PID control of dead-time processes: robustness, dead-time compensation and constraints handling

Prof. Julio Elias Normey-Rico

Automation and Systems Department Federal University of Santa Catarina

IFAC PID 18 – Ghent – May 2018

Dead-time processes

Dead-time processes are common in industry and other areas

Main dead-time (or delay) causes are:

- •Transportation dead time (mass, energy)
- Apparent dead time (cascade of low order processes)
- Communication or processing dead time

Control of dead-time processes

- Dead time makes closed-loop control difficult
- Simplest solution:
 - PID trade-off robustness and performance
- Basic dead-time compensator Smith Predictor (SP)
- Improved solutions: Modified SP (ex. FSP)
- Advanced solution: Model Predictive Control MPC

Most used in industry PID - DTC - MPC *

Industry 4.0 – complex controllers at low level

^{*} A Survey on Industry Impact and Challenges Thereof. IEEE CONTROL SYSTEMS MAGAZINE 17

When to use advanced control?

Objectives: Analysis of PID, DTC and MPC for dead-time processes

Agenda

- 1. Motivating examples, PID and DTC control.
- 2. Ideal control of dead-time processes
- 3. PID tuning using DTC ideas
 - 1. Unified tuning using FSP (stable and unstable plants)
 - 2. Trade-off performance-robustness
 - 3. Comparing PID and DTC
- 4. MPC, FSP and PID controllers
 - 1. Unconstrained case
 - 2. Constrained case Using anti-windup
- 5. Conclusions

Motivating examples

Simple model – big delay

Simple model with large delay and large modelling error

$$P_n(s) = \frac{e^{-5s}}{s+1}$$

Even for a dominant delay process PID offers a good response

Fast response – small delay

Simple model with small modelling error

Well known delay (network)

$$P_n(s) = \frac{e^{-0.2s}}{s+1}$$

To study the advantages of advanced controllers

for dead-time processes related to:

Process dead-time

Process modeling error (robustness)

Other aspects: Model complexity

Constraints handling

Ideal control of deadtime processes

Smith predictor of a pure delay process

$$P(s) = e^{-Ls}$$

$$R(s)$$

$$H_{yr}(s) = \frac{Y(s)}{R(s)} = \frac{C(s)G_n(s)e^{-Ls}}{1 + C(s)G_n(s)}$$

$$H_{yq}(s) = \frac{Y(s)}{Q(s)} = P_n(s)\left[1 - H_{yr}(s)\right]$$

$$G_n(s) = 1$$

$$C(s) = K_c$$

$$1 \text{ delay}$$

$$G_n(s) = e^{-Ls}$$

$$H_{yr}(s) = e^{-Ls} \left[1 - e^{-Ls}\right]$$

Smith predictor of a FOPDT process

$$P(s) = \frac{K_e}{1+sT}e^{-Ls}$$

Using $C(s) = K_c$ and ideal case $K_c \to \infty$

$$H_{yr}(s) = e^{-Ls} \qquad H_{yq}(s) = \frac{K_e}{1+sT}e^{-Ls} \left[1-e^{-Ls}\right]$$
 Open loop
$$G_{raphics}$$
 Pure delay
$$G(s)$$
 SP: Only stable plants and slow responses
$$G(s)$$

Ideal Control – Achievable Performance

Normal index
$$e(t) = r(t) - y(t)$$

$$J = \int_0^\infty \mid e(t) \mid dt$$

No controller

Ideal Control – Achievable Performance

25

35

Time

20

10 td

15

Ideal Control – Achievable Performance

Is it ideally possible to achieve $J_{min} = 0$?

Filtered Smith Predictor

Is it ideally possible to achieve $J_{min} = 0$?

Filtered Smith Predictor

The same Hyr as SP

$$H_{yr}(s) = \frac{C(s)G_n(s)e^{-Ls}}{1 + C(s)G_n(s)}F(s)$$

Is it ideally possible to achieve $J_{min} = 0$?

Filtered Smith Predictor

The same Hyr as SP

$$H_{yr}(s) = \frac{C(s)G_n(s)e^{-Ls}}{1 + C(s)G_n(s)}F(s)$$

The filter $F_r(s)$ allows:

- ☐ Eliminates the open-loop dynamics from the input disturbance response
- ☐ FSP for unstable plants
- ☐ FSP for ramp and other disturbances
- Robustness-Performance trade-off

$$H_{yq}(s) = P_n(s) [1 - H_{yr}(s) F_r(s)]$$

Is it ideally possible to achieve $J_{min} = 0$?

