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Recursive State Estimation in Nonlinear Processes
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Abstract—The task of improving the quality of the data
so that it is consistent with material and energy balances is
called reconciliation. Since chemical processes often operate
dynamically in nonlinear regimes, techniques like Extended
Kalman Filter (EKF) and Nonlinear Dynamic Data Reconcil-
iation (NDDR) have been developed. There are various issues
that arise with the use of either of these techniques: EKF
cannot handle inequality or equality constraints, while the
NDDR has high computational cost.

In this paper, a recursive nonlinear dynamic data recon-
ciliation (RNDDR) formulation is presented. The RNDDR
formulation extends the capability of the EKF by allowing
for incorporation of algebraic constraints and bounds. The
RNDDR is evaluated with four case studies that have been
previously studied by Haseltine and Rawlings [1]. It has
been shown that the EKF fails in constructing reliable state
estimates in all the four cases due to the inability in handling
algebraic constraints [1]. Reliable state estimates are achieved
by the RNDDR formulation in all the cases in presence of
large initialization errors.

I. INTRODUCTION

The quality of process data in a chemical plant signif-
icantly affects the performance and benefits gained from
activities like performance monitoring, online optimization
and control. Processes are inevitably subject to random
fluctuations in disturbances and the process measurements
always contain random errors. In order to ameliorate the
effect of these random errors, estimation methods can be
used to obtain accurate estimates of the process states and
parameters.

Several different estimation methods have been proposed
in the literature depending on the assumptions made. For
linear dynamic systems, the Kalman Filter (KF) gives opti-
mal estimates in presence of measurement and state uncer-
tainties [2]. For nonlinear systems, Extended Kalman Filters
(EKF) have been developed, which are based on linearising
the nonlinear equations and applying the Kalman filter
update equations to the linearised system. Again several
different variants of this basic strategy have been developed,
which are very well described by Muske and Edgar [3].
The advantages of the KF, the EKF and their variants lie in
their predictive-corrective form and the recursive nature of
estimation. The recursive form of these estimation methods
allows for rapid estimation in real-time, which is extremely
important for online deployment. A major disadvantage of
the KF and all its variants is that they cannot take into
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account bounds on process variables or other algebraic
constraints.

An alternative class of methods for state and parameter
estimation, especially for nonlinear dynamic systems, are
moving horizon optimization based techniques [4]. Liebman
et al. [4] proposed the nonlinear dynamic data reconciliation
(NDDR) formulation, in which the moving horizon opti-
mization approach is extended to handle errors in measured
inputs and to take into account algebraic constraints and
bounds on variables. The main drawback of moving horizon
based approaches is that, unlike the EKF, they can be
computationally demanding due to their non-recursive form,
thus raising real-time implementation concerns.

In this paper, a recursive nonlinear dynamic data rec-
onciliation (RNDDR) solution technique is proposed that
effectively combines the computational advantages of EKF,
and the ability of NDDR approach to handle algebraic
inequality or equality constraints. Four case studies are
presented to show the efficacy of the proposed RNDDR
formulation.

ITI. RECURSIVE NONLINEAR DYNAMIC DATA
RECONCILIATION (RNDDR)

In KF and EKF, the estimation procedure at each sam-
pling instant can be regarded as being composed of two
steps (as described in Appendix A). In the first step, the
state estimates from the previous time instant are propagated
using the process dynamic equation (along with its error
covariance matrix), while in the second step the predicted
state estimates are corrected using the measurements made
at the current time instant. It is shown in Appendix A
that the optimal updated state estimates for KF (as also in
EKF) are obtained by solving an unconstrained optimization
problem for which the objective function is given in 7.
In the absence of any constraints, the solution of this
optimization problem is given by the standard Kalman
filter update equation for the state estimates. If algebraic
constraints or bound constraints have to be imposed on
the state estimates, these can be conveniently included in
this optimization problem. In this case, the solution of the
optimization problem has to be obtained numerically. This
forms the basis for the proposed RNDDR method described
below.

Consider the system given by 1 with bounds and alge-
braic constraints imposed on the states.

(k+1)At
Tyl = xk+/ fz(7), uk)dr + wy,
k

At
9(Trt1) + Vrpr

)

Ye+1 =
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Let ), and Py, be given at time instant ‘k’. The pre-
dicted state estimates Ty, is determined by integration
and the variance of uncertainty in the predicted estimates
is calculated by covariance propagation. For covariance
propagation, the nonlinear state space model is linearized
around [)] to give [Ag], and the state transition ma-
trix is approximated assuming the equivalent LTI system,
Ay, = exp(AAt). Using this linearized approximation, the
covariance matrix of estimation errors is propagated as

Peyip = | Ak | Poi [ Ax ]T + [Qk] )

In order to obtain the updated state estimates, the follow-
ing optimization problem is solved.

min (zp41 — Trare) (Pegaie) ™ (@ns1 — Ergae)
k+1

+ (g1 — 9(@r+1))" (Rie1) ™ (a1 — 9(@nrn))
subject to the following constraints,

rL < Tpe1 <2y

h($k+1) S 0

e(rp+1) = 0
The optimal solution to this problem (zy, ,) gives the
updated state estimates Zjjx41- The solution obtained
using EKF is used as an initial guess for solving the
above optimization problem. It should be noted that if the
measurement model is linear and none of the inequality
constraints are active in the optimal solution, then the
solution for the updated state estimates obtained will be the
same as the one computed using 8. The covariance matrix
of the error in the updated state estimates is computed
using 9 and 10. While using these equations, the effect
of the constraints on the covariance matrix of estimation
errors is neglected. In any case, for nonlinear systems, the
covariance matrix of estimation errors represents only an
approximation. Therefore, there is insufficient justification
for trying to account for the effect that constraints have on
the covariance propagation.

