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Abstract: In the current study, an adaptive PID controller is proposed for fault-tolerant control
of a quadrotor helicopter system in the presence of actuator faults. A fuzzy inference scheme
is used to tune in real-time the controller gains. Tracking errors and change in tracking errors
are used in this fuzzy scheduler to make the system act faster and more effectively in the event
of fault occurrence. Two fault scenarios are investigated: the loss of control effectiveness in all
actuators and the loss of control effectiveness in one single actuator. The proposed adaptive
PID controller is compared with the conventional one through an experimental application to
a quadrotor helicopter testbed at the Department of Mechanical and Industrial Engineering of
Concordia University. The obtained results show the effectiveness of the proposed method.
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1. INTRODUCTION

The quadrotor helicopter is relatively a simple, affordable
and easy to fly system. It has been widely used to develop,
implement and flight-test methods in control, fault diag-
nosis, fault tolerant control as well as multi-agent based
technologies in formation flight, cooperative control, dis-
tributed control, surveillance and search missions, mobile
wireless networks and communications. Some theoretical
works consider the problems of control (Dierks and Jagan-
nathan, 2008), formation flight (Dierks and Jagannathan,
2009) and fault diagnosis (Rafaralahy et al., 2008) of the
quadrotor Unmanned Aerial Vehicle (UAV). However, few
research laboratories are carrying out advanced theoretical
and experimental works on the system. Among others,
one may cite for example, the UAV health management
project of the Aerospace Controls Lab. at MIT (SWARM,
2011), the Stanford Testbed of Autonomous Rotorcraft for
Multi-Agent Control project (STARMAC, 2011) and the
Micro Autonomous Systems Technologies project (MAST,
2011). A team of researchers is also currently working at
the Department of Mechanical and Industrial Engineer-
ing of Concordia University to develop, implement and
test approaches in Fault Detection and Diagnosis (FDD),
Fault-Tolerant Control (FTC) and cooperative control
with experimental application to the quadrotor unmanned
helicopter system. For more information on the research
activities carried out, interested readers are referred to the
Networked Autonomous Vehicles (NAV) laboratory (NAV,
2011).

One of our main objectives is to propose control methods
that are effective, simple to implement for real-time ap-
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plications and robust to model uncertainties and external
disturbances including actuator faults. PID (Proportional
- Integral - Derivative) controllers are the most well-known
controller in the society of automation and control, due to
their simple structure and wide variety of usage. These
kinds of controllers are classified into two main categories
in terms of parameters selection strategies. In the first
group, controller gains are fixed during operation while
in the second group, gains change based on the operating
conditions. In the first group, gains are tuned by the
designer and remain invariable during the operation. One
of the most well-known methods for choosing control gains
in this group is Ziegler-Nichols method which has been
addressed in lots of research works (Ziegler and Nichols,
1942). Although this method is simple and straightfor-
ward, fine tuning is required for different applications.

In most applications, due to structural changes the con-
trolled system may lose its effectiveness, therefore the PID
gains need to be continuously retuned during the system
life span. To reduce the effort of retuning the gains and also
in order to increase system’s performance, in the second
group of controllers, the gains are adapted online. Several
methods have been proposed in the literature for PID gain
scheduling. In Ng et al. (1997) a stable gain-scheduling
PID controller is developed based on grid point concept
for nonlinear systems, in which gains switch between some
predefined values. Different gain scheduling methods were
studied and compared in Karray et al. (2002). In Zhao
et al. (1993) a new PID scheme is proposed in which
the controller gains were scheduled by a fuzzy inference
scheme. Many variations and improvements of this sim-
ple and effective method were followed by latter research
works (Yu and Hsu, 2007; Zulfatman and Rahmat, 2009;
Guo and Yang, 2010). A particle swarm optimization
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method is used in Yu and Hsu (2007) to design mem-
bership functions of fuzzy PID controller. In Yao and
Lin (2005), an accumulated genetic algorithm is proposed
which learns the parameters and number of fuzzy rules
in the fuzzy PID controller. An adaptive fuzzy PID using
neural wavelet network is presented in El Emary et al.
(2009). The interested readers can find a brief review of
different fuzzy PID structures in Hu et al. (2001).

