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Abstract—The Permanent Magnet Synchronous Motor 

(PMSM) has been widely used in many accurate servo control 
systems as it has excellent control qualities, large torque 
coefficient, small ripple torque, and so on. However, the model 
uncertainty of PMSM has an important effect on the accuracy 
of control systems. In this paper, the dynamic model for  
PMSM systems is established in an experimental method. The 
adaptive model following control law is presented for the 
position servo system of PMSM, and the motor velocity signal 
of the adaptive controller is estimated with the velocity 
observer. The experimental results verify the effectiveness of 
the adaptive control method and show that the position of the 
PMSM can follow the output of the reference model well. 

I. INTRODUCTION 

W ITH the development of the technology of power 
electronics control, Nd-Fe-B material and motor 

design,  permanent magnet synchronous motors (PMSM) 
get wide applications in many control systems, especially in 
the accurate servo control systems because they have 
excellent control capabilities, large torque coefficient, small 
ripple torque, and many other good qualities [1], [2]. 
However, due to the couple non-linearity of direct axis and 
quadrature axis currents, load variety of the plant and 
mechanical friction, the model uncertainty of PMSM system 
has a great impact on the accuracy of control systems [3], 
[4]. 

Generally, the robust control and the adaptive control 
methods are used to eliminate the effects of uncertainty for 
systems with uncertainty and mechanical friction [5], [6]. 
The adaptive control method has more and more 
applications in industrial and robotic control since it can 
effectively control systems with model or parameter 

uncertainty [7], [8]. 
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In this paper, firstly, the model uncertainty of the PMSM 
system is analyzed and the model is established 
experimentally. Secondly, the adaptive model following 
control (AMFC) law is proposed for the position servo 
system. In order to simplify the realization, the controller is 
designed on the basis of the order-reduced model of the 
PMSM system. The velocity signal of the motor used for the 
adaptive controller is obtained using the velocity observer. 
Finally, the experimental results of the adaptive control 
method are given and they show that this method can control 
the PMSM system with model uncertainty and friction more 
effectively.   

II. MODEL OF PMSM SYSTEM 
The block diagram of the PMSM system in this paper is 

shown as Fig. 1. The system consists of the PMSM and its 
driver. 
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Fig. 1.  Diagram of the PMSM system. 
 
Ignoring the effect of magnetic saturation, magnetic 

hysteresis and eddy current, the model of the 
surface-mounted PMSM in synchronous coordinate can be 
written as [3], [9]: 
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where, are direct and quadrature axis voltages 

respectively, and i  the direct and  quadrature axis 

currents respectively; r is the resistance of motor; is the 
differential operator, i.e. 

qd uu ,

qd i,
p

)(⋅=
dt
dp ;  is the motor’s 

electrical velocity; 

eω

fψ is the fundamental amplitude of 

magnetic linkage in the winding of one phase due to the 
permanent magnet on rotor; L is the synchronous 
inductance; P  is the number of pole pairs; is the torque 
coefficient, and 

m TK

fmψTK P23= ;  is the inertia constant of the 

rotor and load; D  is the coefficient of friction; T  is the 
load torque. 

J

l

The state equation of the PMSM system considering the 
motor and its driver in Fig.1 is [10]: 
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where, ω is the mechanical velocity of the motor, and r

mP

sc K

er ωω =

Krr +=′

;  is the gain of the current adjuster; is the 
gain of inverter; K  is the coefficient of current feedback; 

, is the equivalent resistance of motor 

considering the driver; V is the instruction to the motor 

driver. 
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It can be seen from (4) that the PMSM system is a 
nonlinear coupling system. If the coupling effect of direct 
axis current on the quadrature axis voltage is regarded as the 
disturbance to the coefficient of EMF, the transfer function 
diagram of the PMSM system for control instruction to the 
velocity and position output can be shown as Fig. 2 (a) and 
(b). 

Therefore, the transfer functions can be written as: 
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where, 
dmfme LiPPK += ψ

2
3'

 , is the equivalent 

coefficient of EMF considering the effect of direct axis 
current. 
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Fig. 2.  Simplified diagram of PMSM system 
The dynamic direct axis current is always existent even if 

the vector control method is used for PMSM. The parameter 
of the transfer function is time-variational. Furthermore, the 
variety of the load and the friction cause the model 
uncertainty of the PMSM system. Fig. 3 is the experimental 
frequency response curves of the PMSM system with 
combination of different rotor positions and different inputs 
of motor driver. It can be seen that the model uncertainty of 
the PMSM system really exists. 
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Fig. 3.  Frequency characteristic of the PMSM system. 
 
The center of the curve cluster is taken as the nominal 

response curve. The nominal model of PMSM system can be 
expressed as (7) with parameter optimization for a three- 
-order transfer function from (5) and (6). 
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After the model of PMSM system is established, the 
adaptive position servo controller will be designed next. 