Filtered Smith Predictor

The same Hyr as SP

$$H_{yr}(s) = \frac{C(s)G_n(s)e^{-Ls}}{1 + C(s)G_n(s)}F(s)$$

$$P(s) = \frac{K_e}{1+sT}e^{-Ls}$$

$$H_{yr}(s) = e^{-Ls}$$

$$H_{yq}(s) = e^{-Ls} \left[1 - e^{-Ls} \right]$$

The filter $F_r(s)$ allows:

- Eliminates the open-loop dynamics from the input disturbance response
- ☐ FSP for unstable plants
- ☐ FSP for ramp and other disturbances
- □ Robustness-Performance trade-off

$$H_{yq}(s) = P_n(s) [1 - H_{yr}(s) F_r(s)]$$

 $J_{min}=0!$

Example: Integrative plant

Simple Process
$$P(s) = \frac{e^{-Ls}}{s}$$

Controller: $C(s) = k_c$

Filter $F_r(s) = 1 + Ls$

$$H_{ur}(s) = e^{-Ls}$$

$$H_{yr}(s) = e^{-Ls}$$
 $H_{yq}(s) = \frac{e^{-Ls}}{s} - \frac{e^{-2Ls}}{s} - Le^{-2Ls}$

Ideal Tuning: $k_c \to \infty$

PID design using FSP

Many FSP successful applications in practice:*

Termo-solar systems, Compression systems, Neonatal Care Unit.

FSP autotuning for simple process**

Idea: To derive a PID tuning for dead-time

processes using the FSP approach

PID is a low frequency approximation of the FSP.

$$C(s) = \frac{K_c(1+sT_i)(1+sT_d)}{sT_i(1+s\alpha T_d)}$$

^{*}Torrico, Cavalcante, Braga, Normey-Rico, Albuquerque, I&EC Res. 2013.

^{**}Normey-Rico, Sartori, Veronesi, Visioli. Control Eng. Practice, 2014

^{*}Flesch, Normey-Rico, Control Eng. Practice, 2017

^{*} Roca, Guzman, Normey-Rico, Berenguel, Yebra, Solar Energy, 2011

PID tuning using FSP

Tuning procedure

Process models: FOPDT, IPDT, UFOPDT

$$G_n(s) = \frac{K_p}{1+sT}$$
 $G_n(s) = \frac{K_p}{s}$ $G_n(s) = \frac{K_p}{sT-1}$

$$G_n(s) = \frac{K_p}{s}$$

$$G_n(s) = \frac{K_p}{sT - 1}$$

• PI primary controller (only P for the IPDT) $C(s) = K^{\frac{1+s\tau_i}{s\tau_i}}$

$$C(s) = K \frac{1 + s\tau_i}{s\tau_i}$$

$$F_r(s) = \frac{1+sT_1}{1+sT_2}$$

• FO predictor filter $F_r(s) = \frac{1+sT_1}{1+sT_2}$ (tuning for step disturbances)

- Tuning for a delay-free-closed-loop system with pole (double pole) in $s=-1/T_0$
- T_0 is the only tuning parameter for a trade-off robustness-performance

Tuning procedure

Equivalent 2DOF controller

$$C_{eq}(s) = \frac{C(s)F_r(s)}{1 + C(s)G_n(s)(1 - e^{-L_n s}F_r(s))}, \quad F_{eq}(s) = \frac{F(s)}{F_r(s)},$$

$$\left(e^{-L_n s} \to \frac{1 - 0.5L_n s}{1 + 0.5L_n s}\right)$$

2DOF PID

- C_{eq} avoids pole-zero cancellation
- T_o free tuning parameter

Tuning procedure

Tuning advantages of the predictor-PID

□ Unified approach for FOPDT, IPDT and UFOPDT (L<2T)
 □ It has only one tuning parameter To*
 □ Has similar performance than well known methods*
 □ It is a low frequency approximation of the ideal solution for first order dead-time models

Interesting PID tuning method to use in comparisons with dead-time compensators and predictive controllers

