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Abstract: In this paper, the mathematical derivation of a 
closed-form discrete optimal control law is presented.  
Unlike the well-known results for continuous plants, the 
closed-form time optimal control for discrete time plants 
was never attained. The recent work of Jingqing Han 
sheds lights on this problem and is introduced.  In 
particular, a time optimal control law is constructed in 
the form of state feedback for a discrete time, double-
integral plant by using the Isochronic Region method.  
This closed-form nonlinear state feedback clearly 
demonstrates that time optimal control in discrete time 
is not necessarily bang-bang control, i.e., the control 
signal does not always take on extreme values.  In fact, 
this characteristic makes the new control law 
advantageous in engineering applications.   
 
Keywords: Time Optimal Control, Bang-Bang Control, 
Discrete Time Optimal Control. 
 
I. INTRODUCTION 
 
Time optimal control (TOC) originated from servo control 
design problems [1,2] in the 50s, where heuristic arguments 
were made regarding the optimality. It was extended to a 

standard second-order system 
.. . .

2 ( , )y y y y yζ ϕ+ + = , where 
.

( , )y yϕ is a switching function of values ± 1 [3]. This 
problem drew significant interests in the field of applied 
mathematics which gave birth to Optimal Control Theory 
[4-7].  In particular, Pontryagin’s minimum principle [4] 
greatly simplified the derivation of time optimal control law, 
which was previously quite cumbersome. Furthermore, 
based on this principle, the existence of a solution, the 
uniqueness of the solution and the number of switches in 
control signal were proved for time optimal control of a 
linear, time-invariant continuous plant. That is, 

.
( ) ( ) ( )x t Ax t Bu t= + , where A and B are constant n× n and 

n× m matrices, respectively, and the components of u(t) are 
constrained by |ui(t)| ≤ 1. 
 
From an engineering perspective, the applications of TOC 
prove to be challenging.  A nagging problem is that the 
instant switching between extreme values in the control 
signal required by TOC is often neither feasible, because of 
the physical limits on how fast a control signal can change, 
nor desirable, because of the stress it puts on the control 
actuators.  On the other hand, the research continues in 
development of methodology to determine switching 

surfaces for various (continuous) plants.  Overall, TOC 
still draws considerable interests in research for both 
practical and theoretical reasons. See, for example, recent 
papers and the references therein in [12,13]. 
 
With the rapid development of computer control 
technology, most control algorithms are implemented in 
discrete time domain today.  Direct digitization of 
continuous TOC solution proves to be problematic in 
practice because of the high frequency chattering of the 
control signal.  This leads to the question of whether or 
not a TOC solution derived directly for discrete time 
plants offers any advantages.   
 
It is a well-known fact that the nonsingular time-optimal 
control solution of continuous linear-analytic systems 
with bounded control inputs is a bang-bang control.  
However, it was shown by Tsien and Song that time 
optimal control for discrete plants is not a bang-bang 
control [7].  They investigated this problem and gave a 
method for discrete time optimal control (DTOC) design, 
but were not able to arrive at a closed-form solution.  
Meanwhile, digitized bang-bang control has been used as 
an approximation for DTOC problems.  
 
This leads us to the work of Jingqing Han, one of the 
pioneer researchers on time optimal control in the early 
1960s (also known as Hang King-Ching).  A significant 
amount of his early work in both continuous and discrete 
time optimal control appeared in [7].  His work in [8] was 
widely referenced, and his and his colleagues’ work in 
discrete time optimal control proved to be promising 
[7,9].  Unfortunately, the work was interrupted by 
political events in China, and it was not until over thirty 
years later that he and his students studied this problem 
again.  This time, they used the TOC as a means to build a 
nonlinear differentiator [11].  Overshoot and poor 
numerical properties of continuous TOC solutions led his 
team to seek answers in his earlier work in DTOC.  And a 
closed-form DTOC solution for a double-integral plant 
was found [10]. 
 
