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Abstract— In this paper, we present a novel approach to
analyze the performance of linear dynamical systems in the
presence of disturbances with bounds on their magnitudes and
bounds on their rates of change. The performance considered
is the maximum magnitude of the outputs of linear systems
driven by such disturbances. First, the basic properties of this
performance are given. Then, the performance computation is
formulated as an optimal control problem. Applying the Pon-
tryagin’s Maximum Principle, we obtain necessary conditions,
and systematically derive the numerical procedure to obtain
the worst-case disturbance and its corresponding output. To
show the effectiveness of the performance analysis, the worst-
case performance is compared with widely used upper bounds
in the numerical example. The comparison indicates that
the new performance is significantly less conservative than
the upper bounds. Therefore, this performance analysis is
practical for system analysis and deemed to provide a viable
means to improve the capabilities of control synthesis.

I. INTRODUCTION

One of basic objectives in control system design is to
keep the system output in the vicinity of the desired set
point under the presence of any possible disturbances. Thus,
practical controller design methods usually compensate
for these disturbances. However, disturbance characteristics
with which a controller can effectively handle depend criti-
cally on a disturbance model used in a controller design pro-
cess. Many available control design methods characterize
disturbances as step signal or random noise. Nevertheless,
these two disturbance models are somewhat unrealistic. For
example, the rate of change of the step signal at the step
time is infinite, and the magnitude of a random noise, at
some points of time, can be extremely large even if its
variance is finite. These unrealistic elements give rise to
some conservatism in controller design paradigms.

In certain industrial processes, it is fairly practical and
realistic to model disturbances as signals with bounded
magnitudes and bounded derivatives. We denote the set of
all signals of interest as an input space. Fig. 1 illustrates
an example of a signal in our input space. Note that this
space also includes randomly changing signals. An example
of systems having this type of disturbances is a distillation
column. One of the disturbances is an input feed rate which
varies over the time and is limited by the pipe dimension
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causing a certain bounding condition on its magnitude. In
addition, its rate of change is confined by the mass of raw
material fed into the column, and by the power of the feed
pump.

In this paper, the performance index is defined as the
maximal output or the worst-case output of a linear time-
invariant system when input magnitude is bounded by M ,
and input derivative is bounded by D. Furthermore, the
maximal input or the worst-case input is defined as the
input, among all admissible inputs, that yields the maximal
output. Birch and Jackson [1] have studied the problem of
computing the performance index for a second-order linear
time-invariant system by constructing the corresponding
maximal input. Thereafter, Chang [2], Horowitz [3] and
Bongiorno Jr. [4] have proposed the necessary and/or the
sufficient conditions for the maximal input of general linear
time-invariant systems, but they did not suggest how to
construct this input. In particular, Chang related the per-
formance computation to the time optimal control problem.
Lane [5] gave the necessary and sufficient conditions for
the maximal input and the rules to construct it. Neverthe-
less, his approach to deduce these rules is partly based
on conjectures. Another relevant research work by Saridis
and Rekasius [6] also considered the similar input space
with a slightly different performance index, and exploited
the combined numerical-analytical method to construct the
maximal input. The convergence of this method, however,
is not guaranteed. In this paper, we present an approach
to determine the necessary conditions for the maximal
input via optimal control formulation with Pontryagin’s
Maximum Principle. Moreover, we also propose a novel
analytical method to compute the maximal input, and the
corresponding performance index.
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Fig. 1. Disturbances whose magnitudes and derivatives are bounded



This paper is organized as follows. The succeeding
section gives the precise definitions of the performance
index and the input space. Then, in section III, the
computation of performance index is discussed, first the
problem formulation followed by necessary conditions to
obtain the maximal input. Subsequently, section IV states
the characterization of the maximal input and the maximal
output. In section V, we describe the developed program
for computing the performance index. Then, the computer
program is tested and the numerical results are compared
with two upper bounds of the performance index. Finally,
the main results of this paper are summarized in the last
section.

II. PERFORMANCE INDEX

As mentioned previously, some types of disturbance are
more practically modelled as signals with bounding condi-
tions on magnitudes as well as derivatives. In this research,
we focus on single disturbance, and let M and D denote
the magnitude bound and the derivative bound respectively.
For all t ≥ 0, let the input signal w be continuous, and let
its derivative ẇ be piecewisely continuous. The input space
W is defined in terms of M,D as follows.

