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Preface

This book contains papers presented at the 13™ International Symposium on Process
Systems Engineering (PSE 2018), held at the Manchester Grand Hyatt in San Diego,
California, USA, July 1-5, 2018. The PSE series is a triennial conference which has
been held since 1982, organized on behalf of the international PSE Executive
Committee with representation from countries in Asia-Pacific, Europe, and the
Americas. The goal is to create an academic and industrial dialogue, a critical
assessment of existing enabling technologies, a discussion on research, education, and
industrial needs, and an international forum for new directions, challenges and
opportunities in process systems engineering.

The PSE symposia bring together researchers, educators, and practitioners to discuss the
latest developments in the field of Process Systems Engineering (PSE), including
applications of methods, algorithms, and tools to solve a wide range of problems as well
as provide the venue for discussion of new scientific challenges in our field. This
symposium will feature more than 425 presentations including invited plenary and
keynote lectures, as well contributed papers (both oral and poster) encompassing a large
number of core and cross-cutting PSE themes.

The core PSE themes include:

Process and Product Design/Synthesis

Process Dynamics and Control

Scheduling and Planning

Supply Chain Management and Logistics

Decision Making Under Uncertainty

Integration of Process Operations and Design/Synthesis
Modeling, Analysis and Simulation

Optimization Methods and Computational Tools
Education

The cross-cutting themes embrace new and exciting PSE applications in the areas of:

Energy, Water, Food, Waste Nexus
Multi-scale Systems Engineering

Sustainable and Renewable Systems Engineering
Modular Process Intensification

Healthcare Systems Engineering

Industrial Biotechnology

Molecular and Materials Systems Engineering
Smart Manufacturing and Plant of the Future
Smart Grid Systems

Urban/Building Systems Engineering

Big Data Research and Development
Man-machine Interface Systems Engineering
Safety Driven Systems Engineering



xviii Preface

This book includes 11 invited papers and extended abstracts as well as 407 contributed
papers. All papers have been reviewed by at least two members of the International
Programming Committee. We are very grateful to the members of the International
Programming Committee for their assistance and constructive feedback during the
review process. We would also like to thank the Elsevier editorial team, particularly Mr.
Kostas Marinakis and Ms. Emily Thomson, for their support on this project, which
provides an archival and fully indexed record of the conference.

We are dedicating PSE 2018 to the memory of the late Professor Christodoulou A.
Floudas, a giant in the field of process systems engineering. When Chris passed away,
our community lost a visionary leader and many of us lost a close friend.

Christodoulos A. Floudas was the Director of the Texas A&M Energy Institute, and the
Erle Nye ’59 Chair Professor for Engineering Excellence at the Artie McFerrin
Department of Chemical Engineering at Texas A&M University. Before moving to
Texas A&M he was the Stephen C. Macaleer '63 Professor in Engineering and Applied
Science, and Professor of Chemical and Biological Engineering at Princeton University
for 29 years. Chris was a world-renowned authority in mathematical modeling and
optimization of complex systems, with research interests at the interface of chemical
engineering, applied mathematics, and operations research. His research
accomplishments were recognized by numerous awards and honors, including election
to the U.S. National Academy of Engineering in 2011, to the Academy of Athens in
2015, and to the U.S. National Academy of Inventors in 2015. He was the author of
over 300 refereed publications and had delivered over 330 invited lectures, seminars,
and named lectureships.

We will honor Chris’ life and legacy by establishing the Christodoulou A. Floudas
Distinguished Lectureship sponsored by the Elsevier journal Computers & Chemical
Engineering. The inaugural C.A. Floudas Lecture will be given by Professor Art
Westerberg, a true pioneer in our field and a close friend of Chris’.

We are indebted to our conference manager, Mrs. Robin Craven, for all of her help and
hard work. Similarly, we greatly appreciate the support from the CACHE Corporation
and the AIChE Computing and Systems Technology (CAST) Division.

We hope PSE 2018 will foster constructive interaction among thought leaders from
academia, industry, and government and that this book will serve as a useful reference
for the latest research in all areas of process systems engineering

Mario R. Eden, Marianthi G. Ierapetritou, and Gavin P. Towler
PSE 2018 Chairs
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Abstract

The incorporation of renewable energy sources to the market has brought a new golden
era for process synthesis along with new challenges and opportunities. In this work, we
give a brief review of the state of the art and then present challenges and future direc-
tions in this exciting area. The biggest driver is the rapid improvement in computer
technology which greatly increases the number of factors that can be considered during
the design process. Thus, some of the key future directions lie in integrating the design
process with other aspects of process systems engineering, such as scheduling, plan-
ning, control, and supply chain management. In addition, sustainability is now a major
consideration in which the design process must consider not only economic sustainabil-
ity, but social sustainability and environmental sustainability when making design deci-
sions. The tools available to address these challenges are limited but we are in a position
to develop them based on strong chemical engineering principles following a multidis-
ciplinary approach with contributions from other disciplines such as biology and bio-
chemistry, computer science, materials, and chemistry.

Keywords: Modelling, process synthesis, raw materials, heuristics, optimization, pro-
cess design, product design

1. Introduction

The first contribution in the field of process synthesis is dates back to 1973 (Rudd et al.,
1973). Traditionally, this is methodological creation of a process to produce chemical
products using experience, heuristics, and algorithms. Over time, the boundaries of the
analysis expanded as more and more complex concepts and techniques developed, al-
lowing for more layers of rigor to be considered. This included fields such as optimiza-
tion, modeling, economics, and control, which ultimately resulted in better process
designs. However, product design was traditionally considered to be more related to
consumer marketing than chemical engineering. Only recently has product design be-
come a part of the scope of process engineers (i.e. Ng et al. 2013). For example, the
popular textbook Product and Process Design Principles (Seider et al., 2017) did not get
the “Product and” part of the title until the second edition. However, it is only natural
that the boundaries of process design have now expanded to include product design
since the next level up from the question “What is the best process to make this prod-
uct?” is “What product should we make to meet market needs?” These products can
range from custom chemicals such as catalysts for reactors, solvents for CO; capture, or
thermal fluids for Rankine cycles to complex products such as cosmetics, pharmaceuti-
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cals, and processed food. Furthermore, chemical processes must be controlled and oper-
ated carefully as they are the core of the product supply chain. So multiscale analysis in
both time and size scales is becoming increasingly important. In addition, a new focus
on using renewable resources such as biomass, solar, or wind energy adds additional
challenges with regard to consistency and irregular availability. This paper briefly re-
views developments and predicts future directions in these areas.

2. A bit of history
2.1. Heuristic-based design

Over the years graphical and heuristic based methods have been proposed and used with
high acceptance in industry. The most used examples lie in the area of heat exchanger
network (HEN) design from rules proposed by Masso and Rudd (1969) or Ponton and
Donaldson (1974), to the pinch method (Linnhoff and Hindmarsh, 1983). Energy inte-
gration has evolved into total site integration aiming at exploiting synergies between
processes in large complexes to save utilities and resources (Klemes et al., 1997) with
an extension to the use of renewables as they entered the energy mix (Varbanov and
Klemes, 2010). Water consumption is an interesting case: an effort driven by industry
(Carnes et al., 1973), was originally presented as a mathematical problem (Takama et
al., 1980). However, the difficulty in solving it lead to the use of heuristic-based con-
ceptual design for many years. El-Halwagi and Manousiouthakis (1989) proposed a
targeting graphical method for mass exchange networks. A few years later, Wang and
Smith (1994) proposed the so called “water pinch” for minimization of water consump-
tion. Heuristic rules have also been used in the design of sequences of distillation col-
umns (Seader and Westerberg, 1977) while geometric rules were proposed for reactor
selection (Glasser et al., 1987). The main procedures for complete process design are
the hierarchical decomposition (Douglas, 1985) and the onion model (Smith, 2005).
This heuristic based approach has alsobeen applied to process integration and intensifi-
cation aiming at the efficient use of resources (Klemes et al., 2014).

2.2. Mathematical-based design

The development of computers and solvers has extended the use of mathematical based
approaches. For example, early HEN’s were designed using sequential methods
(Floudas et al., 1986) and later simultaneous design based on superstructure optimiza-
tion (Yee and Grossmann 1990). However, large scale problems are still quite challeng-
ing; sequential framework approaches are able to handle larger problems, but not prove
global optimality (Anantharaman et al., 2010). In the area of mass exchange networks,
mathematical optimization for water management was addressed in the early 90’s (Pa-
palexandri et al., 1994). Galan and Grossmann (1998) revisited Takama’s et al. (1980)
work and several reformulations have been presented afterwards (Karuppiah and
Grossmann, 2006; Ahmetovic and Grossmann, 2011). Simultaneous water and energy
integration was presented in a two stage procedure by Grossmann and Martin (2010).
Later, simultaneous methods such as targeting procedures (Yang and Grossmann, 2013)
or superstructure optimization have been presented (Baliban et al., 2012). Power and
steam production systems have also been addressed (Papoulias and Grossmann, 1983).
Design procedures that consider flexibility in production have only started to appear
recently due to the complex models required (Martin and Martin, 2013), but have been
extended to polygeneration systems (Chen et al., 2012) and total site optimization
(Nemet et al. 2015). Reactor networks aim at optimizing the conversion and require
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considering the dynamics of the kinetics in the formulation (Achienie and Biegler,
1986). The link between reaction and separation led to considering both simultaneously
in the formulation (Balakrishna and Biegler, 1993). In terms of separation, with distilla-
tion columns the most energy intense units in industry, a number of early works deal
with the optimal sequence of columns to separate mixtures (Andrecovich and Wester-
berg, 1985), including heat integration among them (Floudas and Paules, 1988) as well
as the rigorous design of columns (Viswanathan and Grossmann, 1993). More recent
advances focus on optimal multicomponent distillation sequencing with the possibility
of non-traditional, thermally coupled sequence configurations, which explores a very
large combinatorial space of possible designs (Shenvi et al., 2012). PROSYM (now
MYPSYN) was developed as an optimization based software for process synthesis
(Kravanja and Grossmann, 1990; Kravanja, 2010). The first attempts into general repre-
sentation for process synthesis date back to Papalexandri and Pistikopoulos (1996).
Recently, Super—O has been based on a stage-wise process structure (Constantinou and
Gani 2004; Bertran et al.,, 2017) and automatic process flowsheet generation using
blocks and a grid structures have also been presented (Demirel et al., 2017).

For years, design has been process focused while product design was addressed as a
separate problem. Typically product design focused on molecular design (Gani and
Brignole, 1983), catalyst design (Gounaris et al., 2006), and protein folding (Floudas et
al., 2005), for which global optimization became the driver via software like BARON
(Sahinidis, 1996) or sbb (Androulakis et al., 1995). General packages for product design
have been developed such as the VPPD Lab (Sawitree et al., 2015). However, some-
times process and product design must be solved simultaneously. Examples include the
production of specialized ingredient based products (Martin and Martinez, 2013; Gani
and Ng et al., 2015), the production of fuels within environmental regulations (Zhao and
Wang, 2009), product/process design related to separations (Eden et al., 2004), the de-
sign of algae for fully renewable biodiesel production (Martin and Grossmann, 2013),
the design of specific molecules with a desired properties such as reactant media
(Struebing et al., 2017) or solvent selection (Gopinath et al., 2016), and addressing
process design considering product characteristics (Moggridge and Cussler, 2000; Gani,
2004).

2.3. Hybrid approaches

In most cases the actual number of technologies is so high that it makes sense to follow
a two stage evaluation procedure to discard those less promising due to their early stage
of development or the extreme costs (Martin and Grossmann, 2011). Alternatively, if
the number of alternatives is small, a scenario based approach can be performed using
rigorous process simulators (Zhang et al., 2013). Finally, stochastic optimization using
process simulators is interesting to take advantage of detailed models of distillation
columns, liquid-liquid extraction columns, and other models that are implemented in
rigorous process simulators (Adams and Seider, 2008; Ramirez et al., 2017).

3. Challenges in process and product design

Figure 1 summarizes the grand challenges of chemical process and product design, from
the use of new materials to the development of novel technologies and processes involv-
ing the choice of pretreatments or separation schemes. Optimality is usually character-
ized by economics or business objectives, minimizing wastes, minimizing environmen-
tal impact, or combinations of these are becoming more important.
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Figure 1. Challenges in process and product design.

3.1. New sources and products

The recent focus on environmental concerns for the chemical industry has brought sev-
eral new potential feedstocks to the forefront. These especially include biomass, waste,
nuclear, solar, and wind as source of energy. However, the variability of renewable
sources greatly impacts process design (Martin, 2016) and operation (Zhang and
Grossmann, 2017). Uncertainty, either exogenous (e.g. wind velocity) or endogenous
(e.g. novel technologies), plays an important role in process design and operation (Pis-
tikopoulos and Ierapetritou, 1995) and the size of the problems require novel solution
procedures (Lara et al., 2017; Heuberger et al., 2017).

Similarly, new environmentally-motivated products are now of interest too, such as
biodiesel from different alcohols, glycerol ethers (de la Cruz, 2014), biobutanol (Dalle
Ave and Adams, 2018), bio-butyl butyrate (Birgen et al., 2016), and dimethyl ether
(Ballinger and Adams, 2017). Furthermore, advanced and high added value materials
are the key for economically promising bio-refineries. Polymers (Bueno et al., 2015),
drugs, proteins, and carotenoids (Psycha et al., 2014) can be produced from biomass and
waste. These new materials show the link between process and product design by target-
ing the properties that meet society needs, which is made possible by good physical
property estimation models (Marrero and Gani, 2001). Furthermore, the link between
fuels (chemicals) and power must be further analyzed due to the possibility of using
power to produce chemicals that allow energy storage and shipping (Martin and Gross-
mann, 2017), going a step beyond batteries, where power is also stored chemically but
whose capacity is still limited (Dunn et al., 2011).

3.2. Electricity and Energy storage

Chemical process engineers have rapidly moved into the field electricity generation
processes, traditionally in the domain of electrical and mechanical engineering. Howev-
er, the interface between electricity and chemical production has become increasingly
important. Commonly, this link occurs as a waste handling step in chemical production,
in which high-energy off-gases from a process used as fuel for a power plant in various
ways, leading to polygeneration processes (Adams and Ghouse, 2015). However, be-
cause electric power production is driven by demand, and because electric grids are
increasingly dependent on renewables in which power generation cannot be controlled,
there is a clear mismatch between production and consumption. Grids with limited
amounts of renewables traditionally handled this mismatch by raising or lowering natu-
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ral gas combustion rates in response to demand. However, more modern grids with
large amounts of integrated renewables face a new problem in which more electricity is
occasionally produced than consumed. This leads to a modern problems associated with
electricity disposal, which is sometimes resolved by selling it at negative prices.

A number of chemical engineering solutions have been discussed to address this issue.
To mitigate the temporary absence of a resource, the integration of several of them
provides backup (Yuan and Chen, 2012). Furthermore, thermal or chemical storage of
excess energy generated by renewables is increasingly of interest. For example, concen-
trated solar power plant designs include thermal storage options such as molten salts,
hot water, or waxes (Martin and Martin, 2013). Alternatively chemical storage options
use reversible exothermic/endothermic reactions such that energy is stored as chemical
potential (Lai and Adams, 2017). While these address day-to-day variation, seasonal
variation might be better dealt with by integrating solar energy with biomass combus-
tion during less sunny months (Vidal and Martin, 2015), since biomass is how nature
already stores solar energy. Instead of thermal pathways, electrolytic pathways can be
used to create H, from water via electrolysis when extra electricity is available. When
combined with CO,, high energy products such as methane, methanol, DME, (Davis
and Martin, 2014, Martin, 2016) can be produced, thus storing the energy in fuel form.
Physical pathways are also possible, in which excess energy (or electricity or mechani-
cal work) is stored by compressing a fluid such as air (Nease and Adams, 2013). How-
ever, cost remains a major challenge with these storage systems, which is a major focus
of current research.

3.3. New targets and metrics

Economic objectives have been the obvious choice for characterizing plant quality, and
most heuristics and rules of thumb in the chemical industry have been developed with
this in mind. However, they are no longer socially acceptable. A second objective is
environmental impact minimization. There are a number of metrics (e.g. GREET,
TRACI, ReCiPe) that measure the impact generated by a process, with life cycle anal-
yses the most common technique for obtaining these metrics to be used in process opti-
mization (Kniel et al., 1996; Azapagic, 1999). More recently, social issues are also
being included. For example, the Jobs and Economic Development Impact model
(JEDI) developed by the NREL can estimate the economic impacts of constructing and
operating chemical and power facilities, which can be included in process synthesis
(You et al. 2011). Safety, originally presented by (Klenz, 1984) has also been included
as an objective for process synthesis (Ruiz-Femenia et al., 2017) and for product and
process design (Martinez, 2017). To address them all as multiobjective, several strate-
gies have been used to address its solution, either by producing a single-weighted objec-
tive function such as ecoprofit (Cucek et al., 2012) or RePSIM (Martin, 2016), or by
using a constraints-based approach. Alternatively, methods on reducing the number of
objectives without eliminating solutions of the problem (i.e. Pozo, et al. 2012) or to
evaluate the target yields of a particular technology for it to become competitive (Lim-
leamthong et al., 2016) have been developed.

