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Abstract: In the present work, motivated by the recent inclusion of optical variables in
combustion processes, we consider the control of a reduced Hammerstein plant model over
an additive white noise (AWN) channel located at the feedback path. For comparison, assuming
uncertainty in the knowledge of the static nonlinearity of the Hammerstein plant model, we
first propose in a one degree-of-freedom (DOF) scheme, the design of a proportional controller
for robust stability. We then introduce a PI controller, in a 3 DOF scheme, to achieve not only
robust stability, but also AWN channel Signal-to-Noise Ratio (SNR) minimization and setpoint
first moment tracking.
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1. INTRODUCTION

For the last two decades the research area of Networked
Control Systems (NCS) has concentrated the research
interest of the control community, (J.Chen et al., 2011).
Theoretical developments have proceeded apace based on
information theory (Nair and Evans, 2004; Martins and
Dahleh, 2008), optimization and linear control (Elia, 2004;
Braslavsky et al., 2007; Rojas, 2012), multivariable and
multiagent approaches (Jadbabaie et al., 2003; Middleton
and Braslavsky, 2010; Knorn et al., 2016) and more
recently event-triggered control (Heemels et al., 2012;
da Silva Jr. et al., 2014; Campos-Delgado et al., 2015).
All of the previous theoretical results and more, are
now the basis for an informed control practice, revisiting
established control processes, as well as facing new and
demanding ones, toward achieving increased performance.

Such a revisited process is the combustion process, ubiq-
uitous in most industrial setups Ballester and Garcia-
Armingol (2010), which has recently benefited with the
addition of optic based sensors Huang et al. (2010); Garces
et al. (2016a). Commonly, combustion processes have
their flue gasses monitored through analyzers or chro-
matographs, which inevitably introduce transport time-
delays in the plant models and a biased measurement
(Kamimoto et al., 2016; Baukal, 2010). On the other hand,
optical measurements of the flame can be performed in-
situ, avoiding the transport time-delay and providing a
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more accurate description of the combustion real time
status (Ballester and Garcia-Armingol, 2010). Albeit, the
obtained measurement is ideally transmitted through a
communication channel, see Figure 1, avoiding unneces-
sary and prone to malfunction cabling due to the harsh
environment and demanding conditions close to the fur-
nace.

In Garces et al. (2016b, 2015) it is argued that for such
combustion processes, monitored through optic based sen-
sors, an Hammerstein first order model is representative of
the real process, under the hypothesis of a mild nonlinear-
ity in the stationary response of the optical measurements.
Since the linear part of the plant model is a first order
system, this motivate the use of P/PI controller. On the
other hand, the input static nonlinearity (characteristic of
an Hammerstein model) is treated in Alonge et al. (2015);
Gao et al. (2015); Guo et al. (2015); Sun et al. (2009) with
a 2 degree-of-freedom (DOF) controller scheme.

In our first contribution, we offer explicitly the design
requirement for robust stability and its trade-off with the
AWN channel SNR requirement when using a P controller.
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Fig. 1. Controlled combustion process scheme.
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Our second contribution extends the previous to a PI
controller in a 2 DOF scheme that solves the trade-off
between robust stability and AWN channel SNR reduction.

In our third and last contribution we consider a 3 DOF
scheme to the setpoint tracking objective, and thus high-
light the trade-off between robust performance and track-
ing.

The significance of this work is to present a controller
design strategy for optical measurements in a combustion
process, to fill the gap between instrumentation systems
and a feedback operation to increase energy efficiency or
reduce the pollutants emissions in a complex operation,
subjected to more restricted profit margins and fuels with
non-constant composition.

This paper is organized as follows. Section 2 presents the
standing assumptions behind this work, briefly reviewing
the proposed plant model and the channel SNR definition.
Section 3 derives the design requirements for a P controller
to achieve robust stability. Section 4 extends the results
in two directions by considering now a PI controller in a
2DOF scheme achieving robust stability and channel SNR
reduction. Section 5 introduces a 3DOF scheme, together
with the established PI controller, to highlight the trade-
off between Robust stability, AWN channel SNR reduction
and setpoint tracking. Conclusions are given in Section 6.
All control results in this preliminary work are simulation
based, we expect to achieve experimental confirmation at
a later stage.

2. PRELIMINARIES

In this section we present the standing assumptions for
this work.