Definition 1 The input space W containing all input sig-
nals with magnitude bound M and derivative bound D is

W � {w(t) : |w(t)| ≤ M, |ẇ(t)| ≤ D, ∀t ≥ 0}, (1)

where M,D are positive and finite. In this paper, we
consider the signal w only at t ≥ 0 and let w(t) = 0, ∀t <
0.

A system of interest is a strictly proper SISO linear time-
invariant system as depicted in Fig. 2. The system input
w is the exogenous disturbance, and h(t) is the impulse
response.

Since the output z depends on the input w and time t,
we will refer to z with arguments w and t as z(t, w). Let
all admissible inputs be in W which is defined in (1). The
performance index ẑ is defined as follows.

Definition 2 The performance index ẑ of the output z(t, w)
of the linear system h(t) under the input w ∈ W is

ẑ � sup
w∈W

sup
t≥0

|z(t, w)|. (2)

An interpretation for this performance index is the maximal
output taken from all time and all inputs in the space W .
Note that ẑ is a constant regardless of t and w. From all
inputs in W , let ŵ be an input corresponding to the maximal
output, that is

ŵ = argsup
w∈W

{sup
t≥0

|z(t, w)|}. (3)

h(t)
zw

Fig. 2. Linear time-invariant system with the impulse response h(t)

We refer to this input as the maximal input or worst-case
input. We assume throughout this paper that the relationship
between w and z is linear-time invariant. Specifically, the
input-output relation is of the convolution integral form

z(t, w) = h(t)∗w(t) �
∫ t

0

h(τ)w(t−τ)dτ ∀t ≥ 0.

(4)
Furthermore, the system considered is of a finite dimension
with the following state space equations

ẋ(t) = Ax(t) + Bw(t)
z(t, w) = Cx(t) (5)

where x(t) is the state vector. Notice also that the
feedthrough matrix is equal to zero since we make an
assumption that the linear system is strictly proper. It can
be straightforwardly verified that the performance index ẑ
of any linear system h(t) is finite if and only if the system
is BIBO stable [5].

While the performance index looks rather complicate, its
upper bounds are easier to calculate. Thus, to avoid the
complexity, some researchers [7], [8] employed these upper
bounds in their design criteria instead of dealing directly
with the performance index. However, a critical drawback of
using the upper bounds in control analysis and synthesis is
conservatism. In this paper, we will use these upper bounds
to compare with our performance index. Here, we consider
two types of upper bound. The first one denoted by ẑ∗1 is
similar to ẑ in Definition 2 except that the input space is
the set W∗, namely,

W∗ � {w(t) : |w(t)| ≤ M, ∀t ≥ 0}. (6)

It is obvious that W ⊆ W∗. Hence, the maximal input ŵ
is also contained in W∗. As a result, we have ẑ∗1 ≥ ẑ. The
second-type upper bound denoted by ẑ∗2 has the form

ẑ∗2 = M

(
sup
t≥0

|s(t)| + |sss|
)

+D

∫ ∞

0

|s(t)−sss|dt (7)

where s(t) =
∫ t

0
h(τ)dτ is the step response corresponding

to h(t), and sss = limt→∞ s(t) is the DC-gain of the linear
system h(t). It can be algebraically verified that ẑ∗2 is greater
than or equal to the performance index [9]. The condition
for finiteness of these upper bounds is the same as that of
the performance index, i.e., h(t) must be BIBO stable.

Note that, theoretically, when the bounding condition
on the derivative becomes weak (D is relatively large),
the attribute of W is close to that of W∗, and as a
consequence, ẑ will approach ẑ∗1 . On the other hand, if the
bounding condition on the derivative becomes strong (D
is relatively small), then the upper bound ẑ∗2 will be less
conservative than ẑ∗1 , but ẑ may not approach ẑ∗2 .