III. RESULTS

The RNDDR has been implemented and tested with
various case studies. In this paper we present results for
four case studies for which the EKF fails as reported by
Haseltine and Rawlings [1]. The RNDDR for the first
three case studies has been implemented with the tuning
parameters as proposed in Haseltine and Rawlings [1] with
a lower bound of zero for the filtered state estimates.

A. Case study 1
The first example is of a gas phase reversible reaction in
a well-mixed, isothermal batch reactor,

24 &,

B k=0.16

and reaction rate r = kPZ. The partial pressures are the
state variables and the total pressure is measured.

P
xz[Pg], ye =[1 1]y

The initial state is zo = [3 1]7. For state estimation
problem, the following parameters have been used:

36 0 106 0
ENEE

At =0.1, Poz[ 0 36
R=0.01,29 = [0.1,4.5]" , 21 = [0,0]", 2y = [100, 100]”

The RNDDR state estimates are presented in Fig. 1. As it
can be seen, the RNDDR converges to the actual trajectory
within 20 sample instants even with poor initial guess.
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RNDDR Case 1 State Estimates. Line: Actual, Dash-Dot:

B. Case study 2
The second case study involves two gas phase reversible
reactions in a well-mixed isothermal batch reactor,
k1

A =

ko

B+C

Fay
— C

ka

2B

_ T _ k1ca — kQCbCC
k= [0.5 0.05 0.2 0.0l] and r = k3Cf kO
with

x=1[C, C, CJ", y.=[RT RT RT]uxy

The initial state is 2o = [0.5 0.05 0]”. For state estimation
problem, the following parameters have been used:

025 0 0
At=025 Ppb=| 0 025 0 |, R=0.25
0 0 025
107 0 0
Q=| 0 106 0 |@=[0 0 4"
0 0 1076

The constraints imposed are, z; = [0 0 0] and 2y =
[10 10 10]7. The RNDDR rapidly converges, as can be
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seen from Fig. 2, to the correct concentration given such
large initial guess error and the high certainty (low Fp)
associated with the guess.
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RNDDR Case 2 State Estimates. Line: Actual, Dash-Dot:

C. Case study 3

This case study is of a isothermal CSTR involving the
reaction system presented in Case Study 2 (Section III-B).

Q. Qo

i = VRCf—V—Rx—i—uTr where
Cy = [05 005 0", Qr=Q,=1
v = [Co Gy CJT
-1 1 1 T
v = [ 0 9 1} and zo = [0.5 0.05 0]
For state estimation, the following parameters are used:
16 0 0
At=025 Pb=| 0 16 0 |, R=0.25°
0 0 16
10°¢ 0 0
Q=| 0 106 0 |&=[0 0 35"
0 0 1076

The constraints imposed are the same as previously, z; =
[0 0 0]T and zy = [10 10 10]T. The RNDDR results
for this case are presented in Fig. 3.

D. Case study 4

In the fourth case study presented by Haseltine and
Rawlings [1], the batch process presented in Case study
2 is modified with new set of parameters,

k=1[05 04 02 0.1]7, and R=0.01
A fictitious measurement equation of the form,

Yk = [71 1 1]:17k
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Fig. 3. RNDDR Case 3 State Estimates. Line: Actual, Dash-Dot:
Estimated

is implemented. The reason for using such a measurement
function is that there are multiple physically realizable
steady states towards which the estimator can converge.
A large initialization error in such a case would lead to
an incorrectly converged solution by a recursive estimator.
Therefore, an appropriate choice of a lower and upper bound
on the states is necessary if the estimator has to converge
to the actual scenario. This choice can be based on insight
from process operation.

Another important issue in the case of unreliable initial
guess is the choice of Fy. Py cannot be arbitrarily initialized
in such cases. The choice of P, should be consistent with
the initial guess provided. A low value of P, should be
used only if the user is confident that the initial estimates
are close to the true values. Otherwise, it is necessary to
choose the elements of P, sufficiently high to reflect the
lack of confidence in the initial estimates.

Haseltine and Rawlings [1] have used the following P
and 2 to show that the EKF fails to converge to the actual
solution.

025 0 0
Py = 0 025 0 with &9 =[3 0.1 3]
0 0 025

This essentially means that the estimator is forced to give
high weight to an unreliable initial guess. In such a scenario
the RNDDR will not converge. If Py is chosen to reflect
the confidence that the user has on the initial guesses, then
RNDDR converges as shown below.