4. Near-Term Future Directions

4.1. Big data approaches to process and product modelling

Modelling is now the root of rigorous process and product design, often striking a bal-
ance between model rigour and model speed or complexity. Machine learning to create
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data-based models is growing in popularity. Examples include estimating product prop-
erties and performance (e.g. wine taste, appropriate smell), which may not even exist
yet. Given the more recent inclusion of social objectives, data and theory from outside
engineering (including social science) will need to be included in big data approaches
for product design. Artificial intelligence (AI) approaches will also become more in use,
such as training artificial neural networks (ANN) to recognize heuristics and trends in
human-designed processes and then use that to create new processes from the ANN
models. For example, IBM’s Watson platform is being trained with data from engineer-
ing operations documentation in order to make models of oil production operations.
Engineers can ask plain language questions to get information about day to day opera-
tions or get suggestions on how to deal with problems as they appear (Lewis, 2017).
Although not used for design currently, the same approach could be applied with an
appropriate data set.

4.2. Process operation: Integrated scheduling and operation

Renewable-based processes rely on resources that are uncertain and seasonal. Thus,
dynamics and scheduling will play an important role. For example, demand-side man-
agement is starting to address this issue with integration of processes and their operation
(Zhang et al 2017). However, key challenges include the problem size, the various time
and spatial scales involved, and understanding dynamic process characteristics and
operation such as start-up and shut down. This is especially prevalent with systems that
include energy storage technologies such as batteries, thermal fluids, and chemicals, in
which technology degradation over time becomes an important factor.

4.3. Process control

Integrated process design and control has been growing in popularity to create a more
robust or profitable steady state design and control system by considering the inherent
controllability of the design in the face of uncertain disturbances (Ricardez-Sandoval,
2012; Washington and Swartz, 2014). In a renewables-driven process, uncertain dis-
turbances such as minute-to-minute wind velocity fluctuation can be incorporated under
this framework. However, more predictable disturbances (such as seasonal solar and
biomass cycles) are better considered in an integrated design, control, and scheduling
framework, which is at its infancy (Pistikopoulos and Diangelakis, 2016). Again, the
dynamics of the systems plays a major role in these areas.

4.4. Supply chain management.

Although process and supply chain are at different scales, the design of the supply chain
becomes directly linked to the design of the process when environmental considerations
are made. In addition, the operation of flexible multiproduct processes that use unrelia-
ble feeds (biomass in particular) relies on the information of their supply chains. Either
way, the link between process design and supply chain design will become increasingly
important in an environmentally conscious world.

4.5. Computer science

Nearly all of the future directions put forward in this paper, from process modelling
advances to integrated supply chain management, create large mathematical problems
which will require novel algorithms to solve. Efficient decomposition algorithms, mod-
elling approaches, as and better software (or a combination of each) will allow us to
solve larger and larger MILP or MINLP problems. Global optimization, despite its
many advances, is still limited to small problems. Many of the future directions put
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forward in this paper are rooted in the solution of ever-larger problems with more com-
plex models in order to capture and exploit more nuances and characteristics of the
system. This means including more detail, non-linearity, and non-convexity, and so
global solvers will need to be extended and improved. However, as engineers, a subop-
timal solution is better than none, therefore solvers that handle large problems (but not
guarantee global optimality) will be a necessary tool for practical process synthesis and
operation. These include stochastic, evolutionary, or non-deterministic optimization
algorithms which may not be elegant or theoretically attractive, but are undeniably use-
ful.

5. The PSE Technology Tree

To help us prepare for this article, we created a technology tree for process systems
engineering. A technology tree maps the progression of research from one technology to
another, and how they combine to form new technologies. For example, in order to
create a sequential modular process simulator, you must first create an algorithm to
solve individual unit operation models, and also create an algorithm to solve sequences
of unit operations with recycle using tear streams. Such trees are useful for getting a
bird’s eye view of both the history of the field and its future directions. However, every
researcher might have a different idea about what the tree should look like and how
detailed it should be, and the field (and tree) is always changing. That is why, in the
spirit of this conference, we created a Technology Tree Wiki on the website
psecommunity.org/pse-technology-tree/. We encourage readers to visit the website and
contribute by adding to or changing the structure of the tree. Readers can also create,
discuss, or edit articles about each individual node, such as providing descriptions,
examples, images, videos, or literature citations in each area. In this way, readers can
participate in the open creation of an ever-evolving encyclopaedia for our field. An
example screen shot is shown in Figure 2.

PSE Community.org

The World Community for Chemical Process Systems Engineering Education
/ﬁ‘ HOME TEXTBOOKS ~ EDUCATIONAL MATERIALS ~ DISCUSSION BOARDS  CONTRIBUTE Q

PSE Technology Tree

P ATl free  ViewDetails FEditTech AddTech Families Advanced Logout

View @& Edit_J

Transshipment
Models

Process Simulation Advanced Optimal

View €, Edit g Software HeatX Network

Figure 2. A screen capture from theHPS'E‘Technology Tree Wiki at psecommunity.org
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6. Conclusions

From a big picture perspective, the historical progression of the field of process design
is perhaps best characterized by an ever-increasing problem scope. Our fundamental
understanding behind major chemical unit operations and their thermophysical phenom-
ena has not changed much over the decades. Instead, the methodology of process design
has expanded to include more and more rigorous mathematical, dynamics, control,
planning, scheduling, product design, uncertainty, economics, and environmental fac-
tors, although not yet all at once. All of this is made possible by continually improving
numerical methods (particularly optimization and modelling) and software tools which
make larger and larger problems more tractable.

Based on the extrapolation of this trend, we envision that the future of process design
will be largely driven by software that essentially includes all of these areas integrated
together in one large global optimization problem. The designer would specify key
objectives (perhaps in plain language) that relates to either particular products or merely
product properties. The software would then formulate and solve an optimization prob-
lem which automatically synthesizes the design of the dynamic process and its products,
together with its dynamic supply chain, plans and schedules, target markets, control
systems, and considering all operational details including product flexibility and transi-
tions, startup, shutdown, safety, reliability, uncertainty, and disturbance response. Can-
didate processes would be ranked on metrics that include a mix of environmental, busi-
ness, and social factors. Data for environmental impacts, markets, supply chains, unit
operations, and chemicals would be automatically drawn from massive databases or
database-driven models. The process synthesis would be achieved through AI algo-
rithms which draw upon massive models or databases of both human-derived and Al-
created processes, heuristics, and best-practices. All of these aspects already exist in one
form or another, it is merely the integration of everything together into one mega-
problem that remains.
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Abstract

This presentation discusses the challenges and opportunities at different levels of
process engineering. It is indicated that all processes involve in multilevel structures,
each multiscaled, and the complexity of each level exists always at the corresponding
mesoscale at the specified level. On the other hand, these mesoscale structures at
different levels are all subject to operating regimes, showing the most complex
spatiotemporal behavior at mesoregimes between two relatively simple limiting regimes.
There is no thereby available approach for mesoscale problems in mesoregimes, leading
to the proposition of mesoscience based on the recognition of a common principle for
all these mesoscale problems. The presentation will introduce what is the physical
principle and mathematical formulation of mesoscience, why it is critical to the
paradigm shifting of process engineering, particularly to the realization of virtual
process engineering (VPE), which is the dream for process systems engineering (PSE).
The presentation will be concluded with perspectives in mesoscience.

Keywords: Mesoscale, Mesoregime, Mesoscience, Multilevel, Multiscale.

1. Introduction: Levels, scales, and mesoscales

To study a system, it is important, and should be the first step to define its domain and
its relationship with surroundings. In doing so, it is essential to clarify which level we
are studying, which scales should be involved in the study, and what is the boundary
and interaction between the system and its surroundings. Subsequently, with these
definitions for the specified system, we should further know in which regime the system
is operated. Unfortunately, it is quite often that these aspects were not specified well
during study, making confusions and debates. Especially, the division of levels, the
definition of mesoscale, and the regime transition in a specified level have not received
sufficient attention, hindering the development of PSE and the realization of VPE.

As shown in Figure 1, the whole procedure for PSE concerns three levels, i.e., the
material level (from the scale of an atom or a molecule to the scale of a macroscopic
particle), the reactor level (from the scale of a macroscopic particle to that of a reactor),
and the factory level (from the scale of a reactor to that of a factory). These levels
belong to different disciplines, i.e., chemistry and materials science for the material
level, chemical engineering for the reactor level, and PSE for the factory level, as
reviewed by Grossmann and Westerberg (2000). Each level exhibits multiscale
characteristics, involving the element scale, the system scale, and the in-between
mesoscale where complexity always emerges (Li and Huang, 2014). Currently, lots of
investigations have been undertaken at the element scales and the system scales, but
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understandings are quite limited on the mesoscale problems at these three levels, e.g.,
self-assembling at the material level, particle clustering at the reactor level, and process
synthesis superstructure (Floudas et al., 1986; Yee et al., 1990) at the factory level.
There is no satisfactory physical theory or mathematical approach for describing these
mesoscale problems, showing knowledge gaps. In PSE, although the interactions among
unit operations are taken into account, and formulated as multi-objective variational or
optimization problems, however, the mesoscale problems at the material level and the
reactor level are usually handled with averaging (e.g., coarse-graining) approaches, and
therefore, the fidelity of the physical models is frequently neglected.

,—> Knowledge gaps <—'

Material and interfacial Heterogeneous Process synthesis
Mesostructures:
structure flow structure superstructure

Boundary scales: e

Multiscale: - =5 % - -

Molecule/Atom  Assembly Particle Particle aggregate Unit operation

= =
Process synthesis
superstructure

Environment

A N = N =
~" ~" ~—
Multilevel: Material Reactor Factory
(Chemical technology) (Process development) (System integration and optimization)
Disciplines: Chemistry Chemical engineering Process systems engineering

Figure 1 Three levels and corresponding mesoscales of chemical processes. Modified from (Li,
2015a), Copyright 2018, with permission from Elsevier

The complexity of mesoscale problems led to the proposition of nonequilibrium
thermodynamics (Onsager, 1931a; 1931b), the theory of dissipative structures (Nicolis
and Prigogine, 1977), complexity science (Wikipedia, 2018), etc. Recent investigations
on the mesoscale structures at various levels revealed that traditional theories fail to
offer satisfactory descriptions, and some common principle seems to exist, along with
multi-objective formulations mathematically. Therefore, the concept of mesoscience
was put forward (Li et al., 2013; 2014), which will be adopted in this work. In the
language of mesoscience, three regimes (Li, 2016; Li et al., 2016) of the mesoscale
structures may appear with the change in the operating conditions, i.e. (taking the
systems with two dominant mechanisms as an example), two limiting regimes
(mechanism A4- or B-dominated) with simple structures, and the in-between mesoregime
(4-B compromising) with complex structures. The complexity in this 4-B
compromising regime lies in the joint dominance of different mechanisms. Mesoscience
concerns not only mesoscales, but also mesoregimes (Huang et al., 2017; Li, 2017).
Therefore, the key (challenging) issues in PSE include bridging different scales in each
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level, correlating different levels in a whole process, and distinguishing different
regimes at each level.

2. Commonality and speciality of the three levels

All the complex systems at the above-mentioned three levels have common features: (1)
They are composed of many elements; (2) There exist complex spatiotemporal
structures at the mesoscales; (3) The mesoscale structures can be determined using
stability conditions based on the principle of compromise in competition (Li, 2015a;
2015b; Li et al., 2016; Li et al., 2018; Li and Huang, 2018); (4) The stability conditions
can be expressed as multi-objective variational problems in mathematics. However,
level-specific features exist as well:

1) Dominant mechanisms are level-specific. At the material level, the mechanisms
dominating mesoscale structures might be related to the processes of reaction,
diffusion, etc. (Wang et al., 2013; Sun et al., 2016). At the reactor level, the
dominant mechanisms might be subject to interaction between different phases, and
also dependent on the reactor types. At the factory level, in addition to physical and
chemical constraints, dominant mechanisms are also subject to the indices of
economy, environments, etc. which are set to meet the production requirements.

2) For the first two levels, the processes and corresponding complex structures depend
on the intrinsic nature at each level itself, and the interplay between the two levels.
However, for the third level, the processes and structures are dependent not only on
the constraints from the first two levels, but also on artificial factors (e.g., economic
and ecological indices) (Grossmann, 2005; Bakshi, 2002; Triebl et al., 2013),
bringing more complexity to PSE.

Fa e
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Figure 2 Regime-specific feature of mesoscales, exemplified with the reactor level

3) For the first two levels, the structures are determined by physical mechanisms
under specified conditions. However, for the third level, the optimization is
conducted firstly according to the specified conditions, and then the optimized
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results should be returned to the first two levels to check the possibility of
realization, so iterations and correlations between levels are necessary.

The above features already lead to lots of complexity, but moreover, the mesoscale
structures at each level may change with the changes in specified conditions, usually
exhibiting three distinct regimes, as shown in Figure 2 for the reactor level. Once such
regime transitions occur during optimization, the situation should be more complicated.
This is beyond our current capability in reactor designing and optimizing, it should be
more difficult to account for.

Additionally, there exist problems in the literature, due to the ambiguity or even
mistakes in defining levels, scales and mesoscales, which enhance the complexity and
difficulty, as follows:

1) Identification of level: Naturally, one level corresponds to one kind of systems, and
neighbouring levels might be taken as constraints of such a system, that is, the
environment. However, sometimes one blurs different levels into a single problem,
and sometimes one defines a “system” (e.g., a reactor) as a “mesoscale”. Such
treatments usually lead to mistakes or difficulties due to the confusions of different
mechanisms at different levels.

2) Definition of mesoscale parameters: Mesoscale, as reviewed in (Li and Huang,
2018), is a relative concept to describe the scale with complex phenomena, between
the element scale and the system scale at each level. Therefore, mesoscale
parameters should reflect the intrinsic nature behind these phenomena, that is, the
related dominant mechanisms should be taken into account, and interaction
between the phases corresponding to such mechanisms should be formulated. For
instance, in gas-solid fluidization, particle clustering and interaction between the
dilute and the dense phases must be represented in its mesoscale model (Li and
Kwauk, 1994).

3) Inter-level transfer of parameters: The bottom-up transfer of the parameters at the
material level to the reactor level is relatively easy. However, the top-down transfer
of the parameters optimized at the factory level to the reactor and material levels is
very difficult (even more difficult when considering the regime-specific feature). It
is a great challenge in practical optimization, and more transdisciplinary approaches
and knowledge are necessary.

Therefore, under such circumstances, the future PSE should address the following
issues:

1) Division of levels: Partitioning the overall system into correlating sub-systems,
covering different levels, and identifying the dominant mechanisms in each sub-
system.

2) Definition of scales at each level: Appropriate parameters should be given for the
element scale, the system scale, and the structural unit at the mesoscale. Defining
the mesoscale parameters is especially critical.

3) Correlation between levels: Determining the inter-level correlations in both top-
down and bottom-up ways.
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4) Resolution of mesoscales: Solving mesoscale problems depends on the
understanding and description of mesoscale structures and the identification of the
regime-specific features. Mesoscience is a promising way to this end.

Addressing these issues properly will pave the way for PSE to a new era, and lay
cornerstones for VPE, where mesoscience or something equivalent will be the key.

3. Mesoscience bridges element behaviour and system performance

Over the past three decades, investigations on various mesoscale problems in process
engineering have been conducted at IPE, CAS. Different from the methodology in
traditional thermodynamics, which aims to find a single-objective variational function,
and the complexity science that aims to directly correlate elements with the system, we
focus on the complex structures at the mesoscales, and realize that there must exist
knowledge gaps. Through analysing the compromise between competing mechanisms,
we find the stability conditions for mesoscale structures, and express them as multi-
objective variational problems (Li et al., 2004). As shown in Figure 3, such a EMMS
principle originated from our EMMS model (Li and Kwauk, 1994) for gas-solid
fluidization, and then was confirmed (Li et al., 1999; Ge et al., 2007, Huang and Li,
2016; Han et al., 2016) in turbulence, granular flow, gas-liquid flow, micro-fluidics,
foam drainage, emulsion, heterogeneous catalysis, materials, micro-reactors, protein,
impinging streams, and other systems. The commonality recognized from these
different systems stimulated exploration of its universality, leading to the proposition of
mesoscience.
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Granular flow
Gas-liquid | ‘ Physics: A
Micro-fluidics
oam drainage =y =g Compromise in
Foam drainage | Stability Condition PLERTEE
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2012 Catalysis o A .:'
Material min [B] g
Micro reactor | J a
Protein —
\ Impinging stream ‘ > E_
2017 - =
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More - [V]
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Figure 3 From case studies to common principle

Mesoscale structures are actually the focus of the theory of dissipative structures
(Nicolis and Prigogine, 1977) and the complexity science (Wikipedia, 2018). After three
decades of exploration, we reckon that the theory of dissipative structures is really
revolutionary, but it is a pity that it does not succeed completely in describing complex
systems, partly due to the limitation in directly searching for a single-objective
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variational function. Therefore, the key is to find multi-objective variational functions,
instead of single-objective variational functions. This is possibly the common principle
we have revealed through the concept of mesoscience.