III. PROBLEM FORMULATION AND NECESSARY

CONDITIONS

An approach to formulate the problem of computing the
performance index begins with a simplified form of the
performance index. From (2) and (4), the performance index



can be written as a time convolution of the input and the
impulse response

ẑ = sup
w∈W

sup
t≥0

|w(t) ∗ h(t)|. (8)

Since the input-output relationship in (4) is linear, and since
the positive side of the input bounds (+M,+D) and the
negative side of the input bounds (−M,−D) are equal in
magnitude and different in sign, we can discard the absolute
sign on the right-hand side of (8), that is,

ẑ = sup
w∈W

sup
t≥0

{w(t) ∗ h(t)}. (9)

Next, we define ẑ(t) as

ẑ(t) � sup
w∈W

{w(t) ∗ h(t)}. (10)

Here, ẑ(t) is the largest output z(t, w) taken from all inputs
in the space W , but at the specific time t. Note that the
performance index ẑ(t) is now a function of t only. With
an assumption that w(0) = 0, it can be shown that ẑ(t) is
a non-decreasing function of time [5]. In other words, the
performance index in (9) can be written as

ẑ = sup
w∈W

lim
t→∞{w(t) ∗ h(t)} = lim

t→∞ ẑ(t). (11)

We can roughly say that the longer the convolution time is
extended, the larger output is achieved.

From (11), consider ẑ(t) as t → ∞. We found that the
performance index ẑ can be approximated with arbitrary
accuracy by taking the final time of the convolution w(t) ∗
h(t) to be sufficiently large. Let us define a finite horizon
approximated performance index at the final time T as

ẑ(T ) � sup
w∈W

{w(T ) ∗ h(T )}. (12)

The approximation error of the approximated performance
index at T is smaller than M

∫ ∞
T

|h(t)|dt. Hence, for
simplicity, we will refer to ẑ(T ) shortly as the performance
index.

The performance index in (12) can be reformulated as
an optimal control problem by defining an additional state
variable xn+1(t) and a control signal u(t) as follows.

xn+1(t) � w(t),
u(t) � ẇ(t).

The starting time is 0, the final time is T , and the cost
functional J � Cx(T ). The obtained optimal control
problem is of the form

sup
u

J
subject to ẋ(t) = Ax(t) + Bxn+1(t) x(0) = 0

ẋn+1(t) = u(t) xn+1(0) undefined
−M ≤ xn+1(t) ≤ M 0 ≤ t ≤ T
−D ≤ u(t) ≤ D 0 ≤ t ≤ T.

(13)
We will show how to compute the optimal u(t) and xn+1(t)
using the analytical method inspired partly by [6]. To begin
with, the inequality |xn+1(t)| ≤ M is changed to an
equality constraint,

x2
n+1(t) + α2(t) = M2, (14)

where α(t) is a real auxiliary Lagrange variable satisfy-
ing (14). Then, we define the Hamiltonain function as
follows

H(x, xn+1, u, α, p, pn+1, pn+2) � pT (Ax + Bxn+1)
+ pn+1u + pn+2(M2 − x2

n+1 − α2) (15)

where p(t) and pn+1(t) are Lagrange multipliers corre-
sponding to ẋ(t) and ẋn+1(t) respectively, and pn+2(t) is
a Lagrange multiplier corresponding to the constraint (14).

The method to obtain the necessary conditions for op-
timal control problems is explained in [10], [11]. For our
problem, all necessary conditions are as follows.

ẋ(t) = Ax(t) + Bxn+1(t), (16)
ẋn+1(t) = u(t), (17)

ṗ(t) = −AT p(t), (18)

ṗn+1(t) = −BT p(t) − 2pn+2(t)xn+1(t),(19)

x2
n+1(t) + α2(t) = M2, (20)

α(t)pn+2(t) = 0. (21)

The optimal control signal u(t) derived via the Pontryagin’s
Maximum Principle is as follows.

u(t) = Dsgn{pn+1(t)}. (22)

By replacing this optimal u(t) into the term pn+1(t)u(t)
of the Hamiltonian function in (15), we come up with the
term D|pn+1(t)| which is non-negative. Furthermore, this
optimal u(t) is chosen such that its magnitude is as large
as possible. Thus, among all admissible control signals, this
optimal control maximizes the Hamiltonian function. The
transversality conditions of this optimal control problem are

p(T ) = CT , (23)
pn+1(0) = 0, (24)
pn+1(T ) = 0. (25)

Next, we will modify each necessary condition, one after
another, so that it becomes more comprehensive and prac-
tical to derive the optimal solution.