As part of our research group activities, a Gain-Scheduled
PID (GS-PID) is designed for the quadrotor system in
Sadeghzadeh et al. (2011). The GS-PID has been imple-
mented for different sections of the entire flight envelope
by properly tuning the PID controller gains for both nor-
mal and fault conditions. The switching from one PID to
another is then based on the actuator’s health status. It is
worthy to note that the above method requires a Fault
Detection and Diagnosis (FDD) scheme to provide the
time of fault occurrence as well as the location and the
magnitude of the fault during the flight. Motivated by this
work and to eliminate the need for the FDD module, an
adaptive PID controller is proposed in this paper for fault-
tolerant control of a quadrotor helicopter system. A fuzzy
inference scheme is used to tune in real-time the controller
gains, where the tracking error and the change in tracking
error are used in this fuzzy scheduler to make the system
act faster and more effectively in the fault-free case as well
as in the event of fault occurrence. Two fault scenarios
are investigated: the loss of control effectiveness in all
actuators and the loss of control effectiveness in one single
actuator. The proposed PID controller is compared with
the conventional one through an experimental application
to the quadrotor helicopter testbed at the NAV Lab.

The reminder of this paper is as follows. Section 2 gives a
description and the mathematical model of the quadrotor
UAV testbed. Section 3 discusses the proposed fuzzy
gain-scheduled PID controller. Some experimental results
are illustrated in Section 4 before giving the concluding
remarks.

2. DESCRIPTION AND DYNAMICS OF THE
QUADROTOR UAV SYSTEM

The quadrotor UAV available at the NAV Lab is the Qball-
X4 testbed (Figure 1) which was developed by Quanser
Inc. partially under the financial support of NSERC (Natu-
ral Sciences and Engineering Research Council of Canada)
in association with an NSERC Strategic Project Grant led
by Concordia University since 2007.

The quadrotor UAV is enclosed within a protective car-
bon fiber round cage (therefore a name of Qball-X4) to
ensure safe operation. It uses four 10-inch propellers and
standard RC motors and speed controllers. It is equipped
with the Quanser Embedded Control Module (QECM),
which is comprised of a Quanser HiQ aero data acquisition
card and a QuaRC-powered Gumstix embedded computer.
The Quanser HiQ provides high-resolution accelerometer,
gyroscope, and magnetometer IMU sensors as well as servo
outputs to drive four motors. The on-board Gumstix com-
puter runs QuaRC (Quanser’s real-time control software),
which allows to rapidly develop and deploy controllers
designed in MATLAB/Simulink environment to control
the Qball-X4 in real-time. The controllers run on-board

 

Fig. 1. The Quanser Qball-X4 quadrotor UAV

the vehicle itself and runtime sensors measurement, data
logging and parameter tuning are supported between the
host PC and the target vehicle.

The entire UAV system’s block diagram is illustrated in
Figure 2. It is composed of three main parts. The first
part represents the Electronic Speed Controllers (ESCs)
+ the motors + the propellers in a set of four. The
input to this part is u = [u1 u2 u3 u4]T which are
Pulse Width Modulation (PWM) signals. The output is
the thrust vector T = [T1 T2 T3 T4]T generated by
four individually-controlled motor-driven propellers. The
second part is the geometry that relates the generated
thrusts to the applied lift and torques to the system. This
geometry corresponds to the position and orientation of
the propellers with respect to the center of mass of the
Qball-X4. The third part is the dynamics that relate the
applied lift and torques to the position (P), velocity (V)
and acceleration (A) of the Qball-X4.
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Fig. 2. The UAV system block diagram

The subsequent sections describe the corresponding math-
ematical model for each of the blocks of Figure 2.

