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1. INTRODUCTION

Development of robust high-gain control algorithms with
trivial parameters adjustment for wide range of applica-
tions is of interest to scientists and engineers from all over
the world. There is a number of research works, where
various problem statements are addressed using the con-
secutive compensator approach (for example, see Bobtsov
(2005); Bobtsov and Nikolaev (2005)), which is based on
the passification principle Fradkov (2003). However, the
majority of such works assume unbounded control signals,
while the input saturation effect together with the consec-
utive approach and internal model principle still had not
been properly studied.

The input saturation together with the integral term in
the controller structure might lead to the so-called integral
windup. In turn it expresses in overshoot and settling
time increase, which at critical values can lead to self-
oscillations and loss of stability in real systems, especially
unmanned aerial vehicles. The issue of the input saturation
lies in the fact that integral component accumulates error
value when the control signal exceeds the saturation limits.

Anti-windup approaches based on various principles are
used to take into account input saturation and eliminate
its negative effects. Setpoint Limitation principle assumes
specification of admissible areas, where the reference val-
ues can be given so, that the control signal never ap-
proaches the saturation limits. As a rule, such approach
restricts the control quality and does not solve the is-

? This article is supported by Russian Science Foundation, project
16-11-00049. All the experiments of this research have been carried
out on the testbed “KOMEX-1” located at the Laboratory “Control
of Complex Systems” of IPME RAS.

sue under conditions of external disturbances. Conditional
Integration deactivates the integral loop using the con-
ditional algorithm, when the control signal reaches the
saturation limits. Back Calculation assumes choosing an
auxiliary signal as an error between the saturated control
and the original one and sending it to the integrator input
to compensate error accumulation within the saturation
zone. An advantage with respect to the previous one is that
the deactivation of the integral term is done dynamically
instead of the conditional algorithm Åström and Hägglund
(2006).

Anti-windup compensation is used extensively in a wide
range of applications. For example, the effect of integral
windup is addressed in the flight control issues in An-
drievsky et al. (2013, 2012, 2015); Leonov et al. (2012). The
problem of the discrete-event control of manufacturing
systems using the anti-windup procedure is considered in
Van Den Bremer et al. (2008).

This study represents the continuation of the quadcopter
control research published in Borisov et al. (2016, 2017);
Tomashevich et al. (2017b). The preliminary theoretical
study on quadcopter stabilization using the consecutive
compensator approach with the integral term and anti-
windup scheme is presented in Borisov et al. (2016). The
control law for quadcopter stabilization is updated with
the adaptation law in Borisov et al. (2017). The work
Tomashevich et al. (2017b) focuses on the experimental
verification of the designed control algorithms using 2-
DOF quadcopter testbed “KOMEX-1”. The current study
provides a novel state-space representation of the robust
output high-gain control approach. The integral loop with
anti-windup compensation scheme is implemented to the
controller structure following the internal model principle.
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The detailed stability analysis of the closed-loop system is
provided. The proposed control algorithm is implemented
to the quadcopter testbed and results of the experimental
study are given in the paper.

The paper is organized as follows. The addressed problem
is stated in Section 2. The mathematical model of the
plant is transformed in Section 3 to extract its zero
dynamics. The control law and stability proof are given
in Section 4. The proposed control algorithm is applied
to the quadcopter model in Section 5. The experimental
results of the dual-mode stabilization of the quadcopter
are provided in Section 6.

2. PROBLEM STATEMENT

Consider the SISO system

ẋ=Ax+ bu+Rw, (1)

y = cTx, (2)

where x ∈ Rn is the state vector, u ∈ R1 is the control
signal, w ∈ Rnw is the disturbance vector, y ∈ R1 is
the measurable output signal, A, R, b, c are matrices and
vectors of corresponding dimensions.

In general the disturbance vector w can be considered as
the state of linear system of the form

ẇ = Sw, (3)

where S is the state matrix of the corresponding dimen-
sion.