First, consider the equality constraint of the magnitude
of xn+1(t) in (20). It is easily seen that for any t ≥ 0

|xn+1(t)| < M ⇐⇒ α(t) �= 0 (26)
|xn+1(t)| = M ⇐⇒ α(t) = 0 (27)

Second, from (21), at any point of time, if α(t) �= 0, then
pn+2(t) = 0 and vice versa. The solution to the linear
differential equation (18) with the final condition (23) is

p(t) = eAT (T−t)CT . (28)

Then, by substituting p(t) in (28) into (19), and integrating
both sides of equation from t1 to t2, we obtain

pn+1(t2) − pn+1(t1) = {s(T − t2) − s(T − t1)}

− 2
∫ t2

t1

pn+2(t)xn+1(t)dt (29)

This equation will be the key equation for the derivation of
the optimal control u(t), and the optimal trajectory xn+1(t).

In this type of optimal control problem, we need to take
into account the singular solution which happens when the



Hamiltonian function does not depend on u(t), and then the
optimal control in (22) is no longer valid on the singular arc.
From (15), the singular control takes place when pn+1(t) =
0. The control u(t) and the state xn+1(t) for the singular
solution is deduced to

u(t) = 0,
xn+1(t) = ±M.

(30)

Notice that, for this particular problem, the optimal control
in (22) is consistent with the singular control in (30).

Finally, we must find the corner conditions that make the
Hamiltonian function continuous everywhere. Considering
the Hamiltonian in (15), the term that needs to be continu-
ous everywhere is pn+1(t).

It is remarked that Equations (22), (24) and (25) remain
intact, and Equations (16) and (17) will be used to
compute the maximal output (the performance index) after
the solution of u(t) is obtained.

IV. CHARACTERIZATION OF MAXIMAL INPUT

From the modified necessary conditions discussed previ-
ously, by restoring the notations w(t) = xn+1(t) and
ẇ(t) = u(t), all the necessary conditions can be expressed
in terms of the maximal input w(t) and its derivatives ẇ(t)
as

ẇ(t) = Dsgn{pn+1(t)}, (31)

pn+1(t) = 0 ⇐⇒ w(t) = ±M, (32)

|w(t)| < M ⇐⇒ α �= 0 =⇒ pn+2(t) = 0,
(33)

pn+1(t2) − pn+1(t1) = {s(T − t2) − s(T − t1)}

− 2
∫ t2

t1

pn+2(t)w(t)dt, (34)

pn+1(t) continuous at t ≥ 0, (35)

pn+1(0) = pn+1(T ) = 0. (36)

Notice that the dynamic equations in (16) and (17) are not
utilized in the optimal solution but they will be used to
calculate the performance index from the maximal input.

In order to construct the maximal input, we will analyze
its switching behavior, and determine the corresponding
switching times. In particular, the properties of pn+1(t)
together with the bounding conditions on the input will be
directly considered. Before we proceed, let us classify the
time regions of the input into two types, that is, the time
regions where the input magnitude is less than M , and the
time regions where the input magnitude is equal to M . The
detailed definitions are as follows.

Definition 3 The kth transition region of the input w(t)
denoted by Tk is the open time interval (t0,k, tf,k) in which
|w(t)| < M almost everywhere2 in (t0,k, tf,k), and there is
no other open time interval (t̂0, t̂f ) such that (t0,k, tf,k) �

(t̂0, t̂f )3.

2This simply means that ∀t ∈ (t0,k, tf,k),∃δ > 0 such that w(τ) �=
M, ∀τ ∈ (t − δ, t + δ) and τ �= t

3B � A ⇐⇒ B ⊆ A but B �= A

M

-M
0

w(t)

S1 S2

 T

T3T2
T1

Fig. 3. Saturation regions S1, S2 and transition regions T1, T2, T3 of
input w(t) when 0 ≤ t ≤ T

Definition 4 The kth saturation region of the input w(t)
denoted by Sk is the closed time interval [t0,k, tf,k] in which
|w(t)| = M, ∀t ∈ [t0,k, tf,k], and there is no other closed
time interval [t̂0, t̂f ] such that [t0,k, tf,k] � [t̂0, t̂f ].