III. ADAPTIVE MODEL FOLLOWING CONTROL OF SYSTEMS 
WITH UNCERTAINTY 

Supposing the nominal transfer function of the plant is: 
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The differential equation of  (8) can be expressed as: 
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The transfer function and the differential equation of the 
reference model are chosen as: 
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The output error between the reference model and the 
plant is defined as: 

)()()( tytyte m −=                                 (12) 
The control input u  is chosen so that the output of the 

plant can track that of the reference model closely. 
Furthermore, the tracking performance should be insensitive 
to the uncertainty of the plant. 

p

21 ppp uuu +=                                             (13) 

Here,  is the control input that can make the plant 

output exactly follow that of the reference model when the 
plant is an ideal system. 
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Formula (15) can be obtained  by substituting (14) into (9) 
and considering the definition of the output error. 
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Let , , . 
Configure  so that the equation 

, has stable latent roots. Now, 

(15) is asymptotically stable, i.e. . Thus the 

output of the plant follows that of reference model well. It is 
obvious that the satisfying response cannot be achieved by  
using  only when the plant presents uncertainty. Hereby, 

must be introduced to reduce the effect of uncertainty. 
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where, ∆ , ∆ , and ∆ are adaptive parameters of the 
controller. Let 
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)(tv  is the output error of the system plus the linear 
compensator ). By choosing the coefficients of the 
compensator appropriately, (21) can satisfy the strictly 
positive real condition. 
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Also, the Popov integral inequality can be satisfied if 
the PI adaptations are synthesized according to 
(17)-(19). The system will be asymptotically 
hyperstable by the Popov’s theorem [11]. Therefore, the 
output of the plant follows that of the reference model. 

IV. ADAPTIVE CONTROL OF PMSM SYSTEM  

A. Adaptive Position Control of PMSM System  
It is known from above that with increase of the model 

orders of the plant, the calculation quantity of the adaptive 
controller will increase, and sometimes the controller will be 
unreliable. Hereby, the adaptive control is implemented after 
the plant is controlled with simple proportional position 
loop. The proportional gain of the position controller is 
chosen as  so that the system has enough amplitude 

and phase margin. The closed-loop transfer function of the 
PMSM after simple control is: 
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With Padé reduction technique [12], the order-reduced 
transfer function can be written as: 
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The Nyquist diagrams of G  and G  are shown in 

Fig. 4. It can be seen that the order-reduced system is 
approximate to the original one within the middle and low 
frequency band. 
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. Fig. 4.   Nyquist diagram of original and reduced model. 



 
 

 

According to the performance requirement of the PMSM 
system, the reference model is chosen as: 
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 The adaptive control law can be chosen from (13). The 
parameters , , and K are chosen following the 
procedure described in section III: 
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, ∆ , and ∆  come from (17)-(20). 
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According to the requirement of the Popov’s theorem for 
the strictly real condition, the coefficients in 

, are d  and  
respectively. For a 2-order system, it is strictly real if and 
only if  and 
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B. Velocity Observer of PMSM  
From (20) and (21), it is known that in order to satisfy the 

strictly real condition, the differential signal of the adaptive 
system’s output error is needed. From (2), the differential 
signal of the plant output is also needed. However, in this 
paper only the position transducer is used for the PMSM 
system. Although the velocity signal can be estimated from 
the discrete differential of the position, this solution based 
on the position data only has significant limitations of 
accuracy and noise [13], since the sample time in this paper 
is 0.0002s. Fig. 5 is the discrete differential of the motor 
position. It displays serious high frequency noise. This 
velocity signal cannot be used for the adaptive controller. 

The observer shown in Fig. 6 is used to estimate the 
velocity of PMSM [13]. The nominal motor model in Fig. 6 
is chosen as (7) with experimental method. Fig. 7 is the 
output of the observer. Fig. 7 (a) shows that the output of the 
observer is very close to the PMSM position. Consequently, 
the estimated velocity of the observer approximates well to 
the real velocity of the motor. 

C. Experimental Results of the Adaptive Control  
Fig. 8 is the AMFC diagram of the PMSM system. The 

controller is implemented on an industry computer. 
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Fig. 5.   Discrete differential of the PMSM position 
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Fig. 6.  Diagram of the velocity observer. 
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Fig. 7.   Output of the velocity observer. 
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Fig. 8.  AMFC diagram of the PMSM system. 



 
 

 

Fig. 9 shows the output of reference model and the 
position of the PMSM with the unit step input. It indicates 
that good performance of model following is achieved, and 
the final static error reaches 0.005o, which satisfies the 
system’s requirement. 

 
 

Fig. 9.  Step response of PMSM. 
 

 
 
 

Fig. 10.  PMSM response of sine input. 
Fig. 10 is the response of the PMSM to 1Hz sine input. 

Curve 1 is the control instruction to the system, curve 2 is the 
motor’s position with the controller of u  in the nominal 

operating condition and curve 3 is the motor position with 
adaptive controller. 

1p

It is known from Fig.10, that the motor position cannot 
follow the output of reference model well with the controller 
designed for the nominal operating condition. The error 
between the motor position and instruction is big within the 
time ranges from 2.1s to 2.4s and 2.6s to 2.9s. The reason is 
that the motor position is close to its moving peak within 
these two time slices, the absolute velocity within the 
periods of time is small, and the static friction becomes the 
main factor of the system’s uncertainty. The adaptive 
controller is insensitive to the uncertainty and makes the 
motor position follow the reference model output well. 

Fig. 11 is the motor responses to the sine instruction of 
2Hz @ 1o and 5Hz @ 1o. Curve 1 is the instruction and curve 
2 is the motor position. It shows that the good servo 
performance of PMSM is reached with the adaptive control 
law. 
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Fig. 11.  Response of sine input. 

V. CONCLUSION  
In this paper, the uncertainty of the PMSM system is 

analyzed, and the model is established using experimental 
methods. With respect to the model uncertainty, the adaptive 
model following controller is designed for the position servo 
control of the PMSM. The velocity signal used for the 
adaptive controller is estimated with the velocity observer. 
The experimental results show that good position servo 
performance of the PMSM is achieved. The adaptive 
controller is insensitive to the model uncertainty.  

time (s) 
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