2.1 ESCs, Motors and Propellers

The motors of the Qball-X4 are outrunner brushless mo-
tors. The generated thrust Ti of the ith motor is related
to the ith PWM input ui by a first-order linear transfer
function:

Ti = K
ω

s+ ω
ui ; i = 1, ..., 4 (1)

where K is a positive gain and ω is the motor bandwidth.
K and ω are theoretically the same for the four motors but
this may not be the case in practice. It should be noted
that ui = 0 correponds to zero thrust and that ui = 0.05
corresponds to the maximal thrust that can be generated
by the ith motor.
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2.2 Geometry

A schematic representation of the Qball-X4 is given in
Figure 3. The motors and propellers are configured in
such a way that the back and front (1 and 2) motors spin
clockwise and the left and right (3 and 4) spin counter-
clockwise. Each motor is located at a distance L from the
center of mass o and when spinning, a motor produces
a torque τi which is in the opposite direction of that of
the motor as shown in Figure 3. The origin of the body-
fixed frame is the system’s center of mass o with the x-axis
pointing from back to front and the y-axis pointing from
right to left. The thrust Ti generated by the ith propeller
is always pointing upward in the z-direction in parallel to
the motor’s rotation axis. The thrusts Ti and the torques
τi result in a lift in the z-direction (body-fixed frame) and
torques about the x, y and z axis.
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Fig. 3. Schematic representation of the Qball-X4

The relation between the lift/torques and the thrusts is:

uz = T1 + T2 + T3 + T4

uθ = L(T1 − T2)

uφ = L(T3 − T4)

uψ = τ1 + τ2 − τ3 − τ4

(2)

The torque τi produced by the ith motor is directly related
to the thrust Ti via the relation of τi = KψTi with Kψ as
a constant. In addition, by setting Ti ≈ Kui from (1), the
relation (2) can be written as:

uzuθuφ
uψ

 =

 K K K K
KL −KL 0 0
0 0 KL −KL

KKψ KKψ −KKψ −KKψ


u1u2u3
u4

 (3)

where uz is the total lift generated by the four propellers
and applied to the quadrotor UAV in the z-direction
(body-fixed frame). uθ, uφ and uψ are respectively the
applied torques in θ, φ and ψ directions which are the
pitch, roll and yaw Euler angles respectively (see Figure
3). L is the distance from the center of mass to each motor.

2.3 UAV Dynamics

A commonly employed quadrotor UAV model (Xu and
Ozguner, 2006) is:

mẍ = uz (cosφ sinθ cosψ + sinφ sinψ) ; J1θ̈ = uθ

mÿ = uz (cosφ sinθ sinψ − sinφ cosψ) ; J2φ̈ = uφ (4)

mz̈ = uz (cosφ cosθ) −mg; J3ψ̈ = uψ

where x, y and z are the coordinates of the quadrotor UAV
center of mass in the earth-frame. m is the mass and Ji
(i = 1, 2, 3) are the moments of inertia along y, x and z
directions respectively.

A simplified linear model can be obtained by assuming
hovering conditions (uz ≈ mg in the x and y directions)
with no yawing (ψ = 0) and small roll and pitch angles.
This simplified model is given by:

ẍ = θg; J1θ̈ = uθ

ÿ = −φg; J2φ̈ = uφ (5)

z̈ = uz/m− g; J3ψ̈ = uψ

Although that a PID controller does not require a math-
ematical model of the controlled process, this simplified
model given in (5) is employed to calculate an optimal set
of PID gains using LQR techniques. The performance of
the obtained PID controller is compared to that of the
fuzzy PID presented in the subsequent section.