The control signal u satisfies the saturation condition

u = sat(υ) =

{
umax if υ ≥ umax,

u if umin < υ < umax,
umin if υ ≤ umin,

(4)

umin and umax are the input saturation limits, υ is the
nominal control signal generated by the linear regulator.

Assumption 1. The zero dynamics of the plant (1), (2) is
stable.

Assumption 2. The relative degree of the plant (1), (2)
ρ ≥ 1 is known.

Assumption 3. The output of the disturbance generator
(3) is a static signal, i.e. S = 0 and w(0) 6= 0.

Assumption 4. The input limits umin and umax satisfy

umin = −ulim < 0, umax = ulim > 0,

where ulim > 0 is the saturation limit.

Assumption 5. The disturbance is bounded w ∈ L∞ and
the nominal control signal u0 needed for its compensation
at steady state satisfies

umin ≤ |u0| ≤ umax.

The purpose is to design the control law u based only on
the measurements of the output signal y such that the
following relation holds

lim
t→∞

y(t) = 0

under conditions of external disturbances and saturated
input (4).

3. ZERO DYNAMICS EXTRACTION

Perform change of coordinates to extract the stable zero
dynamics. The input-output representation of the plant
model (1), (2) is

y(s) =
b(s)

a(s)
u(s) +

r(s)

a(s)
w(s), (5)

where the polynomial b(s) is Hurwitz due to Assump-
tion 1.

Transform the model (5) as follows

a(s)

b(s)
y(s) = u(s) +

r(s)

b(s)
w(s),(

c(s) +
d(s)

b(s)

)
y(s) = u(s) +

(
r2(s) +

r1(s)

b(s)

)
w(s),

c(s)y(s) =

(
u(s)−

d(s)

b(s)
y(s) +

r1(s)

b(s)
w(s)

)
+ r2(s)w(s),

which rewrite as

z(s) =
d(s)

b(s)
y(s)− r1(s)

b(s)
w(s)

y(s) =
1

c(s)
(u(s)− z(s)) +

r2(s)

c(s)
w(s),

which is equivalent to the state-space representation of the
plant (1), (2)[

ż1

ż2

]
=

[
A11 A12

A21 A22

] [
z1

z2

]
+

[
0
b2

]
u+

[
R1

R2

]
w, (6)

y =
[
0 cT2

] [z1

z2

]
, (7)

where the matrix A11 is Hurwitz due to Assumption 1,

b2 = [0 . . . 0 b0]
T

, c2 = [1 0 . . . 0]
T

.

4. CONTROL DESIGN AND STABILITY ANALYSIS

Choose the control law

υ =−κ(cTq ξ + y)− γη, (8)

ξ̇ =Aqξ + bqy, (9)

η̇ = κ(cTq ξ + y) + νκ(υ), (10)

κ(υ) = υ − sat(υ), (11)

where κ(υ) is the nonlinear anti-windup signal, κ > 0,
γ > 0, ν > 0, the matrix Aq and vectors bq, cq are of the
form

Aq =


−q′ρσ 1 0 · · · 0
−q′ρ−1σ

2 0 1 · · · 0
...

−q′2σρ−1 0 0 · · · 1
−q′1σρ 0 0 · · · 0

, bq =


q′ρσ

q′ρ−1σ
2

...
q′2σ

ρ−1

q′1σ
ρ

, cq =


q1

q2

...
qρ−1

qρ

,
where σ > 0 q′i (i = 1, ρ) are chosen for the system (9)
to be Hurwitz, qi (i = 1, ρ) are coefficients of an arbitrary
Hurwitz polynomial of the form q(s) = qρs

ρ−1 + · · ·+q2s+
q1.

Combine the plant (6), (7) and the control law (8)-(11)
and obtain the model of the closed loop system (12).