Next: To compare PID and FSP

^{*} Normey-Rico and Guzmán. Ind. & Eng. Chem. Res., 2013

^{*} Astrom and Hagglund, Research Triangle Park, 2006

Performance Index

$$J = \lambda \int_{t=t_s+L}^{t_d} |r(t) - y(t)| + (1 - \lambda) \int_{t=t_d+2L}^{t_{ss}} |r(t) - y(t)|$$

$$\lambda \in [0, 1]$$
 $\lambda = 0.5$ in this work

Robustness

$$P(j\omega) = P_n(j\omega)[1 + dP(j\omega)]$$

$$C_{eq}(s) \text{ stabilizes } P_n(s)$$

Robust condition
$$R(\omega) > \overline{dP}(\omega) \ge |dP(j\omega)| \quad \forall \omega > 0$$

Conservatism can be avoided separating dead-time uncertainties*

^{*}Larsson and Hagglund (2009), ECC 2008

- Robust tuning $J_{FSP} \approx J_{PID}$
- Fast tuning $J_{FSP} < J_{PID}$

23/48

- Robust tuning $J_{FSP} \approx J_{PID}$
- Fast tuning $J_{FSP} < J_{PID}$

PID for robust solutions FSP has advantages with good models

- Same conclusions as in FOPDT
- UFOPDT Robustness has a limit increasing T_0 *

^{*} Normey-Rico and Camacho, 2007, Springer

Tuning: Trade-off Robustness-Performance

Minimise J for robust stability for a given modelling error

Particular tuning using:
$$R(\omega) > \overline{dP}(\omega) \quad \forall \omega > 0$$

• Minimise ${\it J}$ for robust stability for a given $\,R_m=\min_{\omega}R(\omega)\,$

General tuning using $R_m \ ({
m or} \ M_S)$

^{*} Grimholt and Skogestad 2012, IFAC PID 2012.

Tuning: Trade-off Robustness-Performance

Minimise J for robust stability for a given modelling error

Particular tuning using:
$$R(\omega) > \overline{dP}(\omega) \quad \forall \omega > 0$$

• Minimise J for robust stability for a given $R_m = \min_{\omega} R(\omega)$

General tuning using $R_m \ ({
m or} \ M_S)$

Control effort (total variation) and noise attenuation are directly related to robustness indexes as R_m (or Ms)*

 $[\]begin{array}{c} 1/M_s \\ \hline \\ -1 \\ \hline \\ C(j\omega)P_n(j\omega) \end{array}$

^{*} Grimholt and Skogestad 2012, IFAC PID 2012.

Conclusions

- Case 1: poor model information (large modelling error)
 - Simple model is used for tuning
 - High robustness is mandatory
 - Step disturbances

PID will be the best solution, even for dead-time dominant systems

- Case 2: good model is available (small modelling error)
 - Fast responses are required
 - Low robustness is enough
 - Complex models or disturbances

FSP will be better (even for lag-dominant systems) because of the PID nominal limitations

Conclusions

Concerning dead-time: dead-time value is less important than dead-time modelling error.

Implementation issues:

- •FSP is implemented as a 2DOF discrete controller
- •FSP is a complex algorithm (delay order (in samples) + model order)
- PID is simple to implement

General problems in industry: large modelling error, noise, simple models and solutions

Use a well tuned PID for dead-time processes

Example 1: High-order system

$$P(s) = \frac{e^{-s}}{(s+1)^3}$$

$$P_n(s) = \frac{e^{-2s}}{(2s+1)}$$

Prediction Model for FSP

PID tuning using SWORD * tool

FSP and **PID** have the same performance

^{**}Garpinger, O. and T. Hägglund (2015), Journal of Process Control.

^{**} SWORD Matlab software tool.

Example 2: PID, SP and FSP

$$P(s) = \frac{e^{-10s}}{1 + \frac{2\xi s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$

$$\xi = 0.2, \, \omega_n = 1$$

Max. delay error 20%

Open-loop oscillatory disturbance response

- SP and FSP with the same primary PID controller
- PID tuning for min IAE for *Ms*=2 (using sword tool)

Performance Analysis

$$J=\int_0^\infty \mid e(t)\mid dt$$
 —— FSP 14% better Process output

$$J_{dr} = \int_{t,t+2L}^{\infty} |e(t)| dt \longrightarrow$$
 FSP 40% better

Robustness: FSP stable up to -35% or +35% delay error, SP unstable for 20% delay error

Example 2: PID, SP and FSP

$$P(s) = \frac{e^{-10s}}{1 + \frac{2\xi s}{\omega_n} + \frac{s^2}{\omega_n^2}}$$
$$\xi = 0.2, \, \omega_n = 1$$

- SP unstable for this case
- PID and FSP similar responses

FSP and PID with plant constraints

- In real process control action is limited, as well as slew rate
- Also, process output should be between limits
- Anti-windup (AW) can be used to mitigate the effect of the saturation in the integral action in PID and FSP
- MPC appears as a direct solution to implement optimal control under system constraints

When is MPC a better choice?