3. FUZZY GAIN-SCHEDULED PID CONTROLLER

The transfer function of a conventional PID controller is:

G(s) = Kp +
Ki

s
+Kds (6)

where Kp, Ki, and Kd are the proportional, integral,
and derivative gains, respectively. Conventional PID con-
trollers are frequently and widely used in vast number of
industrial applications. They are simple and easy to use
due to the fact that they do not need any mathematical
model of the controlled process or complicated theories.
But one of the main drawbacks of these controllers is that
there is no certain way for choosing the control param-
eters which guarantees the good performance. Although
PID controllers are robust against structural changes and
uncertainties in the system parameters, their performance
may be affected by such changes or may even lead to
system instability. Therefore in real world applications
these gains need to be fine-tuned to keep the required
performance. To overcome this shortcoming, Fuzzy Logic
Controller (FLC) is used to tune PID gains online where
the tracking error and the change of the tracking error are
used to determine control parameters.

Controller gains can be calculated through a simple linear
transformation:

Kp = (Kp,max −Kp,min)K ′
p +Kp,min (7)

Ki = (Ki,max −Ki,min)K ′
i +Ki,min (8)

Kd = (Kd,max −Kd,min)K ′
d +Kd,min (9)

with [Kp,min,Kp,max], [Ki,min,Ki,max] and [Kd,min,Kd,max]
are predefined ranges of Kp, Ki, and Kd respectively. A
set of linguistic rules in the form of (10) is used in the FLC
structure to determine K ′

p, K
′
i and K ′

d:

If e(k) is Ai and ∆e(k) is Bi then K ′
p is Ci, K

′
i

is Di, and K ′
d is Ei

(10)
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where Ai, Bi, Ci, Di, and Ei are fuzzy sets corresponding
to e(k), ∆e(k), K ′

p, K
′
i, and K ′

d respectively. Three sets of
49 rules are used to determine controller gains. Tables 1-3
show the linguist rules used in the FLC. In these tables, N,
P, ZO, S, M, B represent negative, positive, approximately
zero, small, medium, and big respectively. For example NB
means Negative Big, and so on.

Table 1. Fuzzy tuning rules for K ′
p

∆e(k)

NB NM NS ZO PS PM PB

NB B B B B B B B

NM S B B B B B S

NS S S B B B S S

e(k) ZO S S S B S S S

PS S S B B B S S

PM S B B B B B S

PB B B B B B B B

Table 2. Fuzzy tuning rules for K ′
i

∆e(k)

NB NM NS ZO PS PM PB

NB S S S S S S S

NM B B S S S B B

NS B B B S B B B

e(k) ZO B B B B B B B

PS B B B S B B B

PM B B S S S B B

PB S S S S S S S

Table 3. Fuzzy tuning rules for K ′
d

∆e(k)

NB NM NS ZO PS PM PB

NB B B B B B B B

NM M M B B B M M

NS S M M B M M S

e(k) ZO ZO S M B M S ZO

PS S M M B M M S

PM M M B B B M M

PB B B B B B B B

The membership functions for input variables are defined
with triangular and trapezoidal shapes and those for
output variables are singleton (Figures 4 and 5). All the
fuzzy sets for input and output values are normalized for
convenience.

Fig. 4. Membership function for e(k) and ∆e(k)

Fig. 5. Membership function for K ′
p, K

′
d and K ′

i

The generated surfaces for the FLC are shown in Figures
6-8.

Fig. 6. Surface for K ′
p

Fig. 7. Surface for K ′
i

Fig. 8. Surface for K ′
d

4. EXPERIMENTAL RESULTS

The fuzzy PID controller proposed in Section 3 has been
experimentally tested on the Qball-X4 testbed. The con-
troller is built using Matlab/Simulink and downloaded
on the Gumstix emdedded computer to be run on-board
with a frequency of 200 Hz. The experiments are taking
place indoor in the absence of GPS signals and thus the
OptiTrack camera system from NaturalPoint is employed
to provide the system position in the 3D space. In all
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experiments, the system is required to hover at an altitude
of 1 m and the faults are taking place at time instant
t = 20 s.