The paper is organized as follows: the background on 
TOC for a continuous double integral-plant and its 
approximations are introduced in section II.  The 
construction of the DTOC algorithm is introduced in 
section III, followed by concluding remarks in section IV. 
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II. BACKGROUND 
 
Time optimal control as a research topic has been studied 
for over a half century by at least two generations. In this 
section, some early results and basic concepts are reviewed. 
 
2.1 Continuous TOC and Its Approximations 
One problem that has received considerable attention in 
literature is the time optimal control of the double-integral 
plant defined as 

  
. 0 1 0
( ) ( ) ( ),| ( ) |

0 0 1
x t x t u t u t r   

= + ≤   
   

 (2.1) 

where [ ]1 2( ) ( ) ( ) Tx t x t x t= . The resulting control law that 
drives the state from any initial point to the origin in 
minimum time is [5-8] 
 u(t)=-r sign(s) (2.2) 
where the switching function is defined as 
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and the sign function, sign(s), is defined, for a scalar s, as 

 
1 0

( ) 0 0
1 0

s
sign s s

s

>
= =
− <

 (2.4) 

Note that in the implementation of this algorithm, the 
conditions 

 x(t)=0 and 2 2
1

( ) ( )
( ) 0

2

x t x t
x t

r
+ =  (2.5) 

were hardly ever met in a noisy environment. Therefore, the 
time optimal control law is often simplified as 

 2 2
1

( ) ( )
( )  ( ( ) )

2

x t x t
u t r sign x t

r
= − +  (2.6) 

This time optimal control method has many advantages over 
linear controllers: 1) the state arrives at the steady state in 
minimal and finite time; 2) superior disturbance rejection 
robustness against dynamic uncertainties. It can also be 
easily extended to the tracking problem by replacing 1 ( )x t  

and 2 ( )x t in (2.3) with 1 ( ) ( )x t v t−  and 2 ( ) ( )x t v t− & , 
respectively. Here v(t) and ( )v t&  are the desired state 
trajectories. 
 
In many engineering control applications, one of the design 
goals is to achieve maximum bandwidth, which is a term 
derived from linear transfer functions. In time domain, it 
corresponds to maximum accuracy in command following 
and minimal disturbance recovery time. In this sense, the 
time optimal controller has a higher bandwidth than any 
other controllers, linear or nonlinear. 
 

The penalty associated with this control law is the 
frequent switching of the control signal between its two 
extreme values around the switching curve described in 
(2.5), particularly around the origin, x=0. Furthermore, 
the instant switching requires an infinitely large du/dt, 
which is usually not practical. Many modifications of the 
control law (2.2) were made to ease the implementation: 

• Adding a dead zone or a linear zone: 
 0,u if x δ= <  (2.7) 

can be added to (2.2) to reduce the chattering of u around 
the origin. δ can be chosen by trial and error or set to  
 nδ

∞
=  (2.8) 

where n is the measurement noise in x. Or, 
 1 1 2 2 ,u k x k x if x δ= + <  (2.9) 

where 1k and 2k  are linear gains to be selected. 
• Replacing ( )sign s in (2.2) with 

 ( , )

( )
sat s

sign s s
s s

δ

δ

δ
δ

=

>



≤

 (2.10) 

It seems this modification should only occur around the 
origin. 

• Keeping u  unchanged in the neighborhood of 
the switching curve s  in (2.5), defined as the 
area borders by, for example, the two curves 

( ) ( )2 2
1( ( ) ) 0, 0

2

x t x t
x t

r
λ λ± + = >  (2.11) 

These modifications make the solution suboptimal. They 
reflect the need to make a compromise in design between 
the performance (optimality) and the physical constraints 
(du/dt, number of switches, etc.) 
 