MPC, FSP and PID

GPC – Generalized predictive controller

General MPC idea

General MPC idea

GPC cost

$$J = \sum_{j=0}^{d-N_y} [y(k+j|k) - w(k+j)]^2 + \sum_{j=0}^{N_u-1} \lambda [\triangle u(k+j)]^2,$$

GPC Model

$$A(z^{-1})y(k) = z^{-d}B(z^{-1})u(k-1) + \frac{e(t)}{\triangle}$$
 $L = dT_s$

$$A(z^{-1})y(k) = z^{-d}B(z^{-1})u(k-1) + \frac{e(t)}{\triangle}$$
 $L = dT_s$

Prediction computation

Prediction computation

GPC structure?

Prediction computation

GPC structure ? (unconstrained)

Prediction computation

GPC structure?

(unconstrained)

C(z) integral action

 $\operatorname{order}\{G_n(z)\} \to \operatorname{order}\{C(z), F_r(z)\}$

coeficients related to N, N_u, λ

Unconstrained GPC structure

- GPC is equivalent to a discrete FSP
- FSP can be tuned using GPC method (exactly the same solution)
- FSP-MPC can be used (for robust controllers and easy tuning)*
- For 1^{st} order models \rightarrow GPC \Rightarrow 2DOF FSP (PI primary controller)

Comparison FSP-PID is valid for GPC-PID for 1st order models

Is valid for other linear MPC (simply a model rearrangement)

Constrained case?

^{*} Normey-Rico and Camacho, 2007, Springer

^{*} Lima, Santos and Normey-Rico, 2015, ISA Transactions

Constrained GPC

$$\mathbf{u} = [\Delta u(k) \dots \Delta u(k + N_u - 1)]$$

Constrained GPC

$$\mathbf{u} = [\Delta u(k) \dots \Delta u(k + N_u - 1)]$$

Constrained GPC

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathbf{H} \mathbf{u} + \mathbf{b}^T \mathbf{u} + f_0,$$
s. t.
$$\mathbf{R} \mathbf{u} \leq \mathbf{r}$$

All constraints are written as a linear inequality on u

$$\mathbf{u} = [\Delta u(k) \dots \Delta u(k + N_u - 1)]$$

Constrained GPC

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathbf{H} \mathbf{u} + \mathbf{b}^T \mathbf{u} + f_0,$$

s. t.
$$\mathbf{R} \mathbf{u} \le \mathbf{r}$$

All constraints are written as a linear inequality on u

$$\mathbf{u} = [\Delta u(k) \dots \Delta u(k + N_u - 1)]$$

- QP solved at each sample time
- Only u(k) is applied
- The horizon window is displaced

Constrained GPC

$$\underline{U} \le u(k) \le \overline{U} \quad \forall k \ge 0,$$

$$\underline{u} \le u(k) - u(k-1) \le \overline{u} \quad \forall t \ge 0,$$

$$\underline{y} \le y(k) \le \overline{y} \quad \forall k \ge 0.$$

$$\mathbf{u} = [\Delta u(k) \dots \Delta u(k + N_u - 1)]$$

$$\min_{\mathbf{u}} \quad \frac{1}{2} \mathbf{u}^T \mathbf{H} \mathbf{u} + \mathbf{b}^T \mathbf{u} + f_0,$$
s. t.
$$\mathbf{R} \mathbf{u} \leq \mathbf{r}$$

- QP solved at each sample time
- Only u(k) is applied
- The horizon window is displaced

All constraints are written as a linear inequality on u

GPC gives goods results with small N_u (in many applications $N_u=1$ is enough*)