In the modified case study, the state estimator is initial-
ized with 29 = [4 0 4]7. Notice that we have used a %
[1] which is more erroneous than the previous value dis-
cussed above, but we will demonstrate that with consistent
initialization of Py, the RNDDR converges. Obviously the
RNDDR converges for 49 = [3 0.1 3]7 also. The variance
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of uncertainty in the initial guess is initialized as,

40 0
Po=|0 1 0
00 4

while the upper and lower bounds are same as used
previously in case study 2 (Section III-B). It should be
noted that the choice of P, is different from the one
used in the previous case. This choice of P, takes the
extent of uncertainty in initial guess into account. This is
necessary because without this information the estimator
might incorrectly converge to another steady state solution.
The RNDDR estimate for this case is presented in Fig. 4.
It can be seen that with the correct initialization of the
uncertainty in initial guess (/) which reflects the extent of
error in the initial guess (g — Zo), the RNDDR converges
to the actual trajectory.

I
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Fig. 4. RNDDR Case 4 State Estimates with modified Pp. Line: Actual,
Dash-Dot: Estimated

However, if the same

025 0 0
Po=| 0 025 0
0 0 025

has to be used, then a better initial guess of Zo =
[1.5 0.1 1.5]7 will make the RNDDR converge. Fig. 5
points out the convergence of RNDDR. Note: As it can be
seen in this case, neither the upper bound nor the lower
bound was activated for any of the filtering sub-problems,
showing the convergence of the EKF.

E. EKF Result

The importance of giving meaningful initial guess uncer-
tainty (Fp) measure can be duly noted with a sample EKF
result based on case study 2 (Section III-B). The initial
guess is changed to a non-zero #¢ = [0.1 0.1 4]7 and the
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Fig. 5. RNDDR Case 4 State Estimates with modified x¢. Line: Actual,
Dash-Dot: Estimated

uncertainty variance is initialized with

025 0 0
Py = 0 025 0
0 0 10

which is consistent with the information available about the
state of the process. The EKF result, shown in Fig. 6, points
out that with a systematically initialized initial state (Zg)
and uncertainty (Fp), the EKF can also converge without
invoking the constraints.
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EKF Case 2 State Estimates with modified Zg and Py. Line:
Actual, Dash-Dot: Estimated

IV. CONCLUSION

A Recursive Nonlinear Dynamic Data Reconciliation
(RNDDR) formulation has been presented in the paper. The
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motivation of the RNDDR based on the recursive predictor-
corrector form of the Extended Kalman Filter (EKF) has
been discussed. The most important feature of the RNDDR
formulation lies in the recursive nature of the estimator
which also incorporates the algebraic constraints involved
in the estimation problem. The RNDDR also is order of
magnitude faster than traditional window based estimation
approaches. The RNDDR took approximately 0.1 second to
solve the estimation problem at each sample instant for the
presented case studies. Therefore, the proposed formulation
can be implemented on large nonlinear systems for real time
dynamic data reconciliation.

Extensive simulations have been carried out with the
RNDDR formulation with various cases where EKF has
been known to fail in the past because of EKF’s inability
in handling algebraic constraints. Reliable estimates are
achieved by the RNDDR formulation at only a marginal
increase in the computational cost.
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APPENDIX A - KALMAN FILTER

Let the discrete linear stochastic state-space system be of
the form,

Tpt1 = Apzp+wy

3)

Uk+1 = Cpp1Tp41 + vk

where wy, and vg4; are independent normally distributed
random variables with covariance Q) and Ry, respec-
tively.

Assume unbiased estimates of the state at time instant ‘k’
(Z1x) and the measurement at time instant ‘k + 1" (yx+1)
are available. The state estimate for time instant ‘k + 1’
(Tr+1|k+1) can be expressed as a linear combination of the
two,

“4)

For Zjpy1jk41 to be an unbiased estimate of zji1, we
require K, = (I — Kx11Cgy1)Ag. Thus the recursive
estimator can be rewritten in two parts, first for prediction
and the second for correction.

A ’ A
Trr1p+r = K1 Tre + Kp+1Yr+1

Tppie = ArTip
Tpprpedr = Eparje + Kepr (Wres1 — Crp1Zrgai)5)
We also assume Py, the uncertainty in the state estimate
Zy|k» 18 known. Therefore, the uncertainty in £ ) can be
calculated as,
i AT
Pyi1jx = Ap Py Ay + Qk (6)

The Kalman gain matrix is arrived at by solving the
following unconstrained optimization problem

rning%Jrl
(Tr41 — i"_kJrl\k)T(Pk+1\k)71($k+1 = Try1ik)
+ (yrr1 — Crpr@ri1) T (Ri1) ™ (rt1 — Cr1zign)
@)
giving the filtered state estimate as,
Tppierr = Tepae + Ker1(Uk+1 — Crr1Zrq1n)(8)

where the Kalman gain matrix K4 is defined as

Kiy1 = (Pry1je) Ciir (Res1 + Crp1 Pk G ) ™1 9)

The covariance matrix of errors in the filtered state estimates
is given by

Pigrpr1 = (I = Kiy1Chy1) Pegapp (10)
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