2.2 Discrete TOC and Isochronic Regions 
Consider a discrete time double-integral plant 
 ( 1) ( ) ( )x k Ax k Bu k+ = + , |u(k)|≤ r (2.12) 

 where A=
1
0 1

h 
 
 

 and B= 
0
h

 
 
 

 

The interest here is to find a time optimal control law 
directly in discrete time domain. This problem is defined 
as follows: 
 
Definition 1: Given the plant (2.12) and its initial state 
x(0), determining the control signal sequence, u(0), u(1), 
…u(k), such that the state x(k) is driven back to the origin 
in a minimum number of steps, subject to the constraint of 
|u(k)| ≤ r. i.e.  
  find u(k*), |u(k)| ≤ r, such that k*=min{k|x(k)=0} (2.13) 
 
Note that an open loop solution to (2.13) is the one where 
u(i), i=1, ..., k, is solely dependent only on the initial 
condition, x(0).  Because such a solution does not take 
into consideration the disturbances in the plant, it is not a 
practical one.  The closed-loop solution is the one where u 
is a function of the state, x.  In a discrete time control 



   

system, the state is measured only at the sampling instant, 
t=kh, where h is the sampling period.  If we treat the 
measurement, x(kh), as though it is an initial condition, x(0), 
then all we need to find is u(0) in (2.13) at each sampling 
instant.  Repeat it until the state reaches the origin. This 
approach is used in the following in deriving the discrete 
time optimal control law (DTOCL). 
 
Definition 2: Isochronic Region (IR) G(k) denotes the set 
of states that, for any x(0)∈G(k), there is as least one 
admissible control sequence, u(0), u(1), ..., u(k), which 
makes the solution of (2.12) satisfy x(k)=0. 
 
Strategy 
Note that the IR grows in volumes as k increases, i.e., G(k-
1)∈G(k).  The basic idea in deriving the DTOCL is to find 
u(0) for any x(0)∈G(k) and x(0)∉G(k-1), such that the next 
state x(1), calculated from (2.1), satisfies x(1) ∈G(k-1).  
This process is divided into two tasks: 

1. Determine G(k), i.e., the representation of the initial 
condition, x(0), in terms of h and r, from which the state 
can be driven back to the origin in k steps; 
2. For any given initial condition x(0), find the 
corresponding u(0) as a function of x(0), where u(0) is 
the first step in (2.13). 

 
First, let’s examine G(k).  From (2.12), 
 x(1)=Ax(0)+Bu(0) 
 x(2)=Ax(1)+Bu(1)=A2x(0)+ABu(0)+Bu(1) 
 … 
 x(k)=Akx(0)+Ak-1Bu(0)+…+ABu(k-2)+Bu(k-1)  
Setting x(k)=0 and solve  for x(0), we have 
 x(0)=-A-1Bu(0) -A-2Bu(1)-… –A-kBu(k-1) (2.14) 

With Ak=
1
0 1

kh 
  

and A-k=
1
0 1

kh− 
  

, (2.14) can be 

rewritten as 

 x(0)=
2

1

( 1)
k

i

ih
u i

h=

−
−

 
 
 

∑  (2.15) 

Clearly,  

 G(k)=
2

1

( 1),| ( ) | ,
k

i

ih
u i u i r
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− ≤
−

  
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∑  (2.16) 

 
Graphical Interpretations of IR: 
 
Consider  
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 (2.17) 

Let u(i) take the extreme values of r or –r, the resulting 
G(k), k=1,2,3, is plotted below on the phase plane in Figure 
2.1. Note that G(1) is a straight line between  

 {a-1=
2h r

hr
− 

 
 

 and a1=
2h r
hr−

 
 
 

};  (2.18) 

G(2) is a parallelogram defined by the four points of  
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G(3) is a hexagon defined by the six points of  
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}  (2.20) 

 

 
Figure 2.1 Isochronic Regions G(1) to G(3) 

 
III. CONSTRUCTION OF THE DISCRETE TIME 
OPTIMAL CONTROL LAW 
 
In this section, the DTOCL is obtained constructively 
based on the IR, G(k), k=1, 2, ..., as defined above.   
 
