
 
 

 

  
Abstract— A discrete-time high-gain observer is designed in 
order to estimate the DC voltage of an inverter used as a 
dynamic electric load emulator. Since the use of LMI 
techniques makes it possible to obtain a stable observer for a 
range of bounded duty ratio, the nonlinear-in-the-input 
average model, which can be expressed as a linear parameter-
varying system, is formulated in polytopic form. A robustified 
version is proposed when exogenous disturbances such as 
current injection on DC side are present. The nonlinear 
observers are then discretized, with the hold-equivalent 
technique, in order to achieve both numerical stability and 
accuracy as the sampling rate is increased. Nonlinear observer 
designs proposed in this paper are validated by means of 
numerical simulations that demonstrate the stability property 
and performance recovery of a typical state feedback scheme 
by a high-gain observer-based output feedback.     

I. INTRODUCTION 
In order to perform a variety of tests of the distributed 

resources (DR) (fuel cell, microturbines,) without having 
all the necessary facilities (motors, special nonlinear loads, 
local power grid, etc), an electric load emulator has been 
constructed so as to reproduce as faithfully as possible the 
behavior of a desired electromechanical load. This 
approach is dual to the programmable dynamometer used to 
test adjustable speed drives [1]. The control of the inverter 
aims at tracking the current trajectory provided by a load 
model whose input signal is the DR voltage. In the past 
decade, numerous nonlinear controllers have been 
developed to regulate the current trajectory of similar 
devices, such as STATCOM, UPFC, and unit power factor 
rectifier, whose purpose is generally reactive/active power 
and/or harmonic compensation. See e.g. [2,3] and 
references therein. These control schemes generally require 
the measurement of the whole system state. For cost 
effectiveness, this paper proposes an observer that 
estimates the DC voltage from the measurement of the DR 
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output voltage and current. The six-pulse power converter 
average model is bilinear in its input signals (duty ratio). 
To circumvent the nonlinearities, a polytopic form of the 
model is derived. A multiobjective LMI design is 
formulated. This leads to a high-gain observer, which 
allows recovering the performance of a state feedback 
control [7]. Under mild assumptions, a hold-equivalent 
discrete-time (DT) model is derived from the continuous-
time (CT) observer. Also DT observer is derived so as to 
improve exogenous disturbance rejection. Such 
disturbances arise from current injection on DC side and 
parasitic uncertainties.   

The paper is organized as follows. The average CT 
model of the inverter is derived in section 2. The LMI-
based design of the observer is presented in section 3. 
Robustness analysis and synthesis of a disturbance 
attenuation observer are exposed in section 4.  The 
discretization procedure is detailed in section 5. Digital 
simulations are provided in section 6.  

II. CONTINUOUS -TIME MODEL 
The system consists of a DR under test (microturbine, 

fuel cell, etc), and a programmable dynamic electric load 
whose goal is to emulate an actual load. The emulator is 
composed of a DSP-controlled inverter. The inverter, 
which is connected to a rectifier, is essentially composed of 
six self-commutated IGBTs with anti-parallel diodes, a RcC 
passive filter connected to a rectifier (not shown in Fig. 1). 
The switching frequency is 50 kHz. As a simplified CT 
model to be used for the observer design, the rectifier block 
is neglected and will be discussed in the section on 
robustness issues. From Kirchoff’s law (Fig. 1), application 
of the Blondel-Park transformation, and then from 
averaging the obtained abc dynamics (average state model) 
whose control signal is compared to a high frequency 
PWM the following dq system is obtained 
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with [ ]Tqddq vv=v and [ ]Tqddq ii=i  the direct and 
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quadrature axis components of s
abcv and abci ; 

[ ]Tqddq ρρρ =  the duty ratio that depends on the control 
inputs representing the modulating signals employed in the 
PWM. The averaged model given by (4) will be used for 
control design as a CT invariant model of the converter. It 
should be noted that this system is nonlinear in the control 
input, and that an abuse of notation has been made by using 
idq for the averaged signals. In the sequel, it is proposed to 
estimate the rectified voltage while measuring the source 
voltage dqv  and line current dqi . 