As we stated recently in an editorial (Li, 2017), the concept of mesoscience is based on
the core principle of compromise in competition. Instead of looking for a single-
objective variational function directly, different dominant mechanisms at the mesoscales
in mesoregimes are first analyzed. The resulting variational functions are then defined
and their compromise in competition is analyzed, mathematically, leading to multi-
objective variational formulation. Physically, the origin of complexity is related to the
alternate appearance of states dominated by different mechanisms. This shift in research
strategy from single-objective to multi-objective optimization might offer a glimmer of
hope for understanding the complex world in which nature exits. The solution of such a
multi-objective variational problem represents a continuing grand challenge. However,
in some cases the possibility to transform it into a single-objective problem, particularly
based on physical analysis, should certainly not be excluded, as shown in our EMMS
model (Li and Kwauk, 1994).

4. VPE perspective: Towards a new paradigm

The dream of PSE is to realize virtual reality (VR)-like VPE. The key lies in reasonable
physical models, sufficient computational capability with high speed and efficiency, and
the capability of handling big data. Mesoscience will contribute to all of these aspects,
as summarized in Figure 4. Firstly, the establishment of mesoscience will clarify the
relationship among the element, the system, and mesoscale structrues, i.e., identifying
the intrinsic logic in complex systems. The complex mechanisms will be revealed for
the mesoscale structures at each level in the mesoregime, and the physical principle
(compromise in competition) and mathematical formulation (multi-objective variational)
will be established. Secondly, based on the intrinsic logic, reasonable physical models
can be achieved, guaranteeing the reliability of computation. Then, according to the
common logic and structural features of mesoscale structures, reasonable computers can
be designed, which will provide reasonable logic and structure for the computational
science aiming at solving complex problems, establish the logic consistency among the
problem, the model, software, and hardware, and hence improve the computational
efficiency, achieving high speed and efficiency. This will supply powerful tools for
mesoscience. Meanwhile, the analytic processing of the big experimental data will also
be performed under the logic framework determined via mesoscience. This will greatly
expedite the data processing and improve the capability of revealing underlying
mechanisms, providing more evidence for the development of mesoscience and online
data for the realization of virtual reality. At present, we have established a VPE center
(Ge et al.,, 2011; Liu et al., 2012), the computational speed supports two-dimensional
realtime virtual experiment (Lu et al., 2016). In other words, if one changes the
operating conditions, the dynamic evolution of the system can be observed immediately
on the screen. If such a scene is realized for three-dimensional industrial apparatuses,
realtime VR simulations will be achieved, and VPE will not be far away.

Mesoscience originated from chemical engineering where there are lots of mesoscale
phenomena. In developing chemical engineering, we can collect more evidence to
verify the universality of mesoscience, and improve the intelligence in chemical
engineering (Quantrille and Liu, 1991).
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In summary, the complexity of mesoscale structures at different levels exhibits the
regime- and level-specific nature. This is the common bottleneck at all the levels in
chemical engineering, and also the missing link in current knowledge. The proposed
mesoscience aims at solving such challenging problems. Certainly, more evidence is
still needed to support our current understandings on the physical principle and the
mathematical expression.

World Complexity

Mesoscales in Mesoregimes at
Different Levels

e

COMPUTATION THEORY EXPERIMENT

} } }

Governing Principle:
Compromise in competition

Logic and structural
similarity between problem,
model, software, and
hardware

Framework of

i ) data science
Mathematical Formulation:

Multi-objective variational

' | |

. Tool . Evidence .
Supercomputing e Mesoscience <« Big data

|

Virtual Reality

New Paradigm of Chemical Engineering

Figure 4 Relationship between big data, supercomputing, mesoscience, and virtual reality,
showing the path to a new paradigm of chemical engineering. Modified from (Li, 2015b),
Copyright 2018, with permission from Elsevier

Since the complexity in nature, mostly prevailing in mesoregimes, originates from the
coexistence and compromise in competition between different dominant mechanisms, it
seems difficult for traditional single-objective variational functions to describe such
complexity. Different mechanisms follow different rules, and additionally the world is
full of diversity, so directly establishing a single-objective description seems more
difficult than finding a multi-objective description. Therefore, mesoscience deserves
exploring in various fields. Once we collect sufficient evidence to verify the universality
of the principle of compromise in competition, and develop the data and computational
science as shown in Figure 4, we will greatly promote the realization of VPE—a new
paradigm of chemical engineering!
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Abstract

After its launch at the turn of the millennium, integrated product and process design has
gradually taken root in research and teaching within chemical and biochemical engi-
neering. The transition from primarily process design in which the product is relatively
well defined to include product design is primarily driven by economics. With globali-
zation, any product that can be made by multiple producers would eventually exert
enormous financial pressure to lower product price, resulting in squeezed profit margin.
The only way for a company to survive and prosper is to invent innovative products.
Also, with the rapid advances in computer technology, emergence of new business
models, and requirements in social responsibility and sustainability, a chemical engineer
should and is well positioned to contribute to the entire product life cycle. This article
identifies the technical and non-technical issues/problems in integrated product and
process design, the relationships among which are captured in a Grand Product Design
Model. The methods/techniques and computer aided tools for the design, analysis, and
development of molecular products, formulated products, functional products, and de-
vices are discussed. Many of these recent developments have been included in teaching
product design to prepare the new generation of chemical engineers.

Keywords: Product design, Grand Product Design Model, Formulated products, Func-
tional products, Devices

1. Introduction

Chemical product design is a diverse subject. In addition to the basic science and engi-
neering underlying the product under consideration, consumer preference, budget, com-
peting products, pricing, supply chain analysis, government policy, corporate social
responsibility, sustainability, and so on also need to be taken into account in designing
and developing a product. This is captured in the Grand Product Design and Develop-
ment Model (see Figure 1), which shows the relationships among the different tasks /
problems in the product design and development process (Fung et al., 2016). Normally,
the development process begins with consumer preferences, which define the desired
product quality. The ingredient and production process are then appropriately selected
(designed) to yield product properties and product structure, which together provide
product attributes that meet product quality requirements. Note that supply chain analy-
sis is used to optimize the selection of product ingredients. After accounting for product
cost and non-manufacturing expenditure, a pricing model is needed to maximize profit
while meeting corporate social responsibility. Other issues may also be considered such
as sustainability, company strategy, aesthetics, and so on. This model is part of a hierar-
chical, multidisciplinary framework for chemical product design (Seider et al., 2017).
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There are 5 elements (highlighted through different colors in Figure 1) of the design
framework that are used for carrying out product design. Model-based methods, rule-
based methods, and databases do not involve hardware while computational and exper-
imental tools do. Note that not all models from Figure 1 are considered in all product

design problems.
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Figure 1: Grand Product Design and Development Model (Fung et al., 2016).

Many chemical products have been considered in product design. These include fuel
additives (Sundaram et al., 2001; Hada et al., 2014), refrigerants (Sahinidis et al., 2003),
perfumes (Mata et al., 2005), slow release deodorizer (Street et al., 2008), medical diag-
nostic products (Heflin et al., 2009), disinfectant (Omidbakhsh et al., 2012), biofuel
(Dahmen and Marquardt, 2016), solvents for reaction synthesis (Struebing et al. 2017)
and so on. A classification of the chemical product types is given by Seider et al.
(2017). A review of these publications shows that one or more of the five elements of
the design framework is used for design of these products. Model-based design meth-
ods often play a prominent role. For example, Bernardo and Saraiva (2015) treated a
product design problem as the inversion of three design functions: quality, property, and
process functions. Xiao and Huang (2009) developed a model for paint design. Often,
two or more of the elements are used synergistically. For example, Wibowo and Ng
(2001), Cheng et al. (2009), Smith and Ierapepritou (2010), Conte et al. (2011) and
Mitrofanov et al. (2012) used a combination of rule-based methods, model-based meth-
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ods, and data-bases in the design of different types of product. Experimental tools are
needed in product design either for obtaining data such as material properties that are
not available in the database or for fabricating a product prototype for testing its per-
formance (Conte et al., 2012). Similarly, computer-aided tools for product design are
highly desirable (Kalakul et al., 2017).

Most of the publications in chemical product design focus on Ingredients, Process de-
sign, Material properties, and Product quality of the Grand Product Design Model (Fig-
ure 1) and relatively little has been done on product pricing, corporate social responsi-
bility and government policies, sustainability, and so on. This is natural because materi-
als and processing are Chemical Engineers’ core competencies. However, the other
problems need to be considered in order to answer the seemingly simple question of
“what to make?” Making a product that has the best quality on the market does not
guarantee commercial success. The product can be priced beyond the consumers’ budg-
et even if it has all the product attributes to satisfy the consumer preferences. In product
design, nonmanufacturing costs such as legal and advertising costs can be substantial.
This is in stark contrast to process design where the raw material cost easily constitutes
over half of the product cost. Government policy has a huge impact on what to make.
Without government subsidy, electric vehicles (and all the chemical products associated
with them) and solar panels would take much longer to open up the market to drive
down the product cost. A product proposed by the marketing and engineering teams
may not be approved by management because of social responsibilities.

In this article, the aforementioned problems are reviewed in more detail focusing on the
design and analysis of the major types of chemical products — molecular, formulated,
functional, and devices. Special emphasis is placed on the PSE tools and methods for
their design. In view of the fact that product design is being incorporated into the chem-
ical engineering curriculum around the world, the recent developments on the educa-
tional front are also discussed. The article ends with a discussion of the challenges,
gaps, and opportunities in product design. Unless otherwise mentioned, “product de-
sign” in this article refers to “chemical product design”

2. Design, analysis and development

Figure 2 shows the relationships among the four major types of chemical products in
product development. Single species products can be further classified as small mole-
cules (refrigerants, solvents) or large molecules (active ingredients, surfactants). Usual-
ly, these chemical products have process applications (separation, reaction) as well as
product applications (part of formulated or functional products). The single species
small molecular products are usually produced in bulk quantities where the process
costs are a key to their success, in addition to their product attributes. Design methods
for these products are well established (Gani, 2004, Mitrofanov et al. 2012, Samudra
and Sahinidis, 2013). Because of the size of the molecules and the product attributes
(not all can be modelled), design methods for large or complex molecular products are
not well established, although there is increased interest to develop them. For example,
Karunanithi and Mehrkesh (2013) reported a method for ionic liquid design, Zhang et
al. (2015) for surfactant design, and Gerbaud et al. (2017) for bio-based molecules.
Formulated products are obtained by mixing selected components together to get the
desired product attributes (Zhang et al., 2017). These include creams and pastes, paints,
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shampoos, insect repellents, inks, and so on. They often contain different ingredients to
fulfill the desired product attributes. For example, a sunscreen lotion can easily contain
around 20 ingredients. In the design of such a lotion, the selection of more complex
ingredients including UV absorbing agent, emollient, emulsifier, stabilizer, neutralizer,
humectant, film former, thickener, and preservative depends a great deal on experience
in the form of rule-based methods and databases. The rules and heuristics for ingredient
selection are often based on an understanding of the basic science. In contrast, the sol-
vents used for formulated products can be reliably designed through computational tools
because of the extensive database and available models for thermodynamic properties.
Suitability of an ingredient is decided not only by its physiochemical properties but also
by its supply and cost. Prototyping is performed to check whether the formulation meets
the product requirements. Iteration is often required to come up with the final product.
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Figure 2: Relationships among the four major types of chemical products.
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Functional products are those chemical products made up of materials that perform a
desired function. Generally, these products do not have feed and outlet streams, and do
not involve mechanical and electrical parts. They serve as barriers (food packaging),
delivery vehicles (controlled release granule, transdermal patch), absorbers (silica gel),
etc. The performance of functional products depends on the material properties of the
ingredients, and the structure, form, shape or configuration of the product. Figure 3
shows a reservoir type transdermal patch with five major parts (Cheng et al., 2010). A
drug reservoir that holds the pharmaceutical active ingredient (API) in a carrier. A rate-
controlling membrane that controls the rate at which the API is released from the reser-
voir. A liner that prevents unwanted release. A backing layer that prevents unwanted
release and protects the API from the environment. The adhesive layer simply bonds the
liner to the rate-controlling membrane. In designing a functional product, each part of
the functional product has to play its role to deliver the overall product performance,
which can be modelled using chemical engineering principles. Clearly, diffusion, per-
meation, and adhesion are the key mechanisms in this functional product, and experi-
mental tools such as a Franz diffusion cell system are needed in product design.

Chemical devices are those chemical products that perform a particular purpose, espe-
cially those with mechanical and electrical parts. Chemical engineers can view a chemi-
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cal device as a single miniaturized chemical processing equipment item, a group of
interconnected equipment items, or even a chemical plant. Often, a feed stream to a
chemical device is transformed into an outlet stream with characteristics specified in the
product attributes by performing reactions, fluid flow, heating/cooling, separations,
addition/formation, and/or removal/destruction. The first four items are conventional
chemical engineering principles which can be used to model the chemical device. For
example, an air purifier with UV-based catalytic decomposition of VOCs can be mod-
elled based on Langmuir-Hinshelwood kinetics (Seider et al., 2017). As will be ex-
plained in more detail in the section on Education below, the last two items include
unconventional processing techniques such as solution coating, granulation, etching,
breakage, and so on. As the boundary of the chemical engineering discipline expands
and overlaps with bioengineering, biomedical engineering, material science, data analyt-
ics, and so on, it is expected that the integration of systems engineering principles with
the newly developed domain knowledge can spur the development of innovative chemi-
cal devices, and expand the capability and reach of our profession.

Backing
Drug layer Rate-controlling
reservoir membrane

Adhesive layer Liner

Figure 3: A reservoir type transdermal patch.

3. Computer Aided Techniques & Tools

Like process synthesis and design, chemical product synthesis and design can also be
formulated mathematically and solved with many of the available numerical tools. Since
the early 1980s, when the first CAMD (computer aided molecular design) technique
related to solvent design was proposed, many developments in various directions have
been reported. In all cases, the synthesis-design problem is formulated as an optimiza-
tion (MILP or MINLP) problem, which is then solved in a variety of ways, rule-based
methods (Gani 2004), graphical-visual methods (Solvason et al. 2009), decomposition-
based methods (Karunanithi et al., 2005) as well as direct solution of the optimization
problem (Samudra and Sahinidis, 2013, Zhang et al., 2015; Jonuzaj et al., 2016) with an
appropriate numerical solver. The objective of these computer-aided techniques is not to
determine the final design but to quickly identify a number of promising candidates,
which can be verified by focused experimental means. Therefore, an integration of the
computer-aided techniques with experiments is recommended. The text here is divided
into two main sub-sections: computer aided techniques and computer-aided tools.

3.1 Computer-aided Techniques

3.1.1 CAMD Techniques: In addition to the earlier generate and test paradigm, comput-
er-aided options have been reported for refrigerants (Sahinidis et al. 2003), ionic liquid
design (Karunanithi and Mehrkesh, 2013), enzyme design (Frusicheva et al., 2014),
surfactant design (Zhang et al., 2015), for solvents for reaction synthesis (Zhou et al.,
2017), lipids or bio-based molecular design (Gerbaud et al. 2017), chemical substitution
(Jhamb et al., 2018) and many more, using a variety of methods mentioned above. In all
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these problems, single species molecules are synthesized, screened and/or designed by
combining building blocks (to represent the molecule) and property prediction tools to
estimate the desired (target) molecular properties. The CAMD techniques are well de-
veloped because of the availability of large amounts of data and therefore, property
models. Integration with process issues is an important factor for these single species
products (especially small molecules) and integrated product-process design techniques
have also been reported (Hostrup et al., 1999; Li et al., 2007; Lampe et al., 2014).