4.1 First Fault Scenario

In the first fault scenario, it is assumed that a loss of
control effectiveness of 15% is taking place in the four
motors. This kind of fault results in a loss of altitude and
does not really produce significant movement along the x
or y directions. The gains of the conventional PID for the
height control are Kp = 0.0122, Ki = 0.0079, and Kd =
0.0093. The predefined ranges of Kp, Ki, and Kd for the
fuzzy gain-scheduled PID in the height control are Kp,min

= 0.010, Kp,max = 0.015, Ki,min = 0.007, Ki,max = 0.010,
Kd,min = 0.0085, and Kd,max = 0.0095. Figure 9 shows
a comparison between the conventional and the fuzzy
adaptive PID controllers for the height holding flight. It is
clear that the fuzzy adaptive PID controller reduces the
fault effect on the system by reacting faster and returning
the system quicker to its hovering position.
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Fig. 9. Comparison between conventional and fuzzy PID

The time evolutions of the fuzzy PID gains are illustrated
in Figure 10. Unlike those of the conventional PID, the
fuzzy gains are time-varying to adapt to uncertainties,
disturbances and faults as can be clearly seen at t = 20 s.
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Fig. 10. Gains Kp, Ki, and Kd in the first scenario

It can be seen in Figure 10 that after the fault occurs,
Kp decreases to avoid system overshoot due to increase in
tracking error. The derivative gain Kd remains fixed with
a high value to make a fast response to sudden changes in
tracking error. When the system stops descending (loosing
altitude) Kd decreases to let the system recovers faster and
goes back to its desired position. After the fault, integrator
gain Ki also increased to help the recovery process.

Table 4 gives a quantitative comparison between the
conventional and the fuzzy PID. The Root Mean Square
(RMS) is calculated for the tracking error before fault
occurrence and for the 5 seconds after fault. One can
see that before fault occurrence, the performance of both
controllers are close. However, in the fault-case the fuzzy
PID greatly reduces tracking error.

Table 4. RMS of tracking error

Before Fault After Fault

Conv. Fuzzy Conv. Fuzzy

z-direction 88 ×10−4 84 ×10−4 127 ×10−4 98 ×10−4

4.2 Second Fault Scenario

In the second fault scenario, it is assumed that a loss of
control effectiveness of 20% is taking place in the third
motor. This kind of fault results in a loss of altitude and
drift along the y direction. The gains and predefined ranges
for the PID controllers along the z-direction remain the
same as given in the previous section. The gains of the
conventional PID for the y-direction are Kp = 0.2137,
Ki = 0.258, and Kd = 0.238. The predefined ranges of
Kp, Ki, and Kd for the fuzzy PID in the y-direction are
Kp,min = 0.09, Kp,max = 0.35, Ki,min = 0.13, Ki,max =
0.35, Kd,min = 0.023, and Kd,max = 0.029. Figure 11 shows
a comparison between the conventional and the fuzzy PID
controllers along the height and y-direction. As in the first
scenario, the fuzzy PID allows the system to react and
return faster to its hovering position. The time evolutions
of the fuzzy PID gains are illustrated in Figure 12. These
gains are related to the fuzzy PID controller in the y-
direction.
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Fig. 11. Comparison between conventional and fuzzy PID

As in the first scenario, Table 5 gives an quantitative
comparison between both controllers using the RMS of the
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tracking errors along z and y directions. Once again, the
fuzzy PID improves system’s performance specially when
faults occur.

Table 5. RMS of tracking errors

Before Fault After Fault

Conv. Fuzzy Conv. Fuzzy

z-direct. 89 ×10−4 84 ×10−4 44 ×10−4 32 ×10−4

y-direct. 21 ×10−4 7.6 ×10−4 191 ×10−4 132 ×10−4

5. CONCLUSION

This paper addressed the design of fuzzy gain-scheduled
PID controller for a quadrotor unmanned helicopter in
the presence of actuator faults. The proposed controller
has been experimentally tested and compared with the
conventional one. The obtained results revealed the effec-
tiveness of the proposed method and its ability to adapt
in the presence of uncertainties and external disturbances.
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Fig. 12. Gains Kp, Ki, and Kd in the second scenario
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