III. CONTINUOUS -TIME OBSERVER 
The nonlinear system model can be formulated as a 

linear time-varying system with an input-dependent matrix  
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As input signal dqρ , state variable dqi  and exogenous 
input dqv  are measurable, the following observer  
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with  dqdqdq iii −= ˆ~ , gives the following error dynamics  
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matrix K is obtained, via LMIs, such that the eigenvalues 
of ( )KCA dq +)(ρ  have real parts located to the left-hand 
side of a prescribed negative value.  Under the usual 
operating conditions the duty ratio is bounded as 

0≠dqρ . Assume that 0≠qρ  and define the bounds 

ddd ρρρ ≤≤≤0 , qqq ρρρ ≤≤≤0 . The input-

dependent matrix A is expressed in the following polytopic 
form [4] 
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i ρρ . 0≠qρ  is considered in order to warrant 

the observability of the system (A, C). Note that 
observability is preserved as long as 0≠qρ  even if 

0=dρ . From [5], eigenvalues of ( )KCA dq +)(ρ  are 

located on the left-hand side of h for all dqρ constrained by 

(4) if the following LMI  
02 <++++ hPNCNCPAPA TTT  

is satisfied at each vertex A of the convex hull  
( ))2,0(),2,0(),2,2(),2,2( qqqdqd AAAA ρρρρρρ  and where 

N=PK and P is a symmetric positive definite matrix. 

IV. ROBUSTNESS ISSUE 

A. Robustness analysis 
Consider the case where the rectified voltage time 

constant CRcc =τ  is not well-known and is estimated as 

coτ . Furthermore, suppose that the rectifier shown in Fig. 1 

injects a current ri . Then, system (2) becomes  
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Using the observer (3) where )( dqA ρ is now )(ˆ
dqA ρ  ( i.e. 

coτ is considered), the estimation error dynamics becomes  
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From [7, p. 267], there exists two constants ii ba , >0 and 
+∈ Rt0  such that, for any 0tt ≥ , 
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where ( )( ) 0)(max <+= KCA dqM ρλλ  and (.)λ is the 
eigenvalues of a given matrix and where the following 
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From (5), the steady-state error for dqi~  and dcv~ is 

proportionally bounded to 1−
Mλ . Therefore, since the system 

is observable, with a sufficiently high gain (i.e. large Mλ ) 
used in the observer, although not too high in order to 
avoid noise amplification, the steady-state error can be 
made practically acceptable (i.e. 1-2% of nominal value). 
Although the system is nonlinear, such a high-gain 
observer (with a saturating function to prevent it from 
peaking) enables the performance recovery (in the sense of 
asymptotic stability and trajectories) of usual state-
feedback control of the inverter by means of output 
feedback [7].  

B. Robustness synthesis 
In order to improve the disturbance rejection property of 



 
 

 

the observer, a robust ∞H -based synthesis is performed. 

Considering observer (3) where iK~
is replaced by an 

auxiliary input ou  to be determined, the error dynamics 
can be rewritten as  
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nominal and deviation values d represents an exogenous 
disturbance and uo is the output of a dynamic systems (6) 
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whose design is conducted by the minimization of the 
closed-loop L2 gain between the inputs (d,w) and the output 
z.  From section 3, operator ∆  is bounded and then 
normalized ( [ ]1,1−∈∆ ) so that system (6) is devised in an 

∞H - optimal framework. System ( oU ) is computed using 
the Matlab LMI toolbox along with the specification of the 
following convex pole placement region: (i) Disk with 
center zero and radius 5000 to prevent from too fast 
dynamics; (ii) Left-half plane with abscissa –1000 in order 
to ensure fast convergence of the estimation; (iii) Conic 
sector with tip abscissa zero and sector angle 2/π  ( 4/π  
with respect to X-axis). Then, the robust version of 
observer (3) is formulated as follows 
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V. DISCRETE -TIME OBSERVER DESIGN 