3.1.2 CAM®D techniques: Unlike the CAMD technique, in this class of problems, a
basic set of molecules and their properties are known but which molecules will be pre-
sent in a single-phase liquid mixture together with their composition in the mixture are
unknown. Like CAMD problems, these mixture or blend design problems have also
been formulated as MILP or MINLP problems and solved by a variety of ways. Tailor-
made fuel blends (Yunus et al., 2014; Ordruei and Elkamel, 2015; Dahman and Mar-
quardt, 2017; Choudhury et al., 2017) and solvent mixtures for gas separation (Jonuzaj
et al. 2016) are examples from this area. Although the design steps (work-flow) are the
same for different blended products, the molecules, their properties and product attrib-
utes are different, thereby increasing the dependence on data and models for a wider
application range. Also, a computer-aided framework that is able to provide users with
the necessary data and models needed for each step of the design process, becomes a
very useful option to have.

3.1.3 Formulation design techniques: Unlike the CAM"D techniques, where molecules
from the same set are identified for the blend, here the set of molecules to define the
formulation are divided into separate classes: ingredients (performs the main function of
the formulated product); additives of different types (improves the quality or perfor-
mance of the formulated product). Note, however, the formulated product must be a
single liquid phase. Although, the potential application range of this kind of technique is
very large, their success depends to a large extent on the available data and property
models. Conte et al. (2011) employed a decomposition-based technique using data,
property models and product performance calculation models to design a variety of
formulated products. Here also, the design steps are similar for different formulated
products, but the molecules, their properties and product attributes are different, thereby
increasing the dependence on data and models for a wider application range. Again,
availability of a computer-aided framework becomes a very useful option to have.

3.1.4 Functional products and devices: Here, most of the design techniques are based
on heuristics, database, experiments and very limited modelling. For example, Mattei et
al. (2015) proposed a knowledge-based system for designing emulsified products. Mo-
rales-Rodriguez and Gani (2007) provided models for evaluation of the performance of
functional products and devices. Most of developed computer-aided techniques, howev-
er, are product specific. Consequently, generic computer-aided frameworks are not yet
developed for these types of products.

3.2 Computer Aided Product Design Tool

Although a number of systematic computer-aided techniques for design of various types
of products have been reported, only one so-called chemical product simulator, Pro-
CAPD, with similar functions as a process simulator has been reported (Kalakul et al.,
2017) and available for general use (see Figure 4). The ProCAPD software tool contains
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a large collection of data organized in terms of databases (organic chemicals, solvents,
active ingredients, lipids, ionic liquids, and many more); property models organized in
terms of pure component properties, functional properties, bulk mixture properties and
phase-equilibrium related properties (a total of 56 properties and their corresponding
models are currently available); product performance calculation routines (phase stabil-
ity, solvent evaporation rate, controlled release, etc.); product design templates (sol-
vents, fuel-blends, formulations, functional products and devices); product analysis
(model based verification of product attributes); and, utility tools (design template gen-
eration, property model creation, etc.). Many of the computer-aided techniques men-
tioned above (section 3.1) are available in ProCAPD. It is suitable for teaching (See
examples in Seider et al., 2017), getting quick estimates for promising new products,
evaluating product attributes and many more.

Organic chemicals, lipids, ionic liquids, aroma, amino acids, solvents, ...

Databases

Single species design

S TR gty e ot
"ProCAPD "o

Computer Aided Tool for ™
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Figure 4: Structure of ProCAPD (design options, models-calculation routines, tools)

4. Education

Generations of chemical engineering students have been taught to design a process to
produce a specified product, usually a bulk chemical. There has not been any discussion
as to why the particular product is selected and who decided to make it? This is a seri-
ous omission for two reasons. From a wider perspective, it takes away the opportunity
to challenge the students to innovate to come up with chemical products to meet human
needs and to expand the company’s product line. Another reason is that an optimal
process for an inferior product does not really provide the best return on investment. In
other words, the optimal product should be the best product-process combination. In
chemical engineering education, it is fine to initially concentrate on the production of
single species small molecules in bulk quantities where the process issues play a key
role. Then, product design is introduced for single species large molecules or multi-
species formulated and functional products, where the molecular structure and the in-
gredient identity and composition play also a major role. These concepts are included in
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product design courses taught at the Hong Kong University of Science and Technology.
Table 1 shows the topics covered in a course for chemical engineering seniors. Most of
the topics are included in a textbook (Seider et al., 2017). There are still a number of

challenges that require a lot more work. Two gaps are highlighted below.

Table 1: Contents of a chemical product design course

Topic

Sub-topics

Introduction

The Diversity of Chemical Products; Companies Engaging in
Production of Chemical Products

Product Design
and Development

Multidisciplinary Hierarchical Product Design (Elements of
the Product Design Framework for Task Execution); Project
management (Objective-time Chart, RAT?I0); Market study
(Consumer preference, Conjoint analysis, QFD, House of
Quality, Business model canvas); Research & development
(Innovation map, Patent search, Technology platform)

Design of Devices,
Functional Prod-
ucts, and Formu-
lated Products

The Use of Models in Designing Devices and Functional
Products; Design of Formulated Products

Design of Process-
es for Manufactur-

Unconventional Processes

ing B2C Products

Business Decision- | Cash Flow Diagram; Financial Analysis for Product Develop-
Making in Product | ment; Make-or-buy Analysis

Development

Microeconomics of

Supply and Demand; Consumer Behavior; Individual and

Product Design Market Demand; Pricing

Molecular and Framework for Computer-Aided Molecular-Mixture Design
Mixture Design Case Studies;, ProCAPD (chemical product design software)
Optimization in Optimization Basics; Design Problem Formulation & Solution
Product Design with OptCAMD (with GAMS)

The Grand Prod- Government and Social Impact; Supply Chain Analysis; Sus-
uct Design Model tainability Analysis

Case Studies

Refrigerants; solvents; surfactants, tailor-made fuel-blends,
mosquito repellent,; creams and pastes, inkjet inks; die attach
adhesive; solar control interlayer, desiccant dehumidifier,
biosensor; and so on (presented throughout the course dura-
tion)

Presentations

Presentation by students of their design projects

Note: The topics marked in italics are parts of a graduate level course on computer-
aided chemical product design given by the co-authors at different institutions.

4.1 Unconventional processing techniques

The way unit operations such as distillation, crystallization, absorption, adsorption,
filtration, and so on is taught, with support from transport phenomena, thermodynamics
and kinetics, has not fundamentally changed for decades. While this is sufficient for the
production of commodity chemicals in the form of single species molecular products, it
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is grossly inadequate for the manufacture of formulated products, functional products,
and devices. As shown in Figure 5, unconventional processing techniques has two ma-
jor categories. Addition/formation includes solution coating, physical vapor deposition,
granulation, tableting, lamination, sintering, and so on while removal/destruction in-
cludes etching, homogenization, nanomization, breakage, and so on. These topics re-
quire a significant amount of effort to organize the materials for teaching.

Addition / Removal /
Formation Destruction
| T
[ I \ [ \
Coating ||Aggregation|| Printing Etching Breakage
= Solution + Lamination * Inkjet printing * Wet etching| | [* Homogenization
coating * Sintering * Screen printing | | |* Dry etching | | |* Crushing
« PVD + Granulation * 3D printing = * Nanomization
* Spraying + Tabletting : * * Bubbling

Figure 5: Unconventional processing techniques

4.2 Interface between the underlying science and product design

A thorough understanding of why the product works is necessary to properly design a
chemical product. The constituent atoms, configuration, electronic structure, and intra-
molecular bonds of a molecular product determine its physicochemical properties. The
physicochemical properties of the constituents, and microstructure/macrostructure of a
formulated product, functional product, and device determine its performance and prod-
uct attributes. Often, the underlying physics and chemistry is not covered in a typical
chemical engineering curriculum. For example, to properly design an inkjet ink, phe-
nomena including suspension dispersion, adhesion, wetting, droplet formation, and so
on need to be modelled (Tam et al., 2016). Similarly, understanding of the interaction
between biomolecules and fluorescent agents is essential in the design of an L-lactate
biosensor (Zhang et al., 2017). Because of the diversity of these chemical products, the
instructor may want to emphasize those scientific platforms that are suitable for the
students. Case studies can be included in the course to reinforce all the concepts learned
(Ng and Seider, 2018).

5. Perspective and Conclusions

Much has been achieved since the launching of product design research and teaching in
the chemical engineering community at the turn of the new millennium (Cussler, 1999;
Stephanopoulos, 2003; Cussler and Wei, 2003; Hill, 2004; Gani, 2004; Zhang et al.,
2016). Despite the ups and downs in its development, it is firmly believed that product
design is going to play a much more important role in our profession for a singular
reason: the information age has led to changing business models in many market sec-
tors. The chemical processing industry is no exception. Fluctuating revenues and stag-
nant profit margins in commodity chemical companies are quite common these days.
The chemical sectors with high growth potential include healthcare products, high per-
formance materials, consumer products, etc. All of these sectors require the capability to
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come up with the product concept and the process to make the product. It is necessary to
collaborate and work with other disciplines and faculty from bioengineering, biomedical
engineering, materials, and chemistry, to name a few.

There are, however, many gaps to fill and challenges to meet. From a research and de-
velopment point of view, the methods and computational tools need to be generic, for
which sufficient knowledge is still not available. Development of many products is still
based on expert knowledge and/or iterative trial and error because the integration of the
underlying science and engineering is still not clear for these products. There is a large
amount of data available in different forms and at different sources — they need to be
collected, checked for consistency and then employed through smart search, retrieve
and data-manipulation tools. Efforts should be made to systematically identify gaps in
data so that experiments can be designed and planned to fill them, thereby leading to the
developments of generic and predictive property models. The integration of product-
process needs to be further developed together with issues related to supply chain, sus-
tainability and economics. The business model with appropriate costing and pricing
models also need to be developed.

Product design as described in this article is expected to bring together the people in the
new areas and the people in process systems engineering (PSE). This integration sug-
gests that PSE should take on a different meaning - Product/Process Systems Engineer-
ing. The methods and tools from PSE, when properly refined and applied, can signifi-
cantly reduce the design and development times for chemical products.
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Abstract

Optimal operation of large-scale heating, ventilation, and air conditioning (HVAC)
systems requires many discrete-valued decisions. For example, in large heating and
cooling plants, operators must choose which combination of equipment to activate to
meet a given load. Such discrete decisions are typically made by operators using
heuristics, which can lead to suboptimal performance. In this paper, we discuss how
relevant HVAC decision problems can be transcribed into mixed-integer linear
programming (MILP) formulations. We first present the general modeling framework
we adopt, which is very similar to the resource task network framework adopted in
chemical production scheduling. Second, we discuss a series of reformulations,
including linearizations of complex unit models. Third, we present solution methods,
including decomposition approaches and the employment of surrogate models to
approximate the performance of the system over a long planning horizon. Finally, we
demonstrate how the resulting optimization problems can be solved online in closed
loop to improve system performance.

Keywords: Scheduling, economic model predictive control, reformulations, solution
methods, energy building optimization

1. Introduction

In large buildings or campuses, the heating, ventilation, and air conditioning (HVAC)
systems are significant and inherently time-varying consumers of electricity (Powell
etal., 2013). In such systems, heating and cooling is performed most efficiently by
producing hot or chilled water in high-capacity equipment at a central facility (referred
to as the “waterside”) and then pumping that water to the buildings where it is used to
raise or lower the air temperature of occupied spaces (called the “airside”). Due to the
significant use of electricity by waterside and airside equipment, utility companies often
impose time-varying prices and demand charges (assessed at regular intervals based on
the maximum instantaneous rate of electricity purchase within the previous period).
These pricing structures can be leveraged by employing thermal energy storage (TES)
to temporally decouple utility purchase from heating/cooling demand (Touretzky and
Baldea, 2016), leading to lower cost. Broadly, TES can be categorized as “active,”
storing energy in fluids in insulated storage tanks, or “passive,” storing energy in the
thermal mass of buildings (Henze, 2005). Thus, to achieve the lowest possible cost, the
tradeoff between active and passive TES must be optimized, all while choosing the
most efficient combination of central plant equipment wo meet a given load.

To address this problem, various strategies have been proposed that typically focus
more heavily on either the airside or the waterside. For airside passive storage, model
predictive control strategies have been developed (Oldewurtel et al., 2012; Ma et al.,
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2015) to optimize the future temperature trajectory of the buildings using a dynamic
model for temperature evolution; passive storage is then utilized by pre-heating or pre-
cooling the building. Similar approaches also exist for active TES using models of
storage tank dynamics (Ma et al., 2012; Touretzky and Baldea, 2016). In general, these
approaches do not consider waterside equipment selection, which is commonly
addressed as a separate static optimization problem (Henze et al., 2008; Powell et al.,
2013). However, to achieve the greatest cost reduction while accounting for varying
ambient or economic conditions, it is necessary to consider all of these layers together.
Thus, the goal of this work is to propose a unified optimization problem that can be
solved in real time to determine airside temperature trajectories, TES utilization, and
equipment selection for large-scale HVAC systems.

2. Optimization Model

In the following subsections, we present a mixed-integer linear programming (MILP)
formulation to optimally schedule equipment use and plan temperature trajectory in
large-scale HVAC systems. We use lower-case Roman letters to denote subscripts,
upper-case Roman letters for variables, Greek letters for fixed parameters, and bold
upper-case Roman letters for sets. Additional details can be found in Risbeck et al.,
(2017).

2.1. Problem Overview

Given a finite discrete-time horizon indexed by times t € T, the optimization problem
seeks to minimize operating costs of maintaining comfortable temperature in airside
zones i € I by running waterside equipment j € J to consume and produce resources
k € K. This abstraction to units and resources is similar in spirit to the resource-task
network commonly used for chemical production scheduling (Pantelides, 1994), and it
avoids the need for developing separate equipment-specific constraints. Waterside
equipment is modeled by continuous variables Qj,; which give the resource production
(> 0) and consumption (< 0) rates of the equipment throughout the optimization
horizon. Specific resources are consumed in the airside zones via variables Gy, to either
increase (hot water) or decrease (chilled water) zone temperatures T;;. Other resources
are purchased from the utility market at time-varying prices py, via variables Py, and
then consumed in central plant equipment such as chillers (electricity) and boilers (gas)
to produce airside resources. The remaining resources are produced by some equipment
and consumed by other equipment within the waterside central plant (e.g., cooling
towers produce cooling water, which is then consumed by chillers).

To accurately estimate system resource requirements, models of the airside system and
waterside equipment must be included in the optimization problem. For the airside
system, a discrete-time linear model predicts evolution of zone temperatures T;; as a
linear combination of the current temperature and the current resource consumption
Gk, With a time-varying term to account for occupancy and ambient conditions. For
waterside equipment, it is assumed that transient dynamics can be neglected, and only
static production/consumption relationships need be modeled. Although such
relationships are typically nonlinear, they are approximated as piecewise-linear so that
the resulting formulation can remain an MILP. The decision variables Qj; are then
required to lie on the piecewise-linear operating surface. To allow all equipment to be
completely shut off, each model includes the (possibly isolated) operating point Q jy; =
0.
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Based on this problem description, the optimization model can be formulated as an
MILP. Waterside, airside, and linking constraints are defined in the following three
subsections.

2.2. Waterside Constraints

To avoid symmetry for multiple pieces of equipment with the same model, identical
pieces of equipment are treated as indistinguishable by aggregating them into a single
index j. The on/off state and operating point for each individual unit can be chosen
independently, with the model making no distinction between permutations of states for
the identical equipment. For unique types of equipment, the piecewise-linear operating
surface for Qy; is modeled using the following three equations:

ijt = z Z (jknthmnt, je)LkeKteT, €y
mEMj Tl.Eij
Z Vime = Uy, jELLET, (2)
mEM]-
Z Zjmnt = Vime, J E,m EM,,t € T. 3)
TlEij

Integer variables Uj; € {0,1, ..., 4;} chooses how many of type j units are active, while
Vime € {0, ..., 1;} and Zjupne € [0, p4;] are auxiliary variables used to model the
piecewise linear approximate equipment models. Sets M; and Nj,, index the linear
subdomains and nodes for the operating surface, while the parameters (i, define the
(possibly time-varying) values of the equipment model at the nodes.

To avoid rapid switching of waterside equipment, dwell times are enforced via

U — Uje-1y = Ui = Ui, JELLET, 4
6}—1
Uje 2 Z Ufte-en, JELLET ®
tr=0
87-1
M= Upe 2 Z Uie-en, JELLET, ©
tr=0

in which the integer variables U;} and Uj; indicate when units are switched on and off,
which then restricts additional switching within the next §* and §~ time units.