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

353



ż1

ż2

ξ̇
η̇

=


A11 A12 0 0
A21 A22 − κb2cT2 −κb2cTq −b2γ
0 bqc

T
2 Aq 0

0 κcT2 κcTq 0


z1

z2

ξ
η

+

 0
−b2

0
ν

κ +

R1

R2

0
0

w (12)

ż1

ż2

χ̇
η̇

=


A11 A12 0 0
A21 A22 − κb2(cTq + cT2 ) κb2c

T
q −b2γ

A21 A22 − I0 − κb2(cTq + cT2 ) Aq + κb2c
T
q −b2γ

0 κ(cTq + cT2 ) −κcTq 0


z1

z2

χ
η

+

 0
−b2
−b2
ν

κ +

R1

R2

R2

0

w. (13)

ż1

ζ̇
ż2

χ̇

=


A11 0 A12 0
b̄T2 A21 −γ b̄T2 (A22 + γI) 0
A21 −b2γ A22 − κb2(cTq + cT2 ) + γb2b̄

T
2 κb2c

T
q

A21 −b2γ A22 − I0 − κb2(cTq + cT2 ) + γb2b̄
T
2 Aq + κb2c

T
q


z1

ζ
z2

χ

+

 0
(ν − 1)
−b2
−b2

κ +

 R1

b̄T2 R2

R2

R2

w. (14)

The change of coordinates χ = z2−ξ transforms the closed-
loop model (12) in the form (13), where

I0 = Aq + bqc
T
2 =


0 1 0 · · · 0
0 0 1 · · · 0
...
0 0 0 · · · 0

 .
The next change of coordinates ζ = (bT2 b2)−1bT2 z2 + η
transforms the closed-loop model (13) in the form of (14),
where

b̄T2 = (bT2 b2)−1bT2 = b−2
0 bT2 = b̄T2 =

[
0 . . . 0

1

b0

]
, b0 6= 0.

Due to Assumption 1 and chosen basis of the model (6),
(7) matrix A11 is Hurwitz. Note that the block matrix

A1 =

[
A11 0
b̄T2 A21 −γ

]
is Hurwitz, since choice of γ > 0 allows to shift the
eigenvalues of the block matrix A1 to the left from the
imaginary axis.

It can be shown that there exists the number κ∗ such that
for ∀κ ≥ κ∗ the block matrix

A2 =

 A11 0 A12

b̄T2 A21 −γ b̄T2 (A22 + γI)
A21 −b2γ A22 − κb2(cTq + cT2 ) + γb2b̄

T
2


is Hurwitz. Indeed, only the block element A22−κb2(cTq +

cT2 ) + γb2b̄
T
2 depends on the parameter κ. Its sufficiently

large increase shifts eigenvalues of the block A2 to the left
from the imaginary axis without effecting the remaining
block elements.

Due to the structure of the matrix Aq it can be similarly
shown, that the overall state matrix of the closed system is
Hurwitz. Indeed, the parameter σ together with the vector
cq defining the stable dynamics of Aq and consequently the
overall block Aq + κb2c

T
q is not included in the remaining

block elements. Its increase allows to shift eigenvalues of
the matrix A to the left from the imaginary axis.

As a result, due to choice of parameters γ, κ, σ in the
system (14) Hurwitzness of the all diagonal block elements
of the matrix A, from which Hurwitzness of the overall
matrix follows.

Temporarily assume w = 0 and consider the case without
external disturbances. Write the closed-loop system (14)

in the compact form as the feedback interconnection of
the plant (1),(2) and the control law (8)–(11)

ẋ = Ax + bκ(υ), (15)

υ = cTx, (16)

where

x=

[
x
ξ
η

]
,A=

A− κbcT −κbcTq −γbbqc
T Aq 0

κcT κcTq 0

,b=

[−b
0
ν

]
,c=

[−κc
−κcq
−γ

]
.

Proposition 6. The closed-loop system consisting of the
linear part (15)–(16) and static nonlinearity κ(υ) is ab-
solutly stable with all initial conditions.

Proof. In accordance to the Popov criterion Khalil
(2002), the closed-loop system consisting of the linear part
(15)–(16) with Hurwitz state matrix A and the memo-
ryless nonlinear function κ(υ) is absolutely stable for all
initial conditions if there exists a constant $ ≥ 0 such that
(1 + λi$) 6= 0 for each eigenvalue λi of the matrix A and
the transfer function W (s) = 1 + (1 + s$)W`(s) strictly
positive real, where W`(s) is the transfer function of the
system (15)–(16).