2.1 Assumptions

Plant model: In Garces et al. (2016b, 2015) it
has been established that a Hammerstein first order
model can be a reasonable representation of an opti-
cally sensed combustion process

y(z) =
KG

αz − 1
f(u), (1)

where KG > 0 and α > 1 are the plant model gain
and time constant, whilst f(u) is the input static
nonlinearity. The signal y(k) corresponds to the mea-
sured total radiation Radt(k) and the input signal
u(k) to the percentage of fan speed λ(k injecting air
into the combustion chamber. In Figure 2 we show the
scatter plot and average value of stationary total radi-
ation Radt(∞) measured in a ladle furnace preheat-
ing process (described in Samuelsson and Sohlberg
(2010); Zabadal et al. (2004)), where the nonlinear
static response is verified as function of the stationary
value of fan speed λ(∞). A schematic of optically
sensed ladle furnace preheating process is presented
in Figure 3 where the main stages of measurements
are summarized as the field flame spectra from the
flame measured with the spectrometer and the spec-
tral processing stage where the optical variables are
finally calculated.

Fig. 2. Scatter plot of optically sensed ladle furnace pre-
heating process.

Fig. 3. Schematic of ladle furnace optically sensed.

- Channel model: The channel model is in general
characterized by the admissible channel input power
level P and the channel additive noise process n(k).

- Channel additive noise process: The channel
additive noise scalar process n(k) is a zero-mean,
i.i.d., white noise process with known variance σ2.

- Setpoint process: the setpoint process is an i.i.d.
Gaussian white noise process with mean µr and
variance σ2

r , independent of the channel additive noise
process n(k).

From Figure 1 we assume that the controller C1 is such
that the output feedback system is stable in the sense that
for any distribution of initial conditions, the distribution
of all signals in the loop will converge to a stationary
distribution. The power of the channel input, defined by
‖s‖2Pow , limk→∞ E

{

s2(k)
}

, is then required to satisfy a
user defined power constraint P . Under the stationarity
assumption presented in (Åström, 1970, §4.4), the power
of the channel input can then be computed as ‖s‖2Pow =

‖Tsr(z)‖22
(

σ2
r + µ2

r

)

+ ‖Tsn(z)‖22 σ2, where the H2 norm is
defined as

∥

∥T{·}(z)
∥

∥

2

2
=

1

2π

∫ π

−π

T{·}(e
jω)TH

· (ejω)dω

The power constraint at the channel input can be then
redefined as an SNR constraint P

σ2 which must be satisfied
by the squared H2 norm of Tsr(z) and Tsn(z)

P
σ2

> ‖Tsr(z)‖22
σ2
r + µ2

r

σ2
+ ‖Tsn(z)‖22 . (2)

From (2) we then have bound on the AWN channel SNR.

We treat the partial knowledge of f(u), represented by

f̂(·), in a worst case scenario for which we define

γ = max
v

[

f
(

f̂−1(v)
)]

. (3)
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The inner feedback loop is then analyzed for this worst-
case scenario, see for example Figure 5 for the case C1 =
Kp, with γ in place.
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Fig. 4. 1 DOF configuration for a Hammerstein first order
model over an AWN channel.

A sufficient condition for robust stability, assuming a
nominal plant model Go and a real plant model G =
Go(1 + G∆) can be inferred for example from (Goodwin
et al., 2001, Theorem 5.3), as ‖To‖∞‖G∆‖∞ < 1. In the
previous expression To = GoC1/(1+GoC1) is the nominal
complementary sensitivity, that is considering the nominal
plant model Go. Applied to the case under study, we
recognize G∆ = γ − 1 and thus the condition

‖To‖∞|γ − 1| < 1 (4)

is sufficient for robust stability. If we wish to achieve robust
performance is again sufficient to increase the demand on
the above condition as ‖To‖∞|γ − 1| << 1.

3. 1 DOF ROBUST P CONTROL

In this section we consider the use of a proportional con-
troller Kp in place of C1 in Figure 4. More so, we discuss
the design of Kp for the worst case scenario of mismatch
knowledge on the input static nonlinearity, see Figure 5.
We start by considering the nominal complementary sen-
sitivity function resulting from a proportional controller

Channel
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Fig. 5. 1 DOF configuration for a P robust control of
Hammerstein first order model over an AWN channel.

