critically examined in the esti-
mation problem, as the solution of the dynamic equations
is imposed as the minimization of the objective function.
However, when model errors are accounted for, then the
number of decision variables available for the optimization
increases. Integration of the NMHE with the corresponding
Nonlinear Model Predictive Control for improved controller
performance is the subject of future investigation.
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