Storage tanks in the central plant are modeled using variables Sy, € [0,2}] and the
linear relation

Skt = O-kSk(t—l) — th, k € K,t € T, (7)

in which Yy, € [0, Y;] gives the amount charged into (< 0) or discharged from (> 0) the
storage tank in the given period. Storage inefficiency (e.g., due to imperfect insulation)
is modeled by the decay rate oy. Initial conditions Sy, are fixed parameters. For
resources that cannot be stored, the bounds Y, and X, are set to zero.

The waterside portion of the objective function consists of time-of-use charges for
utilities (amounts Py; € [0, IT;;] with prices py;) in addition to peak demand charges
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(amounts Py"®* and costs pg?*). There is also a penalty on unmet auxiliary demand (via

the slack variable B,;; see Section 2.4) These totals are determined via

FWS = z (Plrcnaxplinax + Z(pktpkt + ﬁktBkt)>: )
kex teT
with peak demand P"®* is calculated by

P + Y < PP, keKteT. 9
in which 1, is a forecast of exogenous resource use (utility purchase outside of the
HVAC system that is included in the system-wide demand charge calculation).

2.3. Airside Constraints

Airside zone temperature evolution is modeled using the discrete-time linear model

Tit = Z (aiilTil(t—l) + Z Wik Gi’kt) + git' i€e K, t e T, (10)

irel keK

in which a;;, and w;;,, give time-invariant system dynamics, and 6;; represents the
time-varying disturbance (including the effects of occupancy, as well as ambient
temperature and radiation). Resource consumption G € [0, [;;] is permitted for only
a subset of the resources (e.g., chilled and hot water), which is enforced by setting the
corresponding bounds [}, to zero. Note that the initial zone temperatures T;, are fixed
parameters in the optimization problem.

Comfort bounds on zone temperatures are enforced as soft constraints via

Ty <O +Ti, i€eLteT, (11)
T = 0M T, i€LteT, (12)
in which @13 and @ give the nominal temperature bounds, which are relaxed by

nonnegative slacks T;; and Tj;. The objective function for the airside consists solely of
these penalty terms:

FAS = Z Z(XJTJ + XieTie)- (13)

teT iel
2.4. Coupling Constraints

The coupling of the airside and waterside systems is enforced via the demand balance

Zijt—I—th—l—Pkt—l—BktZ¢kt+ZGikt’kEK'tET‘ (14)
i€ iel

in which the sum of airside and auxiliary demand (G;;; and ¢y, respectively) must be
met by waterside supply, which is the net sum direct production @, storage

charge/discharge Yy, and purchase Py € [0, II;]. The slack variable By, € [0, ¢y;] is
added to soften the auxiliary demand constraint, while the primary demand Gy, is
relaxed via the temperature slacks T;f and T;; From Egs. (11) and (12).

The overall objective function is then
min FWS + FAS (15)

to minimize the sum of the waterside and airside terms.
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3. Reformulations and Decompositions

The chief difficulty of the waterside formulation is the presence of the discrete variables
to model equipment on/off states and enforce the piecewise-linear operating surface. In
contrast, there are no discrete variables in the airside formulation, but optimization is
nevertheless challenging due to the potentially large number of temperature zones.
Thus, the problem can take a very long time to even find a feasible solution when
solved as a single monolithic instance. To ease this burden, we present a simplified
surrogate model and a decomposition strategy that can be employed to find near-optimal
solutions to the combined problem in real time.

3.1 Surrogate Model

When there is a large amount of equipment in the central plant, solution progress can be
slow due to the large number of integer variables. While the addition of more identical
units is partially mitigated by the symmetry-free formulation, the inclusion of auxiliary
equipment for both heating and cooling loops leads to a large number of discrete
decisions that must be made at each timestep. To ease this burden, we propose a
simplified surrogate model that seeks to aggregate multiple pieces of equipment into a
single continuous curve.

To perform this computation, we start by defining subsets K* of resources exported
from the central plant and K~ for resources purchased by the central plant:

Kt :={k€eK: ¢y >0o0rI;, >0forsomet € Tori €},

K™ :={k e K: I} > 0}.

For each major type of equipment (e.g., chillers, heat-recovery chillers, and boilers), we
identify the supporting auxiliary equipment to define a small number of “operating
groups.” For example, the chiller operating group consists of conventional chillers,
cooling towers, and chilled water pumps. For each operating group, we choose a
representative resource k* € K* and then pick a series of production rates ¢+ that span

the minimum and maximum total capacities of the current group. For each value of ¢+,
we solve a one-period equipment selection period of the form

min Zkak
kek

s.t. Zij+Pk2¢kikEK
Jel

Qjk = Z Z {iknZimn, ] €) kK €K

mEM]' TlEij

D Vim=Usj€]

mEMj

nenN im
which assumes that time-invariant representative values can be chosen for resource
costs p, and equipment models (j,. Note that each problem includes only the
equipment in the current operating group. The goal of these subproblems is to determine

the required purchase rate for resources in K™ to produce various values of resources in
K*.
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Once all the subproblems have been solved, the Q) variables are summed to define
points on an aggregate operating curve for the current operating group. A straight line is
then fit through these points to give an approximate linear operating surface that can be
used instead of the individual piecewise-linear operating surfaces. In particular, this
simplification means that the set J consists of the equipment operating groups, rather
than individual pieces of equipment, and the set of resources K need only include Kt U
K=, which eliminates auxiliary resources like cooling water. Furthermore, the
equipment model constraints in Egs. (1), (2), and (3) to be replaced by the much simpler

Qire =< ir 2t
with Zj, € [0,1] a single continuous variable, and ij the full-capacity resource

production/consumption rates from the linear aggregate curves. With the removal of the
discrete variables Uy, the switching constraints in Egs. (4), (5), and (6) can be omitted
as well, leading to a fully continuous model with significantly fewer variables. While
the aggregate operating curves no longer precisely calculate resource consumption and
possibly ignore minimum equipment capacities and small total loads, accuracy is
typically good enough to produce near-optimal utilization of active and passive storage.
This surrogate model can then be employed as described in the next two sections.

3.2. Hybrid Model

When very large well-insulated storage tanks are present, it may be necessary to
optimize over a long horizon (i.e., in excess of a week) to make optimal use of the
storage tank. This longer horizon leads to many more discrete variables and constraints.
However, forecasts of utility prices and auxiliary demand may not be extremely
accurate in the later periods of the horizon. Furthermore, because optimization is
performed in closed-loop, decisions made at the end of the horizon are never actually
implemented. Thus, it is not necessary to fully optimize over the full decision space
throughout the entire prediction horizon. This realization suggests the use of a hybrid
approach, whereby the full model (with discrete variables and individual equipment
models) is used over a modest horizon, with the surrogate model applied over a longer
horizon to consider long-term behavior. By linking the appropriate variables (storage
capacity Sy;, peak demand P;*®*, and zone temperatures T;; if present) between the two
models, the optimal near-term decisions can be determined while approximately
accounting for potential storage utilization over a much longer period.

The hybrid optimization strategy can be implemented in one of two ways. In the “two-
stage” approach, the surrogate model is first solved over a longer horizon. The values of
the linking variables midway through the prediction horizon are then used as terminal
constraints for a subsequent optimization of the full model over a shorter horizon. The
advantage of the two-stage approach is that the full optimization is smaller in size. As
an alternative, the “one-stage” approach solves a single optimization problem in which
the first portion of the horizon uses the full model, while the remaining periods use the
surrogate model. The advantage here is that the greater accuracy of the full model
provides a more representative starting point for the surrogate model. These two
approaches are diagrammed in Figure 1.

3.3. Hierarchical Decomposition

To improve solution times for the combined problem, the large model size from the
airside can be separated from the discrete variables on the waterside. One method of
separation is a hierarchical decomposition, whereby the surrogate model (as defined in
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Figure 1: Diagram of two-stage (a) and one-stage (b) hybrid optimization strategies. Axes
show different optimization problems, and shaded regions show prediction horizon and model

type.

Section 3.1) is first optimized to determine airside demand, which is then sent down as a
fixed parameter to a fully detailed waterside-only optimization. More precisely, after
solving the surrogate model (which includes the full airside dynamic models but only
the approximate operating group models for the waterside), total demand is calculated
as

Bret=bu+ ) Gue, kEKLET.
iel

The total demand ¢ «¢ 18 then used in place of ¢y, in Eq. (14) in the full model, but with
the airside variables Tj;, Gy, etc. and constraints (10) through (13) now removed from
the problem. This decomposition allows passive storage to be determined in the upper-
level optimization (which can be solved as a large linear program), while equipment
allocation and active storage are optimized in the lower level (a modestly sized MILP).
A feasible overall solution is then constructed by combining the airside variables from
the upper problem with the solution to the lower problem. To obtain a lower bound, the
demand constraint (14) can be dualized (in the Lagrangian sense), which allows dual
airside and waterside subproblems to be solved. A guess for the multipliers can be taken
from the top-level surrogate model.

4. Example Simulations

4.1. Hybrid Model

To start, we simulate the closed-loop performance of the hybrid model on a waterside-
only system that must meet forecasted cooling demand. Using 22 weeks of hourly
chilled water demand and electricity prices provided by Johnson Controls, Inc., closed-
loop simulations were performed using various prediction horizons for the full and
surrogate models. Each simulation covers 1 week of data, re-optimizing every hour.
Because this system is small enough, the optimal week-long schedule can also be
determined by solving the full model in a single week-long optimization, which gives a
baseline for closed-loop cost. Figure 2 shows a sample optimal trajectory for the system,
and Table 1 shows cost performance for the simulations.
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Figure 2: Sample optimal trajectory for the cooling-only system. Central plant equipment is
shown in the Gantt chart with light bars showing equipment on/off and solid lines showing
loading between minimum and maximum capacity.

From the results in Table 1, we see that use of the one-stage hybrid optimization
strategy leads to slightly better performance than simply solving the corresponding
standard model, while the two-stage strategy is only helpful for short horizons. In terms
of closed-loop cost, the one-stage optimization with a surrogate horizon of 48 performs
almost as well as the full model by itself with the same horizon. Thus, including the
surrogate model can significantly reduce computational requirements (by reducing the
number of discrete variables) without sacrificing closed-loop performance.

Of note in Table 1, the biggest difference between the closed-loop solutions and the
optimal solutions is in tradeoff between demand and use charges. Because the closed-
loop problems are looking over shorter horizons, they slightly underestimate the effects
of having a large peak electricity usage and instead more aggressively exploit low use
charges. This change in behavior leads to higher demand charges and slightly lower use
charges than in the optimal solution. However, since demand charges are typically
assessed on a month-long basis, even these “optimal” solutions may not represent the
true month-long minimum. Thus, additional strategies may be needed to address the
timescale differences between hourly use charges and monthly demand charges, which
could lead to even better performance for the hybrid optimization strategies.

4.2 Decomposition Strategy

To test the decomposition strategy on a realistically sized system, a very large instance
is created. The central plant consists of 5 chillers, 3 heat-recovery chillers (HRCs), 2
boilers, 10 pumps, and 5 cooling towers. There is auxiliary demand ¢, for both hot and
chilled water. The airside system consists of 20 separate buildings, each with 50
interacting temperature zones. Half of the zones represent occupied air zones in which
comfortable temperature must be maintained using chilled water, while the other half of
the zones are slowly evolving mass zones with no temperature constraints. For this
system with 7 day horizon (1 h timestep), the MILP solver Gurobi 7.0 is unable to find a
feasible solution to the full problem within 2 h of computation time. Instead, the
hierarchical decomposition strategy is applied to the problem. Sizes for the various
subproblems are shown in Table 2.
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Table 1: Total cost breakdown across 22 simulations (each 1 week long) for the cooling-only
system. Demand charges account for most of the performance difference. Costs (%) are
relative to optimal 1-week solutions.

Full Surrogate Use Demand  Total

Strategy Horizon Horizon Charges Charges Charges
Standard 12 - +0.86  +1242  +1.95
One-Stage 12 48 +0.18 +6.60 +0.79
Two-Stage 12 48 —-0.16 +1449 +1.23
Standard 24 - —-0.11  +10.65 +091
One-Stage 24 120 +0.02 +6.97 +0.67
Two-Stage 24 120 —-0.23  +12.43  +0.97
Standard 48 - —0.22 +8.67 +0.62
One-Stage 48 120 +0.16 +2.46 +0.37
Two-Stage 48 120 —-0.39  +11.40  +0.72

Table 2: Instance sizes for subproblems in hierarchical decomposition.

Variables Integers Constraints Nonzeros

Subproblem (x10°) (x10%) (x10%) (x10°)
Centralized 1.19 0 341.21 3.29
Airside Dual 0.84 0 336.34 2.60
Waterside Dual 1.20 6.38 18.15 1.25
Waterside Primal 0.03 6.38 18.15 0.07

After solving the upper-level subproblem (1.5 min) and the lower-level waterside
feasibility problem (10 min, 1.6% optimality gap), a feasible solution was obtained as
shown in Figure 3. Using the dual multipliers from the upper-level subproblem the dual
airside (0.4 min) and waterside (10 min, 1.2% gap) subproblems, a lower bound was
obtained, resulting in a duality gap of 4.3%. Thus, while the full combined problem was
completely intractable for this large system, both decomposition strategies produced a
satisfactory solution quickly enough for real-time application.

5. Conclusions

In this work, we have presented an MILP model for economic optimization of large-
scale HVAC systems. Using a symmetry-free abstract formulation, the model can be
applied to a wide variety of systems. With additional reformulations and
decompositions, near-optimal solutions can be obtained for large-scale problems within
15 minutes, which enables online application. By employing these optimization
methods, HVAC systems can react optimally in real time to changing ambient or
economic conditions, leading to improved economic performance over heuristic or other
less-frequent scheduling strategies.
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Abstract

In this paper, we review frameworks for design, control, and operation of dynamic
processes and their applications. Recognition that design characteristics of a process limit
its achievable control performance dates back to at least the 1940s. Isolated studies
appeared in the literature since then, with a watershed in the 1980s, when quantitative
analysis of this phenomenon was advanced in a series of studies using the internal model
control (IMC) framework. Dynamic optimization was subsequently utilized as a platform
to analyze the impact of a plant design on its dynamic performance, and to perform
simultaneous plant and control system design. This paper presents a review of approaches
toward the analysis of the interaction between design and dynamic performance, and
offers some new perspectives on this topic. In particular, the trends of increased
globalization, market volatility, and variation in electricity prices have created dynamic
conditions that require responsive operation in order to remain competitive. In addition
to such processes where transient dynamics between steady states can be considered and
exploited, there are intrinsically dynamic processes which cannot be designed based on
steady state mass and energy balances. In intrinsically dynamic processes, the intra-cycle
and inter-cycle dynamics should be taken into account when optimizing the design,
control, and operation. We discuss adsorption processes as an example. Our study
includes a description and discussion of advances in these areas.

Keywords: integrated design and control, dynamic optimization, dynamic operability,
dynamic resilience, simulated moving bed, intentionally dynamic operation.

1. Introduction

Process plants do not operate in a static environment, and need to respond adequately to
disturbances in order to meet safety, operational, environmental and product quality
constraints. A plant’s achievable dynamic performance is strongly influenced by its
design — a phenomenon recognized at least as far back as the 1940s (Ziegler and Nichols,
1943). Isolated studies on this topic appeared over a span of several years (e.g. Anderson,
1966), but it was only in the 1980s and 1990s that this area began to resonate within the
process systems engineering community. The traditional plant and control system design
process is sequential, with the control system considered after completion of the plant
design phase. However, recognition that poor control performance could potentially be
avoided through alternative design choices led to advocacy for integrated plant and
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control system design approaches (Downs and Doss, 1991) and to research efforts toward
the development of systematic approaches for incorporation of dynamic considerations
into plant design calculations.

Two key paradigms in the analysis of the interaction between design and control are the
notion of a performance limit regardless of controller type, and dynamic performance
under the action of a particular controller type and tuning (which could be included in the
optimization decision space). Morari (1983) refers to the former as dynamic resilience,
and through use of the internal model control (IMC) framework, identified control
performance-limiting factors as time delays, right-half-plane transmission zeros, input
constraints and model uncertainty. Analyses of their impact on achievable performance
are given in Morari (1983) and Holt and Morari (1985a, 1985b). This framework has
given rise to open-loop controllability indicators, several of which are described in
Skogestad and Postlethwaite (1996). Many subsequent studies have followed an
optimization-based approach, some of which incorporate explicit characterizations of
dynamic resilience.

Integrated plant and control design paradigms are typically based on the assumption of
operation around a nominal steady-state point (which can be included as an optimization
decision in the design procedure). However, an increasingly global marketplace with
increased variation in product demand, supply, and utility prices has created an
increasingly dynamic operating environment for which Backx et al. (1998) advocate
“intentionally dynamic operation” in order to be responsive and remain competitive.
Applications of this type are relatively sparse in integrated design and control studies.
Many processes, on the other hand, are intrinsically dynamic in their operation, examples
of which are pressure swing adsorption (Jiang et al., 2004), semicontinuous distillation
(Adams and Pascall, 2012), periodically operated reactors (Zahn et al. 2009) and
simulated moving beds (Kawajiri and Biegler, 2006). These processes do not have a
steady state, and thus process dynamics must always be in taken into account.