To(z) =
KpKG

αz − 1 +KpKG

(5)

From the above we can obtain the range of values of Kp

that ensures nominal stability, given α and KG

1− |α|
KG

< Kp <
1 + |α|
KG

(6)

Observe that, under the assumption proposed in Section 2
of α,KG > 0, the range of Kp spans negative and positive
values. We proceed now by considering the channel SNR
resulting for the nominal case. As explained in Section 2,
the channel SNR is lower bounded by the expression

‖To‖22
(

σ2
r + µ2

σ2
+ 1

)

=
K2

GK
2
p

α2 − (1 −KGKp)2

(

σ2
r + µ2

r

σ2
+ 1

)

(7)

As expected, as Kp approaches any of the extreme values
for stability, the above lower bound tends to infinity. Also,

K2
p K2

G
(2 − γ)γ (α+ 1)2

K1
p −2KG(α + 1) 0

K0
p (α + 1)2

Table 1. Routh Hurwitz algorithm on Kp.

it is clear that asKp → 0, then this SNR lower bound tends
to zero, which is correct in so far the proposed linear part
of the plant model is stable, α > 1. On the other hand, if
α < 1, it is not difficult to verify that the minimum value
of ‖To‖22 is given by (1 − α2)/α2 which is in agreement,
for example, with (Rojas, 2012, Theorem 2). For robust
stability, in light of Equation (4), we need to study the
H∞ norm of To. In general a closed-form expression for
this type of norm is not readily available. However, in this
occasion this is possible due to the rather simple expression
for To(z) we are considering in this section. Nevertheless,
there are two cases to study depending on the value of the
product KpKG. Specifically, for

KpKG > 1 (8)

the H∞ norm of To(z) is then

‖To‖∞ =
|KpKG|

√

α2 + (KpKG − 1)(KpKG − 1− 2α)
(9)

Since we want to impose by design the condition in
Equation (4), this result in the following equation

0 < K2
G(2 − γ)γ ·K2

p − 2KG(α+ 1) ·Kp + (α + 1)2

= K2
G(2 − γ)γ(Kp −Kp1)(Kp −Kp2) (10)

A Routh-Hurwitz argument, see Table 1, identifies both
Kp1 and Kp2 as positive roots. Assuming 0 < Kp1 < Kp2

we expect Kp1 to be an upper bound on Kp for robust
stability.
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1/|γ-1|

Kp3 Kp1

Fig. 6. AWN channel SNR, blue solid line, and H∞ norm
of the nominal complementary sensitivity To(z), black
dash-dotted line.

The second case, to complete the study on the H∞ norm
of To(z) is imposed by

KpKG ≤ 1 (11)

which results in an expression for ‖To‖∞ of

‖To‖∞ =
|KpKG|

√

α2 + (KpKG − 1)(KpKG − 1 + 2α)
(12)
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Again, the above norm expression, together with Equation
(4) lead us to the following inequality

0 < K2
G(2− γ)γ ·K2

p − 2KG(−α+ 1) ·Kp + (−α+ 1)2

= K2
G(2− γ)γ(Kp −Kp3)(Kp −Kp4) (13)

A similar Routh- Hurwitz, not presented, identifies Kp3

and Kp4 as negative roots. Assuming Kp4 < Kp3 < 0
we now expect Kp3 to be a lower bound on Kp for
robust stability. That is, in conclusion, we have for robust
stability, the requirement on Kp of

Kp3 < Kp < Kp1 (14)

To better understand the obtained expressions for the SNR
reduction and robust stability we present next an example.

Example 1. In this example we consider KG =
√
2, α =√

3, σ2
r + µ2

r = σ2 = 1 and γ = 0.1. The resulting
expressions for this example are presented in Figure 6. The
AWN channel SNR is shown in a blue solid line, whilst the
H∞ norm of To(z) is shown in a black dash-dotted line.
For stability the range of Kp is limited to −0.5176 < Kp <
1.9319, whilst for robust stability this range is further
reduced to Kp3 = −0.2724 < Kp < 1.0168 = Kp1.

The previous example highlights the limitations of using a
proportional controller to solve the problems at hand, that
is robust stability, SNR reduction and setpoint tracking.
The proportional controller best solution for the first two
is to do nothing (since the plant model is stable), and it
is well known that a proportional controller is not suitable
for setpoint tracking with zero steady state error.