3.1 DTOCL for G(1) and beyond 
For any initial state in G(k), a control sequence is to be 
found so that x(k)=0.  For example, if x(0) is on the line 
defined in G(1), as shown in Figure 2.1, it satisfies 

 x(0)= αa-1+(1−α)a1=(1-2α)
2h r
hr

 
 − 

,  0<α<1,` (3.1) 

 then 

 x(1)=Ax(0)+Bu(0)= 
0

(1-2 ) (0)hr huα
 
 − + 

 (3.2) 

and the state can be driven back to the origin in one step 
by using a control signal 
 u(0)=(1-2α)r = -x2(0)/h (3.3) 
Since G(1) is the straight line connecting a1 and a-1, it can 
be described by 
 |x2(0)| ≤ hr, x1(0) + hx2(0)=0 (3.4) 
The time optimal control law for G(1) can then be written 
as 
 u(0)= -x2(0)/h, |x2(0)| ≤ hr, x1(0) + hx2(0)=0 (3.5) 



   

For the x(0) on the same line of G(1) but goes beyond the a1 
and a-1 points, i.e., 
  |x2(0)| > hr, x1(0) + hx2(0)=0 (3.6) 
the DTOC calls for u(0) to take on extreme values of -r or r, 
depending on whether x(0) is on the a1 or a-1 side of the 
origin, until x(0) enters G(1).  Therefore, the time optimal 
control for any x(0) satisfying x1(0) + hx2(0)=0 is  
 u(0)= -rsat(x2(0), hr),  x1(0) + hx2(0)=0 (3.7) 
Consider that each measurement at the sampling instant is 
treated as the initial condition, the DTOCL for G(1) can 
simply be written as 
 u= -rsat(x2, hr),  x1 + hx2=0 (3.8) 
 
Remark:  
The DTOC law for G(1) clearly demonstrates that, unlike its 
continuous time counterpart, the control signal, u, does not 
always take on the extreme value.  There is an inherent 
linear region in DTOC law, and the size of this region is 
proportional to the sampling period and the maximum 
control magnitude. 
 
 
3.2 DTOC Law for G(2) and the area defined 

by 2≤| |y h r  
For k>1, such a solution is not so obvious.  In the following, 
the problem of synthesizing a control law for G(k), k>1, is 
addressed.  The objective here is to derive the DTOC law in 
terms of state feedback. 
 
As shown in Figure 3.1, G(2) is a parallelogram defined by 
points in (2.19)  Note that the lines [a-2b2] and [b-2a2] are 
parallel to [a-1a1].  Let,  
 y = x1 + hx2 (3.9) 
the boundaries of this parallelogram are four straight lines 
described as  

a2 b-2:   y = x1 + hx2 = h2r 
a-2 b2:   y = x1 + hx2 = -h2r 
a-2 b-2:  x1 + 2hx2 = y + hx2 = h2r (3.10) 
a2 b2:    x1 + 2hx2 = y + hx2 = -h2r 

 

 
Figure 3.1 Control Law Derivation for G(2) 

 
It can be easily verified that for any x(0) on a-2b-2 (a2b2), 
u(0)=-r (u(0)=r) will always force x(1) to be inside G(1).   
 

Furthermore, any point inside the parallelogram, such as 
P in Figure 3.1, resides on a line parallel to a-2 b-2 , which 
satisfies  
  x1 + 2hx2 = y+hx2 =(2α-1)h2r,   0 ≤ α ≤ 1 (3.11) 
subject to 

  1 2
2

2x hx yx hr
h h

+
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1 2| | | |x hx y h r+ = ≤  (3.12) 

Note that α=1 and α=0 correspond to a-2 b-2 and a2 b2, 
respectively.  The corresponding time optimal control is  

1 2 2
2

(0) 2 (0) (0) (0) /(0) -(2 -1)   - x hx x y hu r
hh

α + +
= = = − , 

 ( ) 2
2

(0)0 ;  | (0) |yx hr y h r
h

+ ≤ ≤  (3.13) 

because it results in 

x(1)= 
( )
( )

1

2

1
1

x
x

 
 
 

= Ax(0)+Bu(0) =
( ) ( )
( )

1 2

2

0 0
0 (0)

x hx
x hu

 + 
 + 

 

        =
( )

( )
( )

2
2

0 0
(1)(0) (0) / (0) /0 ( )

y y
Gx y h y hx h

h

 
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 (3.14) 