A. Discretization of constant gain observer 
Usually mapping techniques are used to discretize the 

nonlinear observer (3). Trapezoidal mapping, such as the 

Tustin’s method [11], is commonly implemented and gives 
satisfactory results in terms of numerical stability and 
accuracy. However, bi-properness of the trapezoidal 
mapping induces a feedthrough, which has to be avoided in 
practical digital implementations by inserting an artificial 
delay at the output of the controller. Hold-equivalent 
discretization techniques are well suited to system (3) since 
they avoid the use of a delay while generally preserving the 
stability and accuracy properties at reasonable sampling 
rates. The simplest hold-equivalent discretization technique 
results in a DT system named a step invariant model, where 
a zero-order hold (ZOH) is placed in front of the CT 
system and an ideal sampler follows the system [10]. In this 
paper, hold-equivalent discretization is carried out on the 
nonlinear-in-the-input ( dqρ ) CT observer (3). By noticing 

that rectified voltage dcv  dynamics is much slower than 
current dqi dynamics, one can reasonably assume that dcv is 
constant during one time step integration of the 

dqi dynamics. Therefore, system (3) presents a lower-
triangular structure [8] that permits to successively 
compute the DT dqi and dcv dynamics. dqi dynamics of (3) 
is rewritten as follows  
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computational complexity) and its satisfactory numerical 
properties. ZOH applied to (8) leads to 
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where subscript k stands for the DT value at 
NkkTt s ∈= , and sT is the sampling time. Now, the dcv  

dynamics is expressed as follows  
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 where )(ˆ)(ˆ , ττ += sdckdc kTvv for [ [sT,0∈τ . Note that 

1,, ˆ)(ˆ += kdckdc vTv . The ZOH is applied to the )(, υkdcw  and 

)(, υρ T
kdq  input signals.  )(, υkdqi  is derived from (9) where 

sT is replaced with τ . After substitution of  )(, υkdqi  in 
(10), matrix calculations and replacement of τ  by sT , as a 
final step, the following DT equation is obtained 
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42 and nI is the nn ×  identity 

matrix. The DT observer is composed of  (9) and (11). 
Remarks: (i) The observer is generally implemented in the 
same card as the controller and uses the digital quantity 

kdq,ρ and the sampled signal kdqi ,  that results from the 
current measurement of the inverter. Moreover, the inverter 
constitutes a sampled-data system, i.e. the input signal 

kdq,ρ  is held through a ZOH and the output kdqi ,  is 
sampled. A natural way of considering the observer design 
would be to discretize (2) with the hold-equivalent method 
presented in this section and then to derive the observer in 
DT. Mainly two reasons motivate the discretization step of 
the CT observer: (i) due to the matrix exponential, the 
discretization hides any physical insight initially associated 
to the CT model; (ii) DT transition matrix ),( dq

T
dqdq MA ρρρ  

of (2) now depends on quadratic form dq
T
dq Mρρ  which 

makes the polytopic form derivation more complex to 
tackle. (ii) Due to the time scale separation between dqi and 

dcv , a multirate discretization could be performed and 
implemented as a multirate observer with the help of the 
DT lifting. Though more accurate, such an approach would 
lead to an observer whose complexity increase is a function 
of the ratio of the different sample time used for dqi and 

dcv . 

B. Discretization of dynamic gain observer 
The observer (7) is not in lower-triangular form  and a 

new scheme for discretization should be applied. Lower 
triangularization of  (7) is too complex mainly because of 
the time-varying nature of )( dqA ρ . Note that bilinearities 
only involve multiplication of state variables with input 
signals. Integration of (7) is then possible and leads to 
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the transition matrix associated to 
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devices are now used to approximate input signals located 
at two different places, i.e. the actual plant input dqρ in 

),0( sk Tφ  (i.e. in A)  and the observer input p. For each 
entry a specific hold ( pHH ,ρ ) could be used in order to 
take into account each input’s own behavior (time scale 
separation, causality constraint, continuity property). To 
constrain computational complexity, zero-order holds are 
considered which means that the input is supposed to be 
constant during one time step. Therefore, the transition 
matrix and its integration are computed as follows    
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The time-varying matrix exponential 66)( , ×ℜ∈skdq Te ρA is 
implemented with Padé approximant  (1,2) order so as to 
meet both requirements of complexity and stability. This 
choice leads to L-stability numerical property rather than 
A-stability in the case of Trapezoidal approximation and 
then is more adequate for system with large eigenvalues.   