4. 2 DOF ROBUST PI CONTROL

The last comment in the previous section motivates the
proposal of using a PI controller, instead of a P controller.
We also take the opportunity to analyze the introduction
of a second degree of freedom in the controller solution,
represented by C2 in Figure 7. As in Freudenberg et al.
(2010) we consider C2 as a simple gain value. More so, we
define C1(z) as

C1(z) =

(

Kp +Ki

z

z − 1

)

· 1

C2
(15)

that is a modified PI controller. The nominal closed-loop
relationship of interest in this case is represented by

Channel

❜❜

❜

❜

✻
✲✲

✛

✲

✛
✻

✲
−

r(k)

C2

C1 G
y(k)u(k)

n(k)

❜

Fig. 7. General 2 DOF scheme over an AWN channel.

P

σ2
>

∥

∥

∥

∥

C2GoC1

1 + C2GoC1

∥

∥

∥

∥

2

2

(

σ2
r + µ2

r

σ2
+ 1

)

(16)

Since C1(z) contains the inverse of C2 we have that the
lower bound on the AWN channel SNR can be designed
exclusively through the PI part of C1(z), that is through
the user selection of Kp and Ki. From Rojas and Garces
(2017), adapting the notation, we can directly quote the
appropriate result for completeness, which specifies that

P

σ2
>

2b1boa1 − (b2o + b21)(ao + 1)

(ao − 1)((ao + 1)2 − a21)

(

σ2
r + µ2

r

σ2
+ 1

)

, (17)

with b1=
KG(Kp+Ki)

α
, bo = −KGKp

α
,

a1= −1− 1
α
+

KG(Kp+Ki)
α

, ao =
(1−KGKp)

α
.

For robust stability, on the other hand, we study the
closed-loop relationship between y(k) and r(k), n(k) which
is given by

y(k) = try(k) ∗ r(k)− try(k) ∗ n(k) (18)

where the zeta transform of try is given by

Try(z) =
GoC1

1 + C2GoC1
(19)

The key observation is then that, given the proposed 2
DOF scheme and definition of C1(z), then Try(z) is in-
versely proportional to C2. As a consequence, as C2 → ∞,
then ‖Try‖∞ → 0 and thus we can satisfy the robust sta-
bility requirement imposed by γ through C2 independently
of the selection of Kp and Ki selected for SNR reduction.
Finally, as we achieve steady state through a stabilizing
choice of C1(z) and C2 plus taking expectation, we obtain

yss = lim
k→∞

E{y(k)} = lim
k→∞

try ∗ µr = µr (20)

since E{n(k)} = 0 and the presence of the integral action
in C1(z). Thus, as long as ki 6= 0, we can also achieve the
proposed tracking objective.
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Fig. 8. AWN channel SNR, blue solid line, and H∞ norm
of the nominal complementary sensitivity To(z), black
dash-dotted line, for C2 = 1 and C2 = 10.

Example 2. In this example, for consistency, we also con-
sider KG =

√
2, α =

√
3, σ2

r = µ2
r = σ2 = 1 and γ = 0.1.

The integral gain Ki is selected to be 0.1. The resulting
expressions for this example are presented in Figure 8. The
AWN channel SNR is shown in a blue solid line, whilst
the H∞ norm of To(z) is shown in a black dash-dotted
line, for both C2 = 1 and C2 = 10. The range of Kp,
as in the previous example and for comparison, is limited
to −0.5176 < Kp < 1.9319. We observe that the choice
of PI controller has resulted in an overall increased AWN
channel SNR lower bound. We also observe, that as C2

increases (in this case from 1 to 10) the range of values for
Kp compatible with the robust stability condition (below
the red dashed line) increases. This accounts for more user
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freedom at the moment of deciding the AWN channel SNR.
Observe also that, due to the PI structure, even for Kp = 0
we still have an SNR lower bound different from zero, since
in this occasion, the integral part of C1(z) maintains the
loop closed. Finally, Figure 9 shows the dynamic response
for a sub-set of SNR values {0.2, 0.52, 1.68, 6.12} imposed
by Kp values of {−0.01, 0.49, 0.99, 1.49} , where the zero
error for tracking is verified, but the dynamic response
has an increased overshoot when the SNR increases. In
particular, for the last value of Kp we observe a rather
unacceptable overshoot of 30 % percent together with a
poorly compensated oscillatory response.
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SNR
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SNR
2

SNR
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4

Fig. 9. Example of dynamic response for tracking
and SNR1 = 0.1999, SNR2 = 0.5176, SNR3 =
1.6822, SNR4 = 6.1168

Another well known feature introduced by a communica-
tion channel is transmission delay. This feature can be
studied directly with the present setup, see Figure 10,
where we consider a one unit time delay.