That is, for any x(0) in G(2), (3.13) forces x(1) into G(1) 
and is, therefore, the DTOCL for G(2).  Again, since in 
digital implementation, the measurement of x at each 
sampling instant is treated as an initial state and only u(0) 
is sought. Thus, the time optimal control law for G(2) can 
simply be written as  

 22
2

/ , ;  | |x y h yu x hr y h r
h h

+
= − + ≤ ≤  (3.15) 

Remarks: 
1. Interestingly, for α=0.5, P is on the straight line c-2c2, 

which bisects G(2) and satisfies y+hx2 =0. The 
corresponding control, according to (3.13) is u(0)=0 
and it can be shown that the resulting x(1) is in G(1).  
In other words, for all initial condition x(0) on c-2c2, 
the time optimal control is zero. 

2. For the initial condition already in G(1), (3.13) leads 
to x(1)=0, i.e., the state is driven back to origin in one 
step.   

 
Now let’s consider the DTOCL for the regions beyond 
G(2) but still bounded by 2

1 2| | | |x hx y h r+ = ≤ . These are 
the areas above a-2 b-2 and below a2 b2 but between y = -
h2r and y = h2r, which can be expressed as 

 2
2 ;  | |yx hr y h r

h
+ > ≤   (3.16) 

Here, u continues to take extreme values here, and the 
DTOCL is  

 2
2 2 s ( ),   ;  | |y yu r ign x x hr y h r

h h
= − + + > ≤  (3.17) 

That is, above a-2b-2, u continue to take the value of –r; 
below a2b2, it takes r. 
 
Combining (3.13) and (3.17), the DTOCL for the entire 
area between y = -h2r and y = h2r is 



   

 u=-r sat(( 2
yx
h

+ ), hr), 2 | |y h r≤  (3.18) 

Next, the DTOCL for the area 2| |y h r> is constructed. 
 
3.3 DTOCL for 2≥| |y h r  
Now let’s construct the DTOCL for G(k), k>2, using the 
same method above.  Recall that G(k) are polygons defined 
as  

 G(k)=
2
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ih
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h=
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Let  
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   
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These points, as well as G(k), k ≤ 4, are shown in Figure 
3.2.  Clearly, 
1. ak (a-k) are initial conditions from which the state is 

driven back to the origin by using u(i)=r (u(i)=-r), i=0, 
…,k-1; furthermore, the broken line connecting {ak, ak-1, 
… , a1, 0} ({a-k, a-(k-1), … , a-1, 0}) is the minimum time 
state trajectory corresponding to u(i)=r (u(i)=-r), i=0, 
…, k-1; 

2. b-k (bk ), k ≥ 2  are initial conditions from which the 
state is first driven back to ak-1 (a-(k-1)) by using u(0)=-r 
(u(0)=r), and then forced to the origin by using u(i)=r 
(u(i)=-r), i=1, …, k-1; 

3. The segments [b-k ak ] ([bk a-k ]) are all parallel to [a-1 
a1] and their midpoint, ck (c-k ), are initial conditions 
from which the state is first driven back to ak-1 (a-(k-1)) 
by using u(0)=0 , and then forced to the origin by using 
u(i)=r (u(i)=-r), i=1, …, k-1; 

Connecting {..., ak, ak-1, … , a2, b2, ..., bk-1, bk, ...} forms a 
boundary denoted as Γ+,  and {..., b-k, b-(k-1), ..., b-2, a-2, ..., a-

(k-1), a-k,...} Γ−, as shown in Figure 3.2.  Similar to the 
derivation of DTOCL for 2 | |y h r≤ , it can be shown, for 
x(0) on or above Γ− (on or below Γ+), time optimal control 
calls for u(0)=-r (u(0)=r).  Moreover, the time optimal 
control for initial condition inside the area bounded by Γ+  
and Γ− does not take on extreme values (r or -r).  In 
particular, consider Q=x(0) inside a parallelogram defined 
by { ak, ak-1, b-(k-1), b-k}, k>2, and Q is on a line, α(b-(k-1)b-

k)+(1-α)akak-1, between and parallel to akak-1 and b-(k-1)b-k, 
similar to the P point in G(2) shown in Figure 3.1. The time 
optimal control is u(0) =  -(2α−1)r, and it drives x(1) to the 
segment [ak-2, ak-1].  Note that α=.5 corresponds to the 
broken line connecting {..., ck, ck-1, … , c2, c-2, ..., c-(k-1), c-k, 

...}, denoted as Γ0, on which the time optimal control is  
u(0)=0.  
 