For both definitions, we refer to t0,k and tf,k as a starting
time and a final time of the kth region, respectively. These
definitions say that each saturation region is sandwiched
by two adjacent transition regions and vice versa. The
combined saturation regions and transition regions cover
all over the time interval [0, T ]. Thus, for any input signal,
the saturation regions alternate with the transition regions
as illustrated in Fig. 3.

Due to the space limitation, we will address only the
definitions and the developed theorems. The detailed proofs
are given in [9]. Let t0,k and tf,k be the starting time and the
final time of the transition region Tk respectively. From (32)
to (36), it is found that s(T − t0,k) = s(T − tf,k), and

pn+1(t) = s(T − t) − s(T − t0,k)
= s(T − t) − s(T − tf,k). (37)

The following definition will simplify these equalities.

Definition 5 For any transition region Tk, its switching
reference sref

k is defined as

sref
k � s(T − t0,k) = s(T − tf,k). (38)

Graphically, in the same plane as the step response s(T−t),
the switching reference sref

k is the horizontal line with its
height equals s(T − t0,k) (and also s(T − tf,k)), and is
drawn along Tk from t0,k through tf,k. From Definition 5
and (37), it is obvious that

pn+1(t) = s(T − t) − sref
k . (39)

As a result, from (31), the input derivative is of the form

ẇ(t) = Dsgn{s(T − t) − sref
k }. (40)

Besides, at the starting time and at the final time, the
relationship between the input w(t0,k) (or w(tf,k)) and the
derivative d

dts(T − t0,k) (or d
dts(T − tf,k)) can be summa-

rized into the following theorem on transition regions.

Theorem 1 For any transition region Tk, the input signals
at t0,k and tf,k are related to the derivatives of the
backward step response s(T − t) as

w(t0,k) = −Msgn
{

d

dt
s(T − t0,k)

}

w(tf,k) = −Msgn
{

d

dt
s(T − tf,k)

}



Next, we will give additional definitions which will be used
in the succeeding theorems. In the transition region Tk,
consider all possible times t1,k, t2,k, . . . , tn,k such that

s(T − t1,k) = s(T − t2,k) = · · · = s(T − tn,k) = sref
k ,

and t0,k < t1,k < t2,k < · · · < tn,k < tf,k. These times are
referred to as the switching times within Tk. From (40),
it should be noted that the derivative ẇ(t) changes its
sign at each switching time. For consistency, tf,k will be
alternatively represented by tn+1,k.

The closed time interval along the adjacent switching
times, i.e., [tm−1,k, tm,k], m = 1, . . . , n + 1, is signified
as the sub-transition region, and the length of each sub-
transition region is defined by

�tm,k � tm,k − tm−1,k m = 1, . . . , n + 1.

Definition 6 For any transition region Tk, the ith cumula-
tive polar-summation of sub-transition regions’ length, or
in short, the cumulative summation CSi,k is defined as

CSi,k �
i∑

m=1

(−1)m+1�tm,k, (41)

for i = 1, . . . , n. Note that we signify CSi,k as a polar-
summation because the term (−1)m+1 in Definition 6
alternates the signs (poles) of the sub-transition regions’
lengths.

By direct analysis via the magnitude bounding conditions
of w(t) together with (40), it is found that the necessary
conditions on the switching times t1,k, . . . , tn,k, and the
necessary condition on the final time tf,k in the transition
region Tk can be simply stated as the following theorem.

Theorem 2 For any switching times t1,k, . . . , tn,k in Tk,

0 ≤ CSi,k ≤ 2M

D
.

Moreover, for any final time tf,k in Tk,

CSf,k =

{
2M
D , if w(t0,k) = − w(tf,k),

0, if w(t0,k) = w(tf,k).

On the contrary to the analysis in transition regions, the
analysis in saturation region is simpler and more straight-
forward. Let t0,k and tf,k be the starting time and the final
time of the saturation region Sk respectively. The constraint
on saturation regions can be concluded as follows.

Theorem 3 The backward impulse response h(T − t) in
any saturation region Sk must be of the same sign along
the region, and the magnitude of input in this region is

w(t) = Msgn{h(T − t)} t0,k ≤ t ≤ tf,k

In addition to these foregoing theorems, there are the
conditions of the input at t = 0 and at t = T , but we will not
discuss them in this paper. Fig. 4 shows the example of the
maximal input satisfying Theorems 1 and 2 in the transition
regions, and satisfying Theorem 3 in the saturation region.