^{*} De Keyser and Ionescu, IEEE CCA 2003

AW for FSP and PID

AW scheme

 $u_i(k)$ has the integral action of PID or FSP

$$u(k) = u_i(k) + u_d(k)$$

 $u_d(k)$ has the rest of the control action of PID or FSP

AW originally derived for control action constraints

Several AW strategies in literature

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

^{*} Flesch and Normey-Rico, Control Eng. Practice, 2017

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case
$$\begin{bmatrix} u(k)=u(k-1)+n_0e(k)+n_1e(k-1)+n_2e(k-2)\\ u(k)>u_{max}\to u_r(k)=u_{max} \end{bmatrix}$$

^{*} Flesch and Normey-Rico, Control Eng. Practice, 2017

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case
$$\begin{bmatrix} u(k)=u(k-1)+n_0e(k)+n_1e(k-1)+n_2e(k-2)\\ u(k)>u_{max}\to u_r(k)=u_{max} \end{bmatrix}$$

Consider:
$$u_r(k) = u(k-1) + n_0 e^*(k) + n_1 e(k-1) + n_2 e(k-2)$$

^{*} Flesch and Normey-Rico, Control Eng. Practice, 2017

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case
$$\begin{bmatrix} u(k) = u(k-1) + n_0 e(k) + n_1 e(k-1) + n_2 e(k-2) \\ u(k) > u_{max} \to u_r(k) = u_{max} \end{bmatrix}$$

Consider:
$$u_r(k) = u(k-1) + ne^*(k) + n_1e(k-1) + n_2e(k-2)$$

$$\Rightarrow e^*(k) = e(k) + \frac{u_r(k) - u(k)}{n_0}$$

Used in the code to update the error: $e(k-1)=e^*(k)$

^{*} Flesch and Normey-Rico, Control Eng. Practice, 2017

^{*}Silva, Flesch and Normey-Rico, IFAC PID 18

Recalculation of the error signal at every sample

Objective: to maintain the consistence between u(k) (computed) and $u_r(k)$ (applied)

PID case
$$\begin{bmatrix} u(k)=u(k-1)+n_0e(k)+n_1e(k-1)+n_2e(k-2)\\ u(k)>u_{max}\to u_r(k)=u_{max} \end{bmatrix}$$

Consider:
$$u_r(k) = u(k-1) + ne^*(k) + n_1e(k-1) + n_2e(k-2)$$

$$\Rightarrow e^*(k) = e(k) + \frac{u_r(k) - u(k)}{n_0}$$

Used in the code to update the error: $e(k-1)=e^*(k)$

ER* better results, principally in noise environment

*Silva, Flesch and Normey-Rico, IFAC PID 18

^{*} Flesch and Normey-Rico, Control Eng. Practice, 2017

$$u(k) < U_{max}$$

$$u(k) < U_{max}$$
 $\Delta u(k) < \Delta u_{max}$

$$y(k) < y_{max}$$

$$\Delta u(k) < \Delta u_{max}$$
 $y(k) < y_{max}$

$$y(k) < y_{max}$$

$$y(k-i)$$
 $u(k-i)$
 $u(k+j)$

MODEL

Predictions
 $y(k+d+j/t)$

Assuming
$$N_u = 1$$

 $u(k+j) = u(k) \ \forall j$

$$y(k+d+j/k) = f(u(k), y(k-i), u(k-i))$$

$$y(k) = ay(k-1) + bu(k-d-1)$$

$$y(k) = ay(k-1) + bu(k-d-1)$$

$$y(k+d) = a^{d}y(k) + ba^{d-1}u(k-d) + \dots + bu(k-1)$$

$$y(k) = ay(k-1) + bu(k-d-1)$$

$$y(k+d) = a^d y(k) + ba^{d-1} u(k-d) + \dots + bu(k-1)$$

$$y(k+d+j) = a^{j}y(k+d) + (a^{j-1} + a^{j-2} + \dots + 1)b u(k)$$
 K_{j}

$$y(k) = ay(k-1) + bu(k-d-1)$$

$$y(k+d) = a^d y(k) + ba^{d-1} u(k-d) + \dots + bu(k-1)$$

$$y(k+d+j) = a^{j}y(k+d) + (a^{j-1} + a^{j-2} + \dots + 1)b u(k)$$
 K_{j}

$$y(k+d+j) < y_{max}$$

$$y(k) = ay(k-1) + bu(k-d-1)$$

$$y(k+d) = a^d y(k) + ba^{d-1} u(k-d) + \ldots + bu(k-1)$$

$$y(k+d+j) = a^{j}y(k+d) + (a^{j-1} + a^{j-2} + \dots + 1)b u(k)$$
 K_{j}

$$y(k+d+j) < y_{max}$$

$$u(k) < \frac{y_{max} - a^j y(k+d)}{K_j}$$

$$u(k) < \min\{U_{max}; \Delta u_{max} + u(k-1); \frac{y_{max} - a^{j}y(k+d)}{K_{j}}\}$$

GPC or FSP(PID) ER-AW?