In summary, the DTOCL is  
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r x
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r x
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 (3.23) 

 
Remark: 
Although this control law can be implemented in a look-
up table, a more desirable form is to write u as an explicit 
function of the state, x=[x1 x2]T.  The first step in 
achieving this goal is to represent the Γ- , Γ0, and Γ+ 
curves as functions of x1, x2, h, and r.  
 
From the sum of the arithmetic sequences in (3.19) to 
(3.22), the points that define Γ- and Γ+

 can be written as 
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Notice that ai, i ≥ 2, is on the half-parabola:  
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and a-i, i ≥ 2, is on the half-parabola:  
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Let s = sign(x2), then a±i, i ≥ 2, satisfies 

 
2
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Similarly, b±i, i ≥ 2, satisfies 
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Recall that we are interested in the area defined by 
2| |y h r≥ , where y = x1+hx2. Rewrite (3.30) and (3.31) 

together as 
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which is equivalent to 
2 2

2

2 2

2

8
,  (connecting )

2
8

,  ( connecting )
2

k

k

h r rys hr
x s shr a

h r rys hr
x s shr b

±

±

 − −
 − =



− −
− = −

 (3.33) 

   
Substituting s=sign(x2)=-sign(y), which is valid on the 
parabolas in (3.33), yields 
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Define 
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then 1 2( , , , )a x x r h hr= − corresponds to the parabolas 
connecting a-k and b-k , respectively, and this curve, denoted 
as +Γ% , overlaps Γ− at the points {a-k, b−k, k =  2,3,  ...}.  
Similarly, 1 2( , , , )a x x r h hr=  corresponds to the parabolas 
connecting ak and bk, respectively, and this curve, denoted 
as +Γ% , overlaps Γ+ at the points {ak, bk, k =  2,3,  ...}.  It can 
also be shown that 1 2( , , , ) 0a x x r h =  represents 0Γ% , which 
overlaps Γ0 at the points { c±k , k = 2,3, ...}.  Moreover, 

+Γ% and −Γ%  partition the phase plane in a manner of 
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from which the DTOCL of (3.23) is approximated, with 
very little error because  +Γ% and −Γ% are generally very close 
to Γ+ and Γ−, as 
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Combining (3.18) and (3.37), and redefine 1 2( , , , )a x x r h as 
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the complete DTOCL for any initial condition on the x1-x2 
plane is 
 u= -r sat( 1 2( , , , )a x x r h , hr) (3.39) 
which can then be coded in a digital computer as in (3.40). 
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3.4 Characteristics of the Switching Surfaces 
The switching curves of the original continuous TOC and 
the newly derived DTOCL are shown together in Figure 
3.3, with h=.1 and r=2.  It is interesting to note that the 
original TOC stays within the area between Γ- and Γ+ in 
the neighborhood of the origin but deviates from it as x(0) 
ventures further away.  That is, the switching curve of the 
original TOC is a solution for the DTOC problem. 
 
IV. CONCLUDING REMARKS  
A discrete time optimal control law is derived for a 
double-integral plant.  A closed-form solution is obtained, 
which is ready for implementation in any digital control 
platform.  This new time optimal control law resolves the 
long standing issue of chattering in the control signal and 
is, therefore, much more practical than the well-known 
bang-bang control solution.  The readers are referred to 
[10,11,14,15,17] for more details of the applications. 
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Figure 3.2 Switching surface for DTOCL 

 

 
Figure 3.3 Comparison of switching curves 
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