VI. DIGITAL SIMULATIONS 

A. Open-loop validation of the observer  
 In order to validate the observer design, the average model 
along with the DT observer is digitally simulated with the 
following parameters: Rf=1.44Ω,  Lf=4.2mH, C=10mF, 
Rc=80Ω, f=60Hz, VL-N=120V, ρabc(t)=0.1v or 0.9v for t≤0.5 
or t>0.5, resp.;  [ ])3/2sin()3/2sin()sin( piwtpiwtwtv +−= . 

Initial estimation errors of [ ]Ai T
dq 105~ =  and Vvdc 80~ =  

are introduced in order to excite the observer dynamics. As 
future experiments will involve a PWM switching 
frequency of 50kHz, a sample time Ts of 100µs is used . In 
order to adequately track the behaviour of load model 
(induction motor) one wants to emulate a load whose 
controller is designed to obtain tracking error dynamic time 
constant of a few ms. As the observer is usually 5 to 10 
times faster than the controller, time constants of 500µs are 



 
 

 

targeted by imposing 1000=h  in (10). Estimated 
quantities along with their error with respect to the 
averaged inverter simulated in variable-step mode are 
displayed in Fig. 2 and 3. Estimated and actual quantities 
are superimposed and are shown to be very close to each 
other, which is the reason why the error are displayed. Fig. 
4 displays the quadratic error for [ ]ms5.1,1.0∈sT  of the 
proposed DT observer and a version of the CT observer 
where integrator s/1  is replaced by Tustin’s mapping. 
Each result is compared to the actual averaged inverter 
simulated with a variable-step size integration method of 
Simulink. Mention that Euler mapping has been tested and 
becomes unstable for sTs µ750> . Results of hold-
equivalent method-based observer compares 
advantageously to the Trapezoidal ones.  

B. Validation of an observer-based control system.  
The previous DT observer is used to estimate the DC 

voltage needed to compute the following DT control law 
(14) which is based on (i) a dynamic inverse-based 
feedforward loop and on (ii) a proportional integral 
feedback loop where the integration numerical 
approximation is achieved with the Trapezoidal operator. 
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(14) 

where 2A  is the 22× left upper block of A, *
dqi  the 

desired current trajectory, 



 −= 0
0

2 ω
ωoA and dcv̂  the 

estimated DC voltage computed by the observer (13). The 
commanded current is computed by the load model one 
wishes to emulate. The DC voltage is stabilized by the 
rectifier around 80V. At t=0s , [ ]T

dqi 11* =  and remains 
constant until t=0.1s where a step is applied such that  

[ ]T
dqi 010* = . A sampling time of sTs µ100=  is used. The 

RC filter of Fig.1 is in fact connected to a rectifier that 
injects some DC current (around 3.5A) in order to maintain 
a stabilized DC voltage around a fix value. This current 
acts like an exogenous disturbance to the observer whose 
disturbance attenuation property is such that a steady-state 
estimation error of 0.4V appears (Fig. 6). The impact on the 
current time responses is negligible (Fig. 5) since they are 
well superimposed with those resulting from the state 
feedback controller. No substantial transient deterioration 
with respect to the state feedback case can be noticed. 
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Fig. 1: Power circuit 
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Fig. 2(a) 
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(b) 

Fig. 2: Estimated current resulting from the DT observer – comparison 
with the CT averaged model of the inverter  (Ts=100µs); (a) id;(b) iq 
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Fig. 3: Estimated rectified voltage ( dcv ) resulting from the DT observer – 
comparison with the CT averaged model of the inverter – Ts=100µs 
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Fig. 4: Comparison of L2-errors for various DT observers; (-) Trapezoidal 
mapping, (--) ZOH 
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Fig. 5: Comparison of current time response of the inverter with observer-
based controller (--) and state feedback controller (-.); (a) id;(b) iq 
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Fig. 6: Comparison of the estimated voltage (-.-) with voltage (vdc) time 
response of the inverter equipped with observer-based controller (--) and 
state feedback controller (-) 
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