In this paper, we present an overview of key approaches for inclusion of dynamic
considerations in plant design, and thereafter focus on applications to intentionally
dynamic and intrinsically dynamic operation. Section 2 presents a general dynamic
optimization formulation which underpins a large class of integrated design approaches,
and reviews some key approaches for design with dynamic performance considerations.
Optimization-based design of intentionally dynamic and intrinsically dynamic operation
is discussed in Sections 3 and 4, with conclusions and future research directions presented
in Section 5.

2. General dynamic optimization formulation

Design problems discussed in the sequel can be considered within the context of a general
dynamic optimization framework. An optimization-based formulation for design subject
to dynamic performance constraints may be stated as follows:
min 7 := Eper {$(x(tr), 2(t7) u(ty). . 6,t7)}
st: x(t) — fa(x(t),z(t),u(t),d,0,t) =0
fa(x(®),2(),u(t),d,6,t) =0
g(x(t),2z(t),u(t),d,6,t) <0
de[d',d"], u(t) € [u’,u"]
r={e|ec [6"6"]} (1)
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where X, z, u and d represent differential, algebraic, input and design variables
respectively, 0 is a vector of uncertain parameters, f4 and f, represent differential and
algebraic functions, respectively, of the DAE model in semi-explicit form, and E is the
expectation operator. An economic objective function is typically optimized, with
dynamic performance implicitly accounted for through the path constraints, g. The above
formulation accommodates open- or closed-loop dynamics through exclusion or inclusion
of controller equations. The design decisions can include equipment sizing and plant
configuration, a steady-state operating point, controller configuration and tuning, or
combinations thereof. The uncertain parameters may be conveniently handled through
discretization of the uncertainty set, resulting in a multiperiod dynamic optimization
problem. The formulations discussed next utilize various forms of Eq. (1), from a steady-
state version of the problem that includes constraints associated with dynamic
performance, to a comprehensive dynamic optimization formulation that includes
equipment design, control configuration selection and uncertainty.

Luyben and Floudas (1994) utilize open-loop indicators of controllability in the
evaluation of design alternatives in a multiobjective optimization framework. While the
open-loop controllability metrics are relatively easy to compute, a key drawback is their
restriction to individual performance-limiting characteristics. Swartz (1996, 2004)
proposes a computational framework for resiliency assessment based on Q- (or Youla)
parametrization of all linear stabilizing feedback controllers. It permits performance-
limiting design characteristics to be simultaneously accounted for, and also provides a
linear feedback controller capable of satisfying the performance criteria, if achievable by
linear feedback control. The strategy is applied in Ross and Swartz (1995) to the dynamic
operability analysis of flotation circuits, and extended in Ross and Swartz (1997) to
account for model uncertainty.

It is widely recognized that the economically optimal steady-state operating point of a
plant typically lies at the intersection of constraints (Arkun and Stephanopoulos, 1980).
This characteristic is utilized in Narraway et al. (1991) to quantify the economics of
control performance through the extent to which the steady-state operating point needs to
“back off” from the constraints in order to maintain feasible operation in the presence of
disturbances. The back-off magnitude is estimated using frequency response analysis
techniques, and related to an economic loss using Lagrange multipliers of the steady-state
economic optimization problem. Figueroa et al. (1996) compute the back-off through a
dynamic optimization problem in which the economically optimal operating point is
determined, subject to path constraints on the dynamic response, and utilize this in the
performance assessment of alternative controllers. Soliman et al. (2004) consider back-
off under constrained predictive control. The presence of MPC optimization subproblems
along the back-off calculation horizon results in a multi-level optimization problem that
is transformed into single-level mathematical program with complementarity constraints
(MPCC) by replacing the MPC quadratic programming subproblems by algebraic
constraints corresponding to their first-order optimality conditions, with the
complementarity constraints in turn reformulated as mixed-integer linear constraints.

Lenhoff and Morari (1982) propose a dynamic performance index based on an optimal
control formulation which they use in conjunction with steady-state plant economics for
plant performance evaluation within a multi-objective setting. Mohideen et al. (1996)
present a more general dynamic optimization framework for integrated plant and control
system design. Plant economics are optimized with dynamic performance implicitly
accounted for through the imposition of path constraints. A mixed-integer formulation
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permits discrete design decisions such as number of trays in a distillation column and
control structure selection. Baker and Swartz (2004) propose mixed-integer and
complementarity constraint formulations for rigorously incorporating actuator saturation
effects within a simultaneous design and control formulation. Inclusion of constrained
MPC within the design formulation was subsequently considered using an MPCC
formulation such as that described earlier (Baker, 2006), but with plant design parameters
included as optimization decision variables and the single-level optimization problem
solved using an interior point approach. Sakizlis et al. (2003), on the other hand, include
MPC within an integrated design framework through the use of a multi-parametric MPC
formulation.

Several other studies and applications on the interaction between design and dynamic
performance have appeared, utilizing to various extents the concepts and approaches
described above. Comprehensive reviews on this topic may be found, inter alia, in van
Schijndel and Pistikopoulos (1999), Sakizlis et al. (2004), and Ricardez-Sandoval et al.
(2009). We consider in the next two sections particular applications to intentionally and
intrinsically dynamic operation.

3. Intentionally dynamic operation

Chemical plants operate in an environment of increased competition in a global
marketplace, with increased variation in product demand and raw material supply. The
deregulation of electricity prices in many jurisdictions has resulted in large fluctuations
in electricity price. It is therefore becoming increasingly important for plants to be able
to transition rapidly in order to respond to such variation in order to maximize profits and
increase competitiveness. Cryogenic air separation units (ASUs) are a prime example of
such plants due to their high electricity consumption, demand variation and complexity
of operation through tight thermal integration.

White et al. (1996) present an optimization formulation for switchability analysis that is
posed as a dynamic optimization problem that seeks to minimize a measure of transition
time subject to dynamic model and path constraints. The formulation is applied to
integrated distillation columns in an air separation plant and a binary distillation system,
with the columns in both applications modelled using reduced-order compartmental
models. They conclude that there are no process constraints limiting the speed of
reduction in gas oxygen product, but that a transition between product qualities in the
binary system is improved by a reduction in tray holdup. Schenk et al. (2002) present an
integrated design and control formulation for an air separation plant in which both
disturbances and ramping between operating points are considered. A mixed-integer
dynamic optimization problem is posed, with design decisions comprising distillation
column diameters and numbers of trays, and the control structure.

Cao et al. (2015) propose a two-tiered optimization strategy to explore design limitations

to transition agility in a nitrogen plant, illustrated in Figure 1(a), in response to demand

and electricity price changes that is formulated as follows:

e Tier I: Solve a steady-state economic optimization problem to determine the new
operating point.

e Tier 2: Solve a dynamic optimization problem to minimize a measure of transition
time from the current operating point to that determined in Tier 1.

Various constraints are imposed, such as flooding, compressor surge, liquid fraction in

turbine inlet, and product purity. Figure 1(b) shows that the flooding constraint is violated
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if the transition in response to a 20 % increase in nitrogen gas demand is applied via single
step changes in the inputs, motivating the need for determining the optimal input
trajectories through dynamic optimization. The flooding and turbine inlet constraints
were found to be active for certain of the case study scenarios, indicating design
bottlenecks in the column and primary heat exchanger design. The potential benefit of
using stored liquid product as additional reflux during transition was also explored, and
found to reduce transition times when the product impurity limit was tightened. A current
extension involves formulation of the ASU design problem under transition as a two-
stage stochastic optimization problem, with preliminary results presented in Jaydeep et
al. (2017).
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Figure 1 (a) Schematic of nitrogen plant, (b) Ratio of vapor velocity to flooding velocity for step
changes in manipulated variables (solid line) and optimized inputs (dot-dashed line)

4. Intrinsically dynamic operation

Here we discuss intrinsically dynamic processes where the conventional approaches for
steady state design cannot be applied. Such processes can be characterized by cyclic and
repetitive operations. These processes never reach a steady state, and we must deal with
process dynamics even when we analyse mass and energy balances over a long time
period. To design and control such processes, we consider formulating a dynamic
optimization problem in the form of Eq. (1).

In this paper, we distinguish batch processes from intrinsically dynamic processes. In
batch processes, a sequence of operations is repeated in each batch, and all variables are
re-initialized at the beginning of each batch. On the other hand, intrinsically dynamic
processes we discuss in this paper are semi-continuous periodic processes where
accumulations occur in some or all variables. Due to the accumulations, there exists inter-
cycle dynamics in addition to the intra-cycle dynamics. While these processes do not have
a steady state, they typically reach a cyclic steady state (CSS) after repeating a certain
number of cycles where variables have periodic profiles. The inter-cycle profiles in the
transition between CSSs should also be optimized and controlled (Bentley, et al. 2014,
Toumi and Engell 2004).

We consider periodic adsorption processes as an example. In adsorption processes, a
single or series of columns connected to each other is packed with adsorbent particles.
Using these columns, a mixture can be separated into purified products utilizing a
difference in the affinity towards the adsorbent. In these processes, profiles of state and
differential variables, such as concentration, pressure and temperature, keep propagating
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through the columns. These processes are operated in a cyclic manner, where the same
sequence of operations (steps) are repeated. As a result, the state variables have periodic
dynamics, characterized as the CSS. The dynamics are described as a system of partial
differential algebraic equations (PDAEs), which can be discretized in space to formulate
an optimization problem shown as Eq. (1).

4.1. Chromatographic processes

Chromatographic separation is a type of adsorption process where multiple components
in a mixture travel at different speeds in a packed column, and these components are
fractionated at the outlet of the column when they elute out. The simplest design of
chromatography is the single-column process, as shown in Figure 2(a). In this
conventional batch process, a mixture is injected periodically from the inlet of the column.
The mixture is subsequently pushed towards the outlet by the desorbent. As the
components travel through the column, the component with the stronger affinity for the
adsorbent moves more slowly, while that with the weaker affinity moves faster. These
components are fractionated at the outlet of the column.

To improve the performance of chromatography, quantified by product purity, recovery,
productivity (throughput), and desorbent consumption, a number of multi-column semi-
continuous chromatographic processes have been proposed. A well-known example is
simulated moving bed (SMB) chromatography. This process is widely used in industry,
where applications include xylene isomer separation, sugar purification, and chiral
separation for pharmaceuticals. The principle of the SMB process is shown in Figure 2(b).
In this process, a series of columns is connected to form a circulation loop, and the two
products, raffinate and extract, are withdrawn continuously while the feed and desorbent
are supplied also continuously. The supply and withdrawal ports are switched periodically
in the direction of the liquid flow. This switching operation realizes the counter-current
flow of the solid phase in a “simulated” manner.

Design of multi-column chromatographic processes can be challenging due to the
complex operations. In addition to the standard design and operation shown in Figure
2(b), there have been a number of modifications which have been validated to improve
the performance (Sreedhar and Kawajiri 2014). In addition, the SMB process is often
integrated with other unit operations in a process flowsheet. In Figure 2(c), the SMB
process for enantiomer separation is integrated with two crystallizers, which partly carry
out the separation. It has been shown that the capital cost of this hybrid separation process
can be substantially lower (Kaspereit, et al. 2005). Figure 2(d) shows a flowsheet that
consists of an enzymatic rector and membrane for sugar production. In an example of D-
psicose production from D-fructose, the unreacted reactant is separated by SMB and
recycled back to the enzymatic reactor (Bechtold, et al. 2006). To design such flowsheets,
we can formulate an optimization problem in the form of Eq. (1), but at a significantly
larger scale.
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Figure 2 Chromatography processes; (a) single-column batch chromatography, (b) simulated
moving bed (SMB) process, (c) integration with crystallizers for enantiomer purification
(Kaspereit, et al. 2005), (d) integration with membrane and enzymatic reactor (Bechtold, et al.
2006)

4.2. Challenges for intrinsically dynamic processes

While there are many past studies for optimization of design and operation of periodic
processes, there remain many challenges. First, due to the complex dynamics governed
by PDAEs and CSS conditions, the problem size can be large and a solution may not be
found easily. In multi-column adsorption processes, the number of columns must be
treated as integer variables, and process developers must consider a large number of
design alternatives. Furthermore, finding a robust design, operation, and control under
model uncertainty would be very challenging in the framework of the dynamic
optimization. In chromatography, for example, a substantial degree of model uncertainty
must be taken into account, since the mass transfer kinetics and adsorption equilibria are
not fully understood in many novel applications such as biopharmaceuticals. These
difficulties are even more pronounced when designing a flowsheet that embeds an
intrinsically dynamic process, as well as in optimizing and controlling inter-cycle
transitions between CSSs.
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5. Conclusions

The impact of the design of a process on its dynamic performance has led to analysis
techniques for assessment of a dynamic resilience, and design formulations that account
for dynamic response behavior. While many applications focus on operation around a
steady-state point, the present manufacturing of environment is highly dynamic in nature,
requiring transient operation in response to often large variations in parameters such as
demand and electricity price. In addition, certain processes are inherently dynamic in their
operation, necessitating inclusion of plant dynamics in the design procedure. In this paper,
we have presented an overview of this topic, highlighting key paradigms that have been
followed. A key remaining challenge is solution of the large-scale DAE and PDAE
systems that arise when considering larger and more complex configurations,
compounded by consideration of uncertainty within the formulation. These problems are
moreover often mixed-integer in nature, adding a significant level of complexity. A
further interesting research direction is consideration of the interplay between dynamic
operation, scheduling and design, a concept that has recently been considered in Patil et
al. (2015) and Pistikopoulos and Diangelakis (2016).
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Abstract

Modern engineering keeps ecological systems outside its decision boundary, even
though goods and services from nature are essential for sustaining all its activities. This
has been the system boundary at least since the industrial revolution when the human
footprint was quite small, and nature seemed infinite. With this situation having
reversed in the modern world, there is an urgent need to change the engineering
paradigm from one that takes nature for granted to one that accounts for the role of
nature and works with it while respecting its limits. In this article we argue that such a
paradigm shift holds the promises of enabling sustainability and innovation by
developing engineering that benefits from nature’s ability to treat emissions and provide
resources in an economically viable and environmentally sustainable manner. We
provide an overview of recent progress in including nature in engineering, for tasks such
as design of processes and supply chains, and for life cycle assessment. Despite the
promise of including nature in engineering, there are also risks if this inclusion is not
done properly. Current methods tend to commodify nature due to which holistic
characteristics of ecosystems such as biodiversity and resilience could be lost. The
tendency of wanting to over-engineer ecosystems may also need to be restrained.

Keywords: Ecosystem services; Sustainability; Innovation; Design; Life Cycle
Assessment; Paradigm shift.

1. Promise

Goods and services from nature are essential for sustaining all human activities. This
statement is widely accepted and understood yet most disciplines and even methods
meant to enable sustainability do not account for the role and capacity of ecosystems in
supporting human activities. Contributions from nature toward human well-being are
substantial: worth trillions of dollars. It includes goods such as minerals, biomass,
wood and water, and services such as photosynthesis, biogeochemical cycles, climate
regulation, and air and water quality regulation.

Conventional engineering has focused on a relatively narrow boundary of a selected
product or process. In the last few decades, this boundary has expanded to include
processes in supply chains and the corporate enterprise (Grossmann and Westerberg,
2000). By adopting sustainability assessment methods such as waste minimization and
life cycle assessment, the boundary has further expanded to account for the
environmental impact of industrial activities. However, most methods do not account
for the role of nature in supporting and even enhancing industrial activities. Existing
methods also routinely ignore the limits of nature’s ability to supply resources and
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absorb wastes and implicitly assume nature to be an infinite source and sink. Ignoring
nature is not limited just to the discipline of engineering. Even conventional economics
ignores or undervalues goods and services from nature. For example, if we consider the
role of trees, ecosystem goods such as fruits and wood have monetary value due to their
being traded in markets, but services such as carbon sequestration by storing
atmospheric carbon dioxide as biomass, air quality regulation by mitigating NOx, SOx
and particulate matter, and water provisioning by reducing storm water runoff and
recharging aquifers have no value since are outside the market. This results in the
implicit assumption that these services do not matter and are unlimited. Such ignorance
has at least two negative side effects.

o  Unsustainable Engineering. Keeping nature outside the system boundary can
result in decisions that contribute to exceeding nature’s capacity, causing
ecological degradation, and resulting in an unsustainable engineering.

e  Lost Opportunities for Innovation. Ecosystems are capable of satisfying many
human and industrial needs while relying on only renewable resources, being
resilient to disturbances, and sustaining themselves over long periods of time.
By ignoring nature, engineered systems loose opportunities of benefitting from
innovative designs that could work in harmony with nature.