Choose $ = 0, then to prove the absolute stability of the
system it is sufficient to show strictly positive realness of
the transfer function W (s) = 1 +W`(s).

Calculate the transfer function W`(s)

W`(s) = cT (sI −A)−1b =
[
−κcT −κcTq −γ

]
A

[−b
0
ν

]
.

where represent the matrix A = (sI −A)−1 in the block
form

A = Ā−1 =

[
Ā11 Ā12

Ā21 Ā22

]−1

=

[
A11 A12

A21 A22

]
, (17)

where

Ā11 = sI −A+ κbcT , Ā12 =
[
κbcTq γb

]
,

Ā21 =

[
−bqcT
−κcT

]
, Ā22 =

[
sI −Aq 0
−κcTq s

]
,

and use the Frobenius formula for block matrices inversion.

Calculate the inverse matrix of the block Ā22

Ā−1
22 =

[
sI −Aq 0
−κcTq s

]−1

=

[ Aq 0
κ

s
cTq Aq

1

s

]
,
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where Aq = (sI −Aq)−1.

Calculate all the blocks of the matrix A

A11=
(
Ā11−Ā12Ā−1

22 Ā21

)−1
=

(
sI−A+b

κbq(s)(s+γ)

saq(s)
cT
)−1

,

A12=−A11Ā12Ā−1
22 =

[
−κ(s+ γ)

s
A11bc

T
q Aq(s)−

γ

s
A11b

]
,

A21 =−Ā−1
22 Ā21A11 =

Aq(s)bqcTA11

κbq(s)

saq(s)
cTA11

 ,
A22 = Ā−1

22 −A21Ā12Ā−1
22

=

(1−
κ(s+ γ)

s
Aq(s)bq

β(s)

α(s)
c
T
q

)
Aq(s) −

γ

s
Aq(s)bq

β(s)

α(s)(
1−
κ(s+ γ)bq(s)

saq(s)

β(s)

α(s)

)
κ

s
c
T
q Aq(s)

(
1−
γκbq(s)

saq(s)

β(s)

α(s)

)
1

s

,
where

bq(s)

aq(s)
= cTq Aq(s)bq + 1, (18)

β(s)

α(s)
= cTA11b =

b(s)saq(s)

saq(s)a(s) + κbq(s)(s+ γ)b(s)
.(19)

Remark 7. Note that Hurwitzness of the numerator and
denominator of the transfer function (18) can be achieved
by choosing matrix Aq and vectors bq and cq.

Substitute derived expressions of the blocks A11, A12, A21
and A22 into the matrix A (for the sake of brevity the
middle column is omitted)

A =


A11 ∗ −

γ

s
A11b

Aq(s)bqc
TA11 ∗ −

γ

s
Aq(s)bq

β(s)

α(s)

κbq(s)

saq(s)
cTA11 ∗

(
1−

γκbq(s)

saq(s)

β(s)

α(s)

)
1

s

 .

Calculate the transfer function W`(s)

W`(s)=
[
−κcT −κcTq −γ

]
A

[−b
0
ν

]
=
βκ(s)− γνaq(s)a(s)

saq(s)a(s) + βκ(s)
,

where
βκ(s) = κbq(s)(s+ γ)b(s). (20)

Next, calculate the transfer function W (s) and show its
strictly positive realness

W (s)=W`(s)+1=
2κbq(s)(s+ γ)b(s) + (s− γν)aq(s)a(s)

saq(s)a(s) + κbq(s)(s+ γ)b(s)
.

Indeed, together with Remark 7 and Assumption 1 it
easy to show, that there exists a number κ0 such that
for κ ≥ κ0 both the numerator and denominator of
the transfer function W (s) are Hurwitz. The relative
degree of W (s) is zero. As a consequence, strictly positive
realness follows, i.e. ReW (jω) > 0, ∀ω ∈ [−∞,∞]
or equivalently ReW`(jω) > −1, ∀ω ∈ [−∞,∞] and
the absolute stability of the system (15), (16) follows in
accordance to the Popov criterion Khalil (2002).