- Constrained GPC or FSP-ER-AW
 - Good tuned FSP with ER-AWP equivalent to GPC (Nu=1)
 - On-line optimization is avoided with FSP
 - FSP filter tuning is **easy** in practice

Several successful applications in solar systems and refrigeration plants *

- In robust industrial solutions → PID-ER-AW
 - Simple models are used
 - Robust tuning (low Ms or high Rm values)

^{*} Roca, Guzman, Normey-Rico, Berenguel and Yebra, Solar Energy, 2011

^{*} Flesch and Normey-Rico, Control Eng. Practice, 2017

Water temperature control

Experiments: Electrical water heater

Normalized Control variable (number pulses)

$$u_{max} = 1$$
$$u_{min} = 0$$

Model identification: step test

$$P(s) = \frac{18.7e^{-8s}}{13.1s+1}$$

GPC –
$$N = 60, N_u = 10, \lambda_n = 1$$

PID – $T_0 = 8$

Same IAE performance PID smother control action

Temperature control

New GPC tuning to accelerate the responses

GPC -
$$N = 60, N_u = 10, \lambda_n = 0.3$$

Problems:

- Small performance improvement
- Lower robustness
- Lower noise attenuation

PID is simpler and better

$$\frac{T(s)}{U(s)} = \frac{0.76}{304.7s+1}e^{-108s}$$

$$u_{max} = 95\%$$

$$u_{min} = 5\%$$

$$\frac{T(s)}{U(s)} = \frac{0.76}{304.7s+1}e^{-108s}$$

$$u_{max} = 95\%$$

$$u_{min} = 5\%$$

Important

- To maintain Inlet temperature
- Fast set-point response
- Fast disturbance rejection
- Delay error well estimated

$$\frac{T(s)}{U(s)} = \frac{0.76}{304.7s+1}e^{-108s}$$

$$u_{max} = 95\%$$

$$u_{min} = 5\%$$

Important

- To maintain Inlet temperature
- Fast set-point response
- Fast disturbance rejection
- Delay error well estimated

FSP ER-AWP

Important

- To maintain Inlet temperature
- Fast set-point response
- Fast disturbance rejection
- Delay error well estimated

FSP ER-AWP

- When controlling dead-time processes....
 - Performance measurement after the dead-time
 - Ideal solution can be achieved by FSP (or other improved DTC)
 - Dead-time estimation error is very important
 - Constrained case: ER AW FSP can be equivalent to MPC
- PID for dead-time processes
 - Can be tuned as a low order approximation of FSP
 - Performance improvement is limited in complex cases
 - For high robust solutions PID is equivalent to FSP (even for high L)
 - ER AW PID sub-optimal solution with good results.

- When controlling dead-time processes....
 - Performance measurement after the dead-time
 - Ideal solution can be achieved by FSP (or other improved DTC)
 - Dead-time estimation error is very important
 - Constrained case: ER AW FSP can be equivalent to MPC
- PID for dead-time processes
 - Can be tuned as a low order approximation of FSP
 - Performance improvement is limited in complex cases
 - For high robust solutions PID is equivalent to FSP (even for high L)
 - ER AW PID sub-optimal solution with good results.

Low-order-process models
Large modelling error
Noise environment
Typical constraints

Well tuned robust PID with AW is the best option

46/48

- PID still has an important figure in process industry
- DTC strategies with PI or PID primary controllers can be considered as extensions of simple PID control and used in particular cases
- Improved AW PID algorithms (or FSP AW) can be the solution in modern real-time distributed control systems for simple constrained systems
- MPC solutions are important in complex well modeled systems and at second level control

Thanks!

For your attention

PID18 organizers

julio.normey@ufsc.br

DYCOPS 2019

12th IFAC Symposium on Dynamics and Control of Process Systems, including Biosystems

April, 23-26, 2019 - Florianópolis, Brazil

DYCOPS 2019

dycops.cab2019@gmail.com

http://dycopscab2019.sites.ufsc.br/