At last, after the maximal input is constructed, the
performance index (the maximal output) can be directly

M

-M

2M
D

s(T-t)

D
w(t)

s1
ref

s3
ref

s2
ref

t1                           t2       t3                 t4               t5 t6                     t7      t8                    t9

Fig. 4. Example of maximal input w(t) in comparison with the backward
step response s(T − t)

determined by solving the state equations of the system
in (5), or by computing the convolution of the maximal
input and the impulse response h(t).

V. IMPLEMENTATION AND NUMERICAL EXAMPLE

In this research, we develop the computer program based
on MATLAB for calculating the performance index. The
maximal input is constructed by directly searching for its
switching times via Theorems 1–3. The computation pro-
cedure of the performance index can be briefly summarized
as follows.

1) Simulate the step response s(t) of the interesting
system. Then, store the simulation result in data
vectors.

2) The resulting step response cannot be exploited in-
stantly. Instead, it must be ordered backward in time
to obtain the response s(T − t).

3) Use the step response to find all possible region
patterns at t = T (final region of the maximal input)
and at t = 0 (starting region of the maximal input).

4) Beginning from the starting region, match each re-
gion pattern one by one to determine the adjacent
transition/saturation region. Carry on this construction
until the latest transition/saturation region meets any
patterns of the final region. The result of this step
is the data vector comprising the starting time, final
time, and switching times of each transition region.

5) Generate the maximal input both in transition regions
and saturation regions by interpreting the data vector
obtained in the preceding step.

6) Convolute the maximal input with the system impulse
response h(t) from 0 to T to get the performance
index.

Recall that the resulting performance index is actually the
finite horizon approximated performance index at t = T
(see section III).

In order to demonstrate the effectiveness of our program,
we compare our result with two upper bounds of the
performance index (see section II). The linear system of
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Fig. 5. The comparison of the performance index and its two upper
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Fig. 6. The comparison of the performance index and its two upper
bounds where D = 1 and M varies from 0.01 to 0.06.

interest is described by

H(s) =
4.26s3 − 29.01s2 + 737.2s − 2994

s4 + 22.02s3 + 2719s2 + 5.13 × 104s + 2.4 × 105

The parameters of the input space W are set as follows.
1) Fix the magnitude bound M = 1, and vary the deriva-

tive bound from 10 to 160. Compute the performance
index and two upper bounds at each D.

2) Fix the derivative bound D = 1, and vary the
magnitude bound from 0.01 to 0.06. Compute the
performance index and two upper bounds at each M .

Note that the parameter ranges of D and M are selected
so that the results exhibit the explicit nature of the perfor-
mance index and both upper bounds. Using our program
to compute the performance index and additional programs
to compute the upper bounds, the results are displayed in
Fig. 5 and 6.

It is obvious that in the case of relatively large D in
Fig. 5, and relatively small M in Fig. 6, the performance
index is close to the first-type upper bound. This implies
that the first-type upper bound is less conservative when
D 
 M . In contrast, when D is relatively small compared

to M the performance index moves further from the first-
type upper bound; however, in Fig. 6, it does not converge
to the second-type upper bound. Nevertheless, we can see
that, in Fig. 5, when D is small to some degree (D ≤ 48),
or, in Fig. 6, when M is large to some degree (M ≥ 0.021),
the second-type upper bound is closer to the performance
index than the first type. In other words, the second-type
upper bound is less conservative when D � M . It is easily
seen that the results are theoretically consistent with the
characteristics of the two upper bounds (see section II). It
should be noted that, for some values of M and D, the com-
puted performance index is substantially less conservative
than its upper bounds.

VI. CONCLUSIONS

The main result in this paper is the analytical method to
compute the performance defined by the maximal output
taken from all time, and from all admissible inputs. The
input space considered is the set of signals with bounds
on their magnitudes and rates of change. We have shown
that the performance computation can be formulated as the
optimal control problem with constraints on the control
signal and the additional state variable. Then, we have
obtained the optimality conditions, and characterized the
maximal input from which the performance is computed.
The developed program is used to investigate the correctness
as well as the conservatism of the performance computation.
The results suggest that this performance diminishes the
conservatism in system analysis, and potentially enhances
the effectiveness of controller synthesis.
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