Return to the case of external disturbance presence (w 6=
0) and analyze the steady error. Obviously, the following
relation holds at steady state υ = sat(υ), consequently

κ(υ) = υ − sat(υ) = 0. In order to determine steady state
behavior use the Sylvester equation applied to the model
(12). In particular focus on the fourth row

ΣS = κ(cT2 Π2 + cTq Πξ),

which shows that at steady state

cT2 Π2 + cTq Πξ = 0. (21)

Find the relation between cT2 Π2 and cTq Πξ. Consider the
auxiliary variable z0

z0 = y + cTq ξ, (22)

taking into account (21), the steady state value of which
is zero.

From (9) follows

ξ(s) = (sI −Aq)−1(bqy(s) + ξ(0)),

where ξ(0) is a vector of initial conditions.

Then, rewrite (22)

z0(s) = (cTq (sI −Aq)−1bq + 1)y(s) + ε(s),

where ε(s) = cTq (sI −Aq)−1(ξ1(0) + ξ2(0)) corresponds to
the exponentially decaying function ε(t).

If cTq is chosen so that the numerator of the transfer

function (cTq (sI−Aq)−1bq + 1) is Hurwitz and the relative
degree is zero, then from

y(s) = (cTq (sI −Aq)−1bq + 1)−1(z0(s)− ε(s))
find that the steady-state error of y as well as cTq ξ con-
verges to zero.

5. QUADCOPTER CONTROL

Consider the quadcopter mathematical model assuming
the drag coefficient equal to zero at low speed Altuǧ et al.
(2002):

mẍ=

4∑
i=1

ui(cφsθcψ+sφsψ), Jθ θ̈=`(−u1−u2+u3+u4),

mÿ=

4∑
i=1

ui(sφsθcψ−cφsψ), Jψψ̈=`(−u1+u2+u3−u4),

mz̈=

4∑
i=1

ui(cθcψ)−mg, Jφφ̈=C(u1−u2+u3−u4),

where x, y, z are the Cartesian coordinates, θ, ψ, φ are
the Euler angles, which correspond to the pitch, roll and
yaw angles, ui, i = {1, 2, 3, 4} are the control signals
representing the lift force of each motor, m is the mass
of the quadcopter, g is the gravitational acceleration, `
is the distance between the quadcopter geometric center
and the plane passing through axes of rotation of two
adjacent motors, Jθ, Jψ, Jφ are the moments of inertia,
C is the conversion factor from force to torque, cφ ≡ cosφ,
sφ ≡ sinφ.

Decompose the quadcopter model choosing the set of
quasi-control signalsU1

U2

U3

U4

 =

 1 1 1 1
−1 −1 1 1
−1 1 1 −1
1 −1 1 −1


u1

u2

u3

u4

 , (23)
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where the quasi-control signals Ui, i = {1, 2, 3, 4} satisfy
the saturation condition

Ui = sat(υi) =

{
Ui,max, υi ≥ ui,max,

Ui, ui,min < υi < ui,max,
Ui,min, υi ≤ ui,min,

(24)

Ui,min and Ui,max are the input saturation limits satisfying
Assumption 4, υi are the nominal control signals generated
by the independed SISO linear regulators.

Following transformations similar to Borisov et al. (2016,
2017) use the linearized quadcopter model

m¨̄x = −U5, Jθ θ̈ = `U2, (25)

m¨̄y = −U6, Jψψ̈ = `U3, (26)

mz̈ = U1 −mg, Jφφ̈ = CU4, (27)

where the desired values of the roll and pitch angles are
calculated as

θ∗ =
U5

U1
, ψ∗ = −U6

U1
, U5 = U1θ, U6 = −U1ψ. (28)

Remark 8. Note that in the final engineering implementa-
tion the calculation algorithm should be modified in order
to avoid singularities in (28). Zero values of θ∗ and ψ∗

should be assigned when U1 is approaching to zero. Values
of θ∗ and ψ∗ should be bounded to avoid critical reference
peaks within the transient processes.