The closed-loop relationship that defines the AWN channel
SNR lower bound is now

P

σ2
>

∥

∥

∥

∥

C2GoC1

z + C2GoC1

∥

∥

∥

∥

2

2

(

σ2
r + µ2

r

σ2
+ 1

)

(21)

For a specific PI structure for the linear part of C1 this in
turns reports

P

σ2
>

−(b1 − b2)
2β1 + 2b1b2 (α1 − β1)

α2β1 − α1β2

(

σ2
r + µ2

r

σ2
+ 1

)

,

(22)

with b2=
KG(Kp+Ki)

α
, b1 = −KGKp

α
, a2= −α1+1

α
,

a1=
1+KG(Kp+Ki)

α
, ao = −KGKp

α
, α1 = aoa1 − a2,

α2 = −2aoa1a2 + a2o + a21 + a22 − 1,
β1 = a2o + aoa2 − a1 − 1 and β2 = 2(a1 − aoa2)(ao + a2).
We omit the proof, but as intuition would have it, for
the same values of Kp,Ki,KG and α an extra time delay
increases the AWN channel SNR lower bound. Of course a
transmission delay is not limited to only one unit time
delay, but again, the more the transmission delay the
bigger will be the AWN channel SNR lower bound and
thus the overall requirement for a successful transmission
over the AWN channel. The robust part of the design,
when including a one time delay in the channel, follow the
same approach as without it.

Channel

❜❜

❜

❜

✻
✲✲ ✲

✛
✻

✛✛

✲
−

r(k)

C2

C1 G
y(k)u(k)

n(k)

1
z

❜

Fig. 10. General 2 DOF scheme over an AWN channel with
a one unit time delay.

5. 3 DOF FOR ROBUST PERFORMANCE
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Fig. 11. General 3 DOF scheme.

In this section we consider the use of a 3 DOF scheme,
see Figure 11. This approach is in line with what already
proposed in Alonge et al. (2015); Gao et al. (2015); Guo
et al. (2015); Sun et al. (2009), albeit for a 2 DOF scheme.
The main objective is to use C3(z) to impose a desired
closed-loop relationship between y(k) and the pre-filtered
setpoint rs(k). It is straightforward then, given Tobj(z) as
such a desired closed-loop objective, that a suitable choice
for C3(z) is

C3(z) =
1

C2
· Tobj(z)T

−1
ry (z) (23)

For the above choice, and the scheme in Figure 11, the
AWN channel SNR is now lower bounded by

P

σ2
> ‖Tobj‖22

σ2
rs + µ2

rs

σ2
+ ‖Tsn‖22 (24)

where σrs and µrs are the variance and mean, respectively,
of rs(k). The AWN channel SNR lower bound is then the
result of the design of Tsn(s)(z) and the choice of Tobj(z).
For robust stability, on the other hand, we have

y(k) =
1

C2
· tobj(k) ∗ r(k) − try(k) ∗ n(k) (25)

The key observation now is that, as long as C3(z) is
inversely proportional to C2, we can still satisfy the robust
stability requirement imposed by γ through C2, indepen-
dently of the selection of Kp and Ki, assuming a PI choice
for C1(z). As in the previous section, taking expectation
we obtain the tracking of rs by y(k)

y(k) = E{ 1

C2
· tobj(k)∗ r(k)− try(k)∗n(k)} =

µrs

C2
· tobj(k)

(26)
Therefore, with the user choice of tobj(k) for all k, subject
to limk→∞ tobj(k) = C2, we can impose as desired, a user
defined closed-loop relationship between y(k) and the pre-
filtered setpoint rs(k).

6. CONCLUSIONS

In the present work, motivated by the recent inclusion
of optical variables in combustion processes, we have
proposed different schemes for the control of a reduced
Hammerstein plant model over an additive white noise

Preprints of the 3rd IFAC Conference on Advances in Proportional-
Integral-Derivative Control, Ghent, Belgium, May 9-11, 2018

442



(AWN) channel located at the feedback path using P and
PI controllers. We first proposed a 1 DOF scheme with
a P controller to illustrate the design challenges involved.
We then introduced a PI controller, in a 2 DOF and 3
DOF scheme, to achieve not only robust stability, but also
AWN channel SNR reduction and setpoint first moment
tracking. Future directions should consider other type of
communication channel models, beyond the AWN channel,
and also the inclusion of dynamical uncertainty in the
linear part of the plant model.
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