Recent efforts for quantifying ecosystem goods and services is encouraging the
development of frameworks such as techno-ecological synergy (TES) (Urban et al.,
2010; Bakshi et al., 2015), which aims to include the role and limits of ecosystems
explicitly in engineering to establish mutually beneficial synergies between human and
natural systems. The novelty of this approach stems from the fact that it considers
nature not just as a resource or a system to be protected, but as a holistic entity with
which to build mutually beneficial synergies for sustaining human and other activities.
TES accounts for goods and services from ecosystems that directly benefit industry and
society. As depicted in Figure 1, in TES technology relies on ecosystems to absorb
wastes and produce resources, while ecosystems rely on technological systems to
provide essential nutrients, land, and other resources. In addition to meeting industrial
needs, ecosystems also provide other cobenefits that could benefit society. Thus, TES
goes beyond and combines the best features of existing approaches like circular
economy, industrial symbiosis, and cradle-to-cradle design. Increasing synergy can
result in a system where there is no net flow of raw materials or pollutants in Figure 1.
Such a system could be self-sustaining.

This paper provides an overview of the recent progress in methods for including nature
in engineering and
its  applications,
with emphasis on
chemical

Co-benefits Raw Materials

Natural
Resources

Products

engineering o Ecological Technological
problems. This is  Ecqjogical B EGUS Systems
the topic of the
P . . Inputs G Wastes
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desi Capital & Pollutants
process esign, Management
supply chain

design, and life Figure 1. Framework of Techno-Ecological Synergy (Bakshi et al., 2015).
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cycle assessment. At the smallest scale of process design, ecosystems are considered
analogous to unit operations. At the supply chain scale, availability of ecosystem
services influences decisions about choosing suppliers. At the life cycle scale,
ecosystems are included just like process modules and the resulting TES-LCA method
provides insight about absolute sustainability based on determining the extent to which
the limits of ecosystem services are exceeded. Various applications are described to
convey the potential benefits of the convergence of engineering with ecology are
demonstrated with the help of several examples relevant to chemical engineering. The
subsequent section discusses the challenges of including nature in engineering and
whether this approach will lead to sustainable development. It identifies the potential
pitfalls of this approach and the issues that require close attention in future work.

2. Progress
2.1. Process Analysis

Increasing understanding about the goods and services provided by nature and their
importance led to work on determining whether these goods and services are relevant to
industrial activity and whether nature could satisfy industrial needs. The most
successful commercial use of ecosystems in industry is that of wetlands for treating
industrial waste (Vymazal, 2011), as demonstrated by many successful
implementations. Most such installations have been used for the last finishing step of
water treatment, and are found to be not only economically and environmentally
attractive, but also provide additional cobenefits to society through preserving
biodiversity, maintaining the water table, and providing recreational and educational
opportunities. One such implementation is estimated to have $283 million in net
present value savings over the project’s life time as compared to a conventional
technological alternative (DiMuro et al., 2014).

The Nature Conservancy and Dow Chemical evaluated the ability of vegetation to
mitigate air pollutants such as NOx, SOx and particulate matter (TNC-Dow, 2013).
This study found that this nature-based solution can be less expensive than conventional
technological solutions such as selective catalytic reduction of NOx and scrubbers for
removing SOx. Another study (Gopalakrishnan et al., 2016) evaluated a biodiesel
manufacturing site with a combined heat and power process for supporting the biodiesel
facility. If available land in the vicinity of this site had native trees that were only 15
years old, they were shown to be capable of mitigating a significant fraction of criteria
air pollutants. Older trees could drive the site toward zero net emissions. Here,
vegetation was considered to go beyond environmental regulations, which is the stated
sustainability goal of many corporations. Older trees were also found to have excess
capacity than what was needed for the manufacturing process, which can be a cobenefit
that the trees provide to the region by mitigating emissions from other local sources.
Wetlands on this biodiesel site could also provide fresh water to the local river or
aquifer, or back to the process after further treatment. Comparing the net present value
of the process with technological versus ecological solutions for removing identical
amounts of pollution showed that ecosystems had a higher NPV. Over time,
ecosystems become even more attractive than technological systems since ecosystems
appreciate over time while technology depreciates.

Comparing air emissions with the capacity of vegetation to take them up in each county
across the United States also demonstrates the benefits of relying on nature to go
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beyond regulations. Vegetation has substantial capacity to take up SO, emissions in
49% of US counties, 13% for PM;o, 4% for PM,s and 5% for NOy. Restoration of
available land to the average current vegetation in each county is found to be more cost
effective than using technology for the same task in 75% of US counties. Nature-based
solutions are found to be most effective for mitigating emissions from activities such as
farming; mining, oil and gas; electricity generation; and residential systems. Such
studies convey the benefits of including ecosystems in industrial processes, and have
encouraged further work. (Gopalakrishnan, 2017)

2.2. Process design

Reducing the environmental impact of chemical processes has been an area of active
research for many decades. These efforts evolved from reducing resource use in
individual equipment and process to reducing resource use and impact of emissions
over the entire life cycle (Grossmann, 2004). Recent work on including nature in
process design is including relevant ecosystems as if they were another unit operation,
like distillation columns or heat exchangers. The optimization formulation of this
integrated design of technological and ecological systems is as follows,

max Z; (x,x,,y); maxZ,(x,x,,y)

st. f(x,y) S0; fo(xe,y) <0

Here, the two objectives represent economic and environmental goals, and subscript e
denotes ecological models and variables. Variables x and x. are continuous while y are
integers. The key difference with conventional design is the simultaneous presence of
technological and ecological models and variables to enable integrated and synergistic
design.

As described in Section 2.1, wetlands are already being used for treating industrial
waste water. However, most such uses do not integrate wetlands into the flowsheet like
other pieces of equipment. That is, wetlands are usually included as end-of-pipe
solutions, meaning that the process is designed first in a techno-centric manner, after
which the wetland is added to treat the waste water. Recent work on including
ecosystems as unit operations in process design has shown the benefits of integrating
wetlands in the process design (Gopalakrishnan and Bakshi, 2018). Integrated design
with wetlands results in a design where the main process operates in a way that
accommodates the use of wetlands for treating waste water. This results in decisions
that avoid chemicals that cannot be treated by the wetland, and larger concentration of
those chemicals that can be treated. The wetland is also designed to have the capacity
and residence time for treating the industrial waste and producing freshwater of desired
quality to satisfy needs of the technological system. Such an integrated design with
objectives of maximizing net present value and minimizing net water use is found to be
superior to an end-of-pipe design and a design with a technological alternative
(anaerobic baffle reactor).

Application of the TES design approach to several problems demonstrates that inclusion
of ecosystems can expand the design space as compared to the design space available
from conventional, techno-centric designs. The nature of this expansion is depicted in
Figure 2. As shown, the Pareto curve for TES design is in a region that is infeasible for
conventional, techno-centric design. The additional design space made available by
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TES design is indicated by the shaded region. \
Thus, TES design could provide innovative “win- / * Design space

’

win” designs that may be economically and Addi-+. from conven-
\\tional approach

environmentally better than conventional designs. Eny. | \tional
Research to date has been demonstrated this for Impact
design of a biodiesel process, management of
biosolids from urban water treatment, design of
agricultural landscape for biofuels, and design of
residential buildings.  Integration of a local
biomass farming system, biofuel manufacture and £7gure 2. Expansion of design space
waste water treatment is also shown to be more 9ue f0 including nature in engineering.
self-sustaining than conventional disintegrated approaches (Martinez-Hernandez et al.,
2017) and have benefits in terms of the food-energy-water nexus (Hang et al., 2016).

Cost

A unique challenge from including nature in engineering is due to the vastly different
dynamic behavior of technological and ecological systems. The former exhibit
relatively little variation with time, while the latter have high temporal variability with
time of day, seasons, etc. For example, deciduous trees shed their leaves in autumn
resulting in a drastic reduction in their capacity to mitigate air pollutants, and the
productivity of wetlands in temperate regions may be much lower in the winter.
Therefore, viable synergies between technological and ecological systems need to
address such differences in their dynamics. Efforts toward addressing such issues have
considered a local bioenergy-farming-waste water treatment system (Martinez-
Hernandez et al., 2015) and a biodiesel design problem (Gopalakrishnan, 2017). The
latter problem has been solved over four seasons for a location near Cincinnati, Ohio as
a multi-period optimization problem. For mitigating air emissions, it is found that
ecosystems can still be viable for capturing a large fraction of emissions by selecting a
combination of native deciduous and evergreen tree species, adjusting the use of
technologies for capturing emissions, and varying the amount of biodiesel produced in
each season. Seasonal variation does deteriorate the overall performance of trees as
compared to having the process in a region without seasonal variation, but using trees
for going beyond regulations still remains economically more attractive than using
technology. Also, evergreen trees continue to mitigate pollutants in the winter and are
included in the design.

2.3. Supply chain design

If ecosystems are included in the design of supply chains, the overall goal of
minimizing violation of ecological limits encourages inclusion of those suppliers that
are closest to satisfying this requirement. It also encourages protection and restoration
of ecosystems at and around supplier sites. An illustrative example on designing the
supply chain of a biofuel finds a solution that reduces the impact of emissions and
enhances ecosystem services, as compared to a conventional solution that reduces only
the impact of emissions (Ghosh and Bakshi, 2018).

Ecosystem services may be represented in monetary units to allow aggregation with
conventional cost analysis. By using such aggregation and calculating a Green GDP, a
biofuel supply chain design problem has been solved recently with ecosystem services
(Garcia and You, 2017). This work demonstrates how accounting for ecosystem
services in the selected supply chain steps and its geographical region affects the
resulting design and optimum value of the objective function.
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2.4. Life Cycle Assessment

It is widely accepted that the life cycle of products and processes must be considered to
prevent shifting of impacts along the supply or demand network. The method of life
cycle assessment (LCA) has been formalized and adopted in process systems
engineering for developing designs that aim to reduce life cycle impact along with
conventional monetary goals. However, as discussed in Section 1, a significant
shortcoming of conventional LCA is its ignorance of ecosystem capacity and goods and
services from nature. The idea of developing synergies between human and natural
systems has been extended to the approach of techno-ecological synergy in life cycle
assessment (TES-LCA). This approach explicitly accounts for the demand and supply
for ecosystem services in each step of the life cycle (Liu and Bakshi, 2018).

Accounting for nature requires some modifications and additions to the four steps of
conventional LCA, which are goal and scope definition, inventory analysis, impact
assessment and improvement analysis. The main goal of conventional LCA is to
compare alternatives to choose one that has the smallest life cycle impact. This
comparative approach results in relative sustainability metrics. TES-LCA also has this
goal, but in addition, it also aims to protect and restore ecosystems that provide needed
goods and services and encourage efforts toward staying within nature’s capacity. Such
an approach can provide absolute sustainability metrics by comparing the demands
imposed on nature by industrial activities with the capacity of nature to meet the
demand. Absolute environmental sustainability requires the demand to be less than or
equal to the supply at the scale of the serviceshed of the selected ecosystem service.
The serviceshed is the geographical region that supplies ecosystem services to a
beneficiary. For CO2, the serviceshed is the planet since an emitted molecule can be
absorbed anywhere on earth. For water the serviceshed is the watershed, and for
pollination by insects the serviceshed is determined by the distance travelled by the
insects. With this insight, the boundary of TES-LCA includes the local and serviceshed
scales. The inventory analysis step of TES-LCA requires information about ecosystem
services, which may be obtained from ecological models and remote sensing data.
Since such data can have significant spatial variation, it is best to develop spatial models
for TES-LCA.

Impact assessment in TES-LCA calculates the sustainability metric, Vi = (Sx — Dx) / Dx,
for the k-th ecosystem service at selected spatial scales, including the serviceshed.
Environmental sustainability requires Vx > 0 at the scale of the serviceshed. If this
criterion is satisfied then the emissions could have zero net impact under the assumption
of steady state. However, if V; < 0 then the emissions not taken up by nature will have
an environmental impact. We use conventional life cycle impact assessment to
determine this impact. The consequences of this impact on degradation or enhancement
of ecosystem services may also be quantified.

The unique characteristics of TES-LCA are illustrated in Figure 3 for a corn ethanol life
cycle. Here, the x-axis is V} at a local scale, while the y-axis is Vi at the scale of the
serviceshed. If both metrics are positive (Quadrant I), it implies local and absolute
sustainability, which is true for the water provisioning ecosystem service in this
example. This is due to location of the farming in the water-rich region of Ohio. If an
activity is in Quadrant II, the activity demands more from nature than available within
the local boundary. However, demand at the serviceshed scale is within nature’s limits.
Thus, we have absolute sustainability, in this case, but not local sustainability. V; in
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Figure 3. TES-LCA of carbon sequestration, water provisioning, and air quality regulation
ecosystem services in the corn ethanol life cycle. (Liu and Bakshi, 2018)

Quadrant IIT implies local and absolute unsustainability, while Quadrant I'V indicates an
island of sustainability since the activity is within nature’s limits at a local scale, but not
in the serviceshed. As we can see from this figure, farming activities are an island of
sustainability (Quadrant IV), but including the life cycle causes them to shift to
Quadrant III. The Phosphorus fertilizer manufacturing process is in Quadrant III for air
quality regulation, but if there was a forest around the facility, the activity moves toward
Quadrant IV due to the capacity of vegetation to take up air emissions. Such insight is
unique to TES-LCA since it cannot be obtained from conventional LCA.

3. Peril

Progress in the inclusion of nature in engineering decisions described in Section 2
conveys the potential benefits of greater attention to this effort. Many research
challenges need to be addressed such as the following.

Data and models. The complex nature of ecosystems means that they are often not as
well understood as human-designed systems. However, models of many ecosystems are
available that are validated, reliable and widely used. Due to advances in remote
sensing and geographical information systems, data about land cover and ecosystem
services across the world are increasingly available. Advances in process systems
engineering are needed to use these data and models along with technological
information for developing innovative synergies.

Spatio-temporal variation. Nature is “self-designed” while technology follows the
approach of “imposed design.” Self-design of nature means that it requires little direct
intervention and develops organically into a system that is resilient and self-sustaining,
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but intermittent across space and time. This is because at scales larger than an organism
nature follows homeorhesis. In contrast, technological systems are designed for
homeostasis and to do few tasks with input of high quality resources that are often non-
renewable and unsustainable. High efficiency of technological systems makes them
predictable but fragile. Many ecosystems function at a reduced level at night and in the
cold. To work with such systems, technological systems need to adapt their functioning
or an appropriate combination of technological and ecological systems needs to be used.
Integrating nature into engineering systems requires methods to deal with these
differences between human and natural systems.

Sustainability and resilience. Technological systems are designed and operated with
objectives such as maximizing economic value and minimizing environmental impact.
Such strategies may not be appropriate for ecosystems since the objective function of
nature is not known. Designing ecosystems with anthropocentric objectives such as
maximizing efficiency could compromise their resilience and ability to provide diverse
ecosystem services. Thus, conventional optimization-based approaches that have been
very successful in engineering design may have to be modified for TES design.

Commodification of Ecosystem Services. Current research in quantifying and
accounting for ecosystem services considers each service separately or emphasizes
some services more than others. For example, methods exist for quantifying services
such as climate regulation and water provisioning in physical or monetary units.
However, quantification of cultural services such as spiritual, religious, and aesthetic
aspects is difficult to quantify. Therefore, current approaches may result in less
emphasis on those services that are more difficult to quantify. In addition, greater
emphasis on a few ecosystem services could translate into efforts toward protecting
them at the cost of others. For example, interest in being carbon neutral may result in
efforts for maximizing the carbon sequestration of vegetation. This could encourage the
development and use of monocultures of genetically modified high carbon sequestering
trees. Such ecosystems would lack the holistic and self-sustaining properties of nature,
and could cause unintended harm to other ecosystem services. Thus, thinking of
ecosystem services as separate commodities may result in solutions that are not likely to
be truly sustainable.

Ecological literacy. Successful efforts for including nature in engineering requires
engineers to have knowledge about ecological systems. Surveys have shown that
engineers are among the least ecologically literate. This is an educational challenge that
requires a change in the engineer’s attitude from considering nature to be controlled and
dominated to one of wishing to work with and respecting nature.

There has been a successful convergence between biology and engineering at the micro
or reductionist level resulting in many advances and new disciplines such as biomedical
and biological engineering and systems biology. Such convergence between ecology
and engineering at the macro or systems level may be initiated by efforts toward techno-
ecological synergies, as discussed in this paper.