The relative degrees of all the subsystems (25)–(27) equal
ρi = 2. In view of that the adapted regulator has the form

υi =−κi(cTq,iξi + yi)− γiηi, (29)

ξ̇i =Aq,iξi + bq,iyi, (30)

η̇i = κi(c
T
q,iξi + yi) + νiκi(υi), (31)

κi(υi) = υi − sat(υi), (32)

where κi(υi) are the nonlinear anti-windup signals, κi > 0,
γi > 0, νi > 0, the matrices Aq,i and vectors bq,i, cq,i are
of the form

Aq,i =

[
−q′i,2σi 1
−q′i,1σ2

i 0

]
, bq,i =

[
q′i,2σi
q′i,1σ

2
i

]
, cq,i =

[
qi,1
qi,2

]
,

where σi > 0.

As a last step, we need to do inverse transformation of (23)
to calculate the input signals to be sent to the actuatorsu1

u2

u3

u4

 = 0, 25

1 −1 −1 1
1 −1 1 −1
1 1 1 1
1 1 −1 −1


U1

U2

U3

U4

 .
6. EXPERIMENTAL APPROVAL

Experimental study of the proposed control algorithm
has been carried out using the 2-DOF indoor quadcopter
testbed “KOMEX-1” (see Fig. 1). This testbed represents
a wooden stationary structure with two moving elements.
A bar, at the middle of which a quadcopter is rigidly
mounted, is connected to an outer frame by means of
hinges. The outer frame is attached to the vertical pillars.
Such construction provides two degrees of freedom of the
quadcopter in the directions of roll and pitch angles. Thus,
the testbed allows to test dual-channel stabilization of the
quadcopter under laboratory conditions without any risks
of damage. Hardware and software parts of the quadcopter

Fig. 1. Quadcopter testbed “KOMEX-1”

testbed are described in the works Tomashevich and
Belyavskyi (2016); Tomashevich et al. (2017a).

The experimental results of the stabilization of the both
pitch and roll angles are shown in Fig. 2. The control law
(29)–(32) has been chosen with the parameters κ2 = κ3 =

5, γ2 = γ3 = 1, ν2 = ν3 = 1, Aq,2 = Aq,3 =

[
−10 1
−100 0

]
,

bq,2 = bq,3 =

[
10
100

]
, cq,2 =

[
2
1

]
, cq,3 =

[
1
1

]
, σ2 = σ3 = 10.

The both control signals were saturated (see Fig. 2a and
2c). The input saturation limits chosen for each channel
are U2,lim = 800 RU, U3,lim = 400 RU.

Note that the quadcopter is affected by the external
disturbance caused by the air flow generated by the
quadcopter propellers and reflected from the floor. Despite
this, the transient processes of the both angles are stable
under condition of the bounded input signals.

7. CONCLUSION

The well-known structure of PID controllers can be gen-
eralized using the consecutive compensator approach to-
gether with integral loop and anti-windup compensation
scheme. The particular form of this controller explicitly
related with a classical PID structure is presented in
Tomashevich et al. (2017b). In this research the consecu-
tive compensator approach is rewritten in the state-space
representation, that allows to analyze the absolute stabil-
ity of the closed-loop system with the input saturation
nonlinearity using the Popov criterion. Practical value of
the designed control law is confirmed by the experimental
study of simultaneous stabilization of pitch and roll angles
of the quadcopter.

There are several directions of the further research on the
addressed topic. As one can see from (3), this study focuses
on the regular component of the disturbance. However, the
irregular component of the disturbance does not violate
the stability proof in general. Using the Lyapunov function
approach it is easy to estimate the steady-state error with
respect to the noise magnitude. besides that, the proposed
approach might be improved using the internal model
in general form to compensate sinusoidal disturbances.
Adaptation laws can be implemented in case if the dis-
turbance frequencies are unknown, which is reasonable for
real applications.
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Fig. 2. Experimental results (RU stands for “Relative Units”)
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