4. Conclusions

The current engineering paradigm keeps nature outside its boundary, which can
unknowingly encourage ecological degradation and miss opportunities for innovation
by working with nature to benefit from its ability to satisfy industrial and human needs.
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This work summarizes the potential benefits, recent progress and outstanding challenges
in including nature in engineering decisions. Sustainability and innovation are the two
key promises of including nature in engineering. This promise is demonstrated by
recent work on integrating nature-based solutions such as the ability of vegetation to
treat air emissions and of wetlands to regulate water quality, with conventional
technologies. Methods have also been developed for including ecosystem services in
life cycle assessment. Full realization of the promise requires advances to address the
fundamentally different behavior of technological and ecological systems such as the
self-design of nature versus the imposed design of technology. Conventional
optimization-based engineering design may also need to be modified to retain the
resilience of nature. Engineers also need to learn about ecology to enable a successful
and synergistic partnership between technological and ecological systems
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Abstract

A flipped classroom where students view screencasts and read textbook material and
take an on-line quiz before class has been implemented in a process dynamics and
control course. The class periods involve brief lectures summarizing what they have
learned, and include discussions and advanced problem solving using MATLAB and
Simulink. The weekly assignments include a mix of analytical and numerical solutions.
Motivating examples, such as automated insulin delivery are used throughout the
course. Although a physical laboratory experiment is not used, the class benefits from a
tour of the campus boilerhouse system.

Keywords: Learning modules, flipped classroom, simulations, interactive learning

1. Motivation and Background

Process control is a core course in the chemical engineering undergraduate curriculum
in most departments, yet it sometimes suffers from an over-emphasis on analytical
mathematics and without proper motivation from real process challenges. This paper
presents an overview of a flipped classroom approach that best makes use of classroom
time to solve realistic, challenging process control problems.

1.1 Process Control Textbooks and Curricula

Current process control textbooks cover much of the same analysis content as
Coughanowr and Koppel (1965), which was the textbook used in the course that I took
in 1979. Most books have added topics and examples and make use of computer-aided
software, such as MATLAB. Many texts cover far too many topics for a one-semester
course, so it is important that an instructor be selective about the material covered.

At roughly ten-year intervals the course structure is revisited at a control or education
conference; see, for example Edgar (1990), Edgar et al. (2006), and Silverstein et al.
(2016). The survey by Silverstein et al. (2016) indicates that 70% of courses use project
or problem-based learning and 45% of courses use computers in the classroom.

1.2 Evolution of Teaching by the Author (30 years and counting)

My initial experience teaching process control was at UC-Davis in 1987-88. I used the
Stephanopoulos (1984) textbook and analytical solutions. I arrived at RPI in 1988 and
was impressed with the computing facilities and software, so I scheduled a weekly
computer laboratory for the process control class. Initially I used the IBM simulation
package, CSMP, but switched to MATLAB after a year or so. The regular classroom
sessions remained largely lecture-based with handwritten derivations, but with as much
engagement and active discussions with students as possible. To further motivate
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students we developed a set of case studies that the students, in groups of two, would
work on during the final 4 weeks of the course (Bequette et al., 1998). They would
select from a set 4 topics, perform a literature review, develop models based on step-
testing, design SISO controllers, then use the relative gain array (RGA) to decide on
controller pairings for the multivariable case. Requirements included short reports each
week, a final written report and a final presentation. I would serve as the advisor for one
case study, while the TA and two of my other graduate students would be the advisors
for the other three case studies. This was very time-intensive but the students were
clearly motivated by the opportunity to choose a case study in their area of interest.

1.3 Studio Classrooms

The studio classroom approach was pioneered at RPI, with initial courses in physics and
calculus in 1993 (Wilson, 2002). The first classrooms had networked computer
workstations, with 2-4 students per computer. I started using a studio classroom for
process dynamics and control in 1999 (Bequette et al., 1999). That classroom could
handle up to 40 students that could face forward during lectures and discussions, then
swivel 180° to work at computer workstations in groups of two. This was not an
efficient use of space, and in 1999 RPI began requiring that entering freshmen (class of
2003) purchase laptop computers supplied with relevant computational software.

2. The Flipped/Inverted Classroom at RPI
2.1 Screencasts

A common characteristic of the flipped classroom is that students read and view
important lecture material outside the class so that more time can be spent using
engaging, interactive learning techniques in the classroom. I feel that it is better for the
students to view a couple of short “screencasts” of 5-7 minutes each, rather than
viewing a videotaped lecture of 50 minutes in length. The idea is to focus on a specific
topic or technique and to have their full attention during the short screencast. The
University of Colorado has developed a large set of screencasts for most of the core
chemical engineering courses, available at learncheme.com, with 58 videos related to
process control. Sometimes the notation is slightly different than that used in my course,
so I warn students of this both pre- and post-viewing.

2.2 Brief On-line Quizzes

The flipped classroom works best if all of the students have read or viewed the lecture
material in advance. | require the students to take a brief on-line quiz, automatically
graded, before class. This typically consists of 5 multiple choice or true-false questions
that are relatively easy if they have covered the material. Questions are sometimes
related to the previous lecture, often involving impromptu discussions. For example,
when Hurricane Harvey hit the Gulf Coast in August 2017, we discussed refining
capacity and the effect of plant shutdowns on gasoline prices. I noted that I had worked
at a refinery in Port Arthur, Texas and asked the students to name a famous former
blues/rock singer from that area; since no one could name Janis Joplin the next quiz
included questions based on a Wikipedia page on Janis Joplin.

2.3 In-class Simulation Exercises

In-class simulation exercises change in difficulty throughout the semester. During early
exercises | have the students construct simple Simulink diagrams. As we get into more



Innovations in Process Control Education: A Flipped Classroom/Studio Approach 65

difficult problems, e.g. cascade control, I supply them with .mdl and script files that
they can modify. I feel that over the years some Simulink blocks have gotten too
flexible and difficult for students to follow; I need to spend time explaining and
discussing the different ways to implement a continuous PID controller, for example.
Indeed, when I cover digital control I supply my own block that corresponds to my
preferred derivation and implementation of digital PID.

2.4 Weekly Homework Assignments

Homework problems are assigned weekly and cover analytical and
MATLAB/Simulink-based solutions. At the time of the assignment the particular topics
have not been covered yet, so we quickly go over the assignment and the particular
challenges to motivate them for the techniques being covered that week. The daily in-
class exercises are used as a springboard for the solution of the weekly homework
assignments.

2.5 Case Studies and Detailed Problems

Most years I have used case study projects for the final month of the semester, as
discussed in section 1.2. This past year (2017) I decided to use a distillation control
problem as a multivariable study example. Another detailed example used and discussed
throughout the course is an automated insulin delivery system, as presented in section 4.

2.6 Mid-term and Final Exams

While the in-class exercises and weekly homework assignments involve the use of
MATLAB and Simulink, the two mid-term exams and the final exam are based on
analytical solution techniques and fundamental modeling and control understanding.

2.7 Additional Topics: Safety, Process Design, Boilerhouse Tour

Process safety is discussed, in one way or another, in almost every lecture. Most control
strategies involve a discussion of whether a fail-open or fail-closed value should be
used, for example. Early on most students do not have an appreciation of how a valve
can be specified for a particular failure mode, so I present cross-sectional diagrams of
typical valves and actuators for discussion. When discussing liquid surge drums we
think about realistic values for the high and low level alarms. We also take groups of
students on a boilerhouse tour with the operator pointing out the various vessels,
sensors, actuators and the control room and control system. This is of particular benefit
to students that have not had summer industrial experience.

3. Course Topic Overview

Chemical Process Dynamics and Control is a 4-credit course scheduled for 3 days/week
(Tu/We/Fr) for one hour and 50 minutes each class period. As a practical matter, to give
adequate time for homework problem solving and to accommaodate the instructors travel
schedule, during many weeks the third class period serves as a recitation, with the TA
reinforcing material, and assisting with MATLAB, as examples. Since it is a 4-credit
course, we tend to cover about 33% more topics than is covered in most 3-credit process
control courses. A typical 15-week semester will include 32 lecture/regular classes, 7
recitations, 2 in-class exams, 1 campus boilerhouse tour, 1 no-class (Thanksgiving
week), 1 final course review, and 1 final exam (during finals week).
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Table 1. Course Topics Table 2. Example Processes
Incentives/Motivation for Process Control Gas and liquid surge vessels

Mathematical modeling Insulin pharmacokinetics

Linearization, state space models Biochemical reactor

Laplace transforms, transfer function analysis | Jacketed reactors (batch & continuous)
Connection between poles and eigenvalues Steam drum, 3-mode (FF/FB/CC)

Dynamic behavior, step and impulse inputs Gasoline blending — ratio control
Introduction to feedback (FB) control, PID Automated insulin delivery for type 1
Closed-loop stability diabetes:

Real PID, filtering, derivative on output (i) response to meals w and w/o feedforward,
Internal Model Control and IMC-based PID (ii) effect of sensor bias, quantization & noise
Digital PID and digital filtering Drug infusion in anesthesia — multiple loops
Cascade (CC) and feedforward (FF) Distillation control — multiple loops
Anti-reset-windup Gasoline blending — LP problem

Nonlinear PID — surge vessel example

Closed-loop control interaction, RGA

Singular Value Decomposition (SVD)

Plantwide control, startup/shutdown (brief)

Model predictive control (brief)

Statistical process control (brief)

Optimization: Linear Programming (brief)

4. Motivating Example: Automated Insulin Delivery

In this learning module we first review the natural physiologic control loops involved
when a healthy pancreas regulates blood glucose. We then describe the lifestyle of an
individual with type 1 diabetes, who must monitor blood glucose levels and administer
insulin, either through multiple daily injections or using a continuous insulin infusion
pump. We describe typical ranges for basal (steady-state) insulin infusion, carb-to-
insulin ratios for meals, and correction factors (amount of insulin required to reduce a
glucose level by a certain amount). Someone with type 1 diabetes serves as a controller
(feedforward and feedback) through constant diligence; this motivates the development
of an automated insulin delivery system shown in Figure 1.

After reading this module and performing the studies a student is able to:

e Appreciate the challenges someone with type 1 diabetes faces in managing blood
glucose. Meals increase and insulin decreases blood glucose. One challenge is
providing the correct insulin bolus to compensate for a meal. Uncertainty in the
carbohydrates in a meal makes it safer to under-bolus to avoid sypoglycemia.

e Appreciate the importance of maintaining a consistent healthy value of blood
glucose. Blood glucose that is too low (hypoglycemia) can cause short-term
dangers, such as drowsiness or a diabetic coma. Blood glucose that is too high
(hyperglycemia) causes long-term risks, such as micro- and macro-vascular
problems resulting in retina and other problems.

e  Understand the metrics used in reporting clinical performance of glucose control
strategies, such as mean glucose, time-in-range (70-180 mg/dL), time in
hypoglycemia (less than 70 mg/dL), time in hyperglycemia (greater than 180
mg/dL), and total daily insulin dose (insulin used each day).

e Approximate the dynamic behavior between insulin and meal inputs and blood
glucose outputs using low-order transfer function models.
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e Understand the importance of sensors that report discrete quantized values (for

example, a continuous glucose sensor reports to the nearest 1 mg/dL).

e Understand the effects of sensor noise and bias on control system performance. A

mis-calibrated glucose sensor can be off by 10-20 mg/dL or more.

e  Understand that providing an insulin bolus at mealtime (feedforward control) leads
to improved glucose control performance compared to feedback-only control.

Glucose
sensor

set

Smart watch:

Activity, heart rate Smart phone: GPS and algorithms

\ Insulin pump
e & infusion

Figure 1. Example of an automated insulin delivery system currently under study. The
components, using Bluetooth communication, include a continuous glucose monitor
(CGM), a control algorithm on the smart phone and insulin infused by the insulin pump.
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Integrator1  Integral of Blood Glucose, mg/dL
BS(‘SEQ(&%I;A) Setpoint Filter y u Insulin, Urhr BG, mg/dL.
mg/dL rev Insulin ~ Quantizer
constraint  U/hr BG, mg/dL
Discrete PID Urhe
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v B
' Meal Carb Input MealCarbs | Integrator3 integral of
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CGM Add glucose sensor (tsamp = 5 min) Hovorka Simulation Model )
fa Quantizer Assumes insulin infusion rate == mU/kg/min
M Controller output == U/hr
CGM, mg/dL State 1 = total glucose in glucose compartment, mmol/kg
Transtor Fon CGM noise Desired output = glucose concentration = mg/dL

CGM_bias

CGM bias

State 10 = interstitial glucose concentration = mmoljiter,
Interstitial output == mg/dL

Figure 2. Simulink Diagram for Automated Insulin Delivery. Includes open-loop

behaviour by setting the controller gain to 0.



68 B. Wayne Bequette

Students are provided with a Simulink diagram (Figure 2) that includes the insulin-
meal-blood glucose model of Hovorka et al. (2004) and Wilinska et al. (2005). We
added additional lags for the dynamics between the blood and interstitial fluid and the
sensor lag, with possible bias and measurement noise. The simulation model also
includes a digital PID controller, and it is suggested that the students begin with the
tuning parameters proposed by Palerm (2011). An outcome of the simulation exercise is
to suggest controller tuning and an appropriate blood glucose setpoint if the sensor can
be biased by up to 20 mg/dL, with the objective of reducing the risk of hypoglycaemia
to less than 5% (that is, less than 72 minutes per day spent less than 70 mg/dL).

5. Discussion

In a process dynamics and control course the specific examples used may not be as
important as the instructors enthusiasm in presenting them. I have been fortunate to be
involved in a wide-range of automation and control related problems, ranging from
classic chemical processes (petroleum refining, pharma batch reactors) to biomedical
systems (automated insulin delivery, drug infusion in anesthesia). It certainly helps that
I can bring specific examples that I have worked on into the classroom — such as
responding to level sensor failures while serving as an operator in the refining industry,
and conducting clinical trials of an automated insulin delivery system. The final course
survey results, specifically for the instructor-added questions, shown in Table 3
indicates, that students were generally satisfied with the course; indeed it appears that
the on-line quizzes actually provided encouragement for them to read the textbook.

Table 3. Course survey responses to instructor-added questions
Instructor-Added Number Responding/(%age of Respondents)

1 2 3 4 5 Omit | Ave.  Med. s.d.
The screencasts have been useful 1 3 3 9 12 0 400 428 116
@%) (11%) (11%) (32%) (43%)
The on-line quizzes have been useful 2 5 6 10 5 0 339 3.60 120
(%) (18%) (1%) (36%) (18%)
The studio approach of combining lectures 1 3 1 10 13 0 411 440 113
and simulations has been useful (4%) (11%) (4%) (36%) | (46%)
I have benefited by reading the textbook 1 1 3 14 9 0 404 414 096
@%) @%) (11%) (50%) (32%)
I have adequate time to do the b Tk 0 1 3 15 8 1 411 413 0.75
0%) %) (11%) (56%) (30%)
I appreciate the mportance of process 0 0 2 10 16 0 450 4.62 064
control in industry 0%) 0%) (%) (36%) (57%)
MATLAB has been easy to use 7 5 [3 5 3 0 27 275 133
25%) (18%) (29%) (18%) (11%)
The boiler house tour was useful 0 0 4 8 16 0 443 4.62 0.74
0%) 0%) (14%) (29%) (57%)
Key 1 = Strongly Disagree 2 = Disagree 3 =Neautral 4=Agree 5 = Strongly Agree

6. Approaches and Material from Other Sources

Huang (2017) discusses the results of integrating three MATLAB-based learning
modules into a flipped classroom by using teaching videos to be viewed a week before
class and quizzes taken at the beginning of class. Marlin (2017) discusses “blended
learning” and develops a flipped classroom as one example. E-lessons consist of pre-
prepared slides with audio that can be studied via the internet at any time, followed by
an un-graded quiz. Class time then involves a mini-lecture reviewing the e-lesson, then
workshops (hands-on, interactive learning) to reinforce learning material, followed by a
mini-lecture on the next e-lesson). Seames (2017) takes a simulation-based approach,
including a new textbook, and requires outside material be studied, with on-line
quizzes; re-quizzes can be taken up to 3 weeks later. It should be noted that the text by
Svreek et al. (2014) also takes a simulation-based approach.
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There are many learning resources available on the internet. For example, cache.org
contains links to material from many sources. The learncheme.com site is particularly
strong in the use of screencasts. The Hedengren process dynamics and control course at
BYU has lecture material and a low-cost temperature control experiment.

7. Conclusions

A flipped classroom makes better use of a students and instructors time. Students come
to class prepared, after taking an on-line quiz, and are more engaged in discussions and
problem solutions. Because of the interactive nature of the class-time, it is important to
have a teaching assistant willing to engage with the students.
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