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Abstract: In this paper, a pseudo PID (PPID) controller, including only one gain to be tuned, is 

proposed. The idea is to connect the I+PD control design with the Fertik and Ziegler-Nichols tuning rules 

in order to obtain not only a simple and efficient control algorithm but also to decrease the operator 

intervention time with respect to the calibration task and to obtain desired closed-loop dynamic. Three 

approaches for stable automatic tuning via, self-tuning, internal model control and small gain theorem, 

are investigated for adjusting the tuning parameter of the controller. Effectiveness and performance 

aspects of the proposed PPID controller are assessed in numerical and experimental plants. 
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

1. INTRODUCTION 

 

The Proportional Integral Derivative (PID) controller is still 

the most popular in the industry of process control despite the 

advances in technology and control theory. The success of 

PID is due to its simple structure, efficient performance and 

applicability to a broad class of practical control systems. As 

real processes exhibit characteristics, such as high-order, 

time-delay and nonlinearity, sometimes it is necessary a 

retuning or a more elaborate algorithm in the PID controller 

design for servo and regulatory responses to provide good 

closed-loop dynamic in different operating points (Åström 

and Hägglund, 2000; Li et al., 2009). 

 

To increase the efficiency of the PID controller in complex 

plants and to facilitate the control design, many calibration 

rules have been developed since the appearance of the first 

proposal of Ziegler-Nichols. In general, the PID controller 

projects are based on heuristic, analytical (parametric and 

non-parametric models), intelligent, optimization and 

advanced (minimum variance and predictive) methods (Ang 

et al., 2005; Visioli, 2006). Some features and difficulties of 

PID tuning methods are: i) the advanced and optimization 

techniques are time-consuming processing and can fail in 

plants with time-varying dynamic or large time-delay, ii) the 

adaptive control technique, called gain scheduling, requires 

prior knowledge of the operating condition of the plant at 

each operating range, to adjust the controller gains locally 

(non-trivial task), iii) the industry of process control shows 

interest in auto-tuning and self-tuning. The first has a lower 

computational complexity and understanding, while the 

second has a market barrier due to the greater complexity and 

feasibility in digital devices such as programmable logic 

controllers. Normally, it is due that this control topology has 

an excessive number of design parameters to be tuned 

(Kirecci et al., 2003; Bobal et al., 2005). 

 

This paper proposes a digital design of a pseudo-PID 

controller characterized by the presence of only one 

parameter to be calibrated. The idea is to show not only the 

flexibility of using the proposed controller to reduce the 

commissioning time, but also to give a consistent 

performance for dynamic systems. The automatic calibration, 

based on simple tuning guidelines of the pseudo-PID 

controller, is linked to issues of stability, loop performance 

and is supported in the following advanced methods: i) self-

tuning approach: the controller gain is directly estimated via 

recursive least-squares, at any operating point of the plant 

and with a reduced machine cycle for applications in 

microprocessors; ii) internal model control (IMC) approach: 

aims to ensure a consistent standard tuning of success in 

academia and industry to avoid the pursuit of gain by trial 

and error procedure (IMC technique uses the knowledge 

about the mathematical model of the controlled plant and the 

closed-loop dynamic must be specified); iii) small gain 

theorem approach: sufficient condition for stability, in the 

frequency domain, is employed to adjust the performance of 

the closed-loop system in the presence of additive 

uncertainty. Case studies and experiments are shown. 

 

2. PSEUDO-PID CONTROLLER DESIGN 

 

Most controllers used in industry are PID for many reasons: 

operational efficiency in closed-loop, programming and 

installation simplicity as a field device. The PID controller 

has different structures of implementation that range among 

manufacturers in terms of tuning, recursive equation, 

topology, filtering and scaling. The standard structure of the 

ideal discrete PID control law has the form 
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where e(t) = yr(t) – y(t) is the system error, Kc is the 

proportional gain, Ti is the integral time, Td is the derivative 
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time and Ts is the sampling period. The implementation of the 

incremental PID controller is given by 
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Equation (2), which is appropriate to microcontrollers 

applications, is present in single-loops and is understandable 

for digital implementation from viewpoints of operators and 

engineers (Visioli, 2006). In addition, the proportional and 

derivative bands appear multiplied by the system error. This 

has an implication on the performance of the controller 

because abrupt changes in the reference, also in error, vary 

instantaneously, producing control actions with excessive 

magnitudes. This condition can degrade the implementation 

of the actuator and process dynamic. To avoid practical 

problems, including loop saturation, the following 

implementation can be chosen: i) keep the integral term with 

e(t) = yr(t) – y(t); ii) substitute to the proportional and 

derivative terms the error with e(t) = –y(t). So, the ideal 

digital PID control (2), can be rewritten as 
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that represents the control structure called I+PD (Ang et al., 

2005; Bobál et al., 2005; Moudgalya, 2007). Selection of the 

PID control gains to adequately interfere on the closed-loop 

dynamic of the controlled plant is a hard task (PiMira et al., 

2000; Åström and Hägglund, 2000). The necessity of simple 

and efficient control algorithms to code in platforms like 

CLP, DSP, FPGA, and microcontroller applications (that are 

highlight in the PID controller industry) are evident 

nowadays (Visioli, 2006). 

 

In order to have a simple practical calibration that not only 

ensures the stability and the closed-loop performance, but 

also facilitates tuning task by the operator, a pseudo-PID 

(PPID) controller is proposed with a single parameter. First, 

based on the relationship established by H. A. Fertik (Seborg 

et al., 1989) and J. G. Ziegler and N. B. Nichols (Visioli, 

2006) is possible to set 
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Second, from (4) and (3) it is possible to obtain the following 

normalized expressions: 
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Finally, the digital equation of the PPID controller takes the 

form 
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Some characteristics for the pseudo-PID controller design 

are: i) there is only one parameter, Kc, to be tuned and, 

classical (Jury, root locus), optimal or advanced (adaptive, 

robust, fuzzy, neural) techniques can be applied; ii) this type 

of control law provides good performance in simple and 

complex plants (nonlinear); iii) the structure of the PPID 

equation is appropriate from the viewpoint of implementation 

in digital technologies (hardware and software) and 

understanding by plant operators. 

 

2.1 Numerical Results with Plant Models 

 

Next, the PPID controller is evaluated and the parameter 

Kc, of (6), is adjusted by trial and error in different standard 

plants proposed in the process control literature (Åström and 

Hägglund, 2000). These models represent dynamic with 

simple and complex behaviors found in the industry. The 

gain Kc, with the mathematical model of each plant, is listed 

in Table 1. 

 

Table 1. PPID gains for the plants 

 
 

In PiMira et al. (2000) these benchmark models were also 

evaluated for a proposed LS-3000 digital PID controller, with 

self-tuning and fuzzy properties. Differently from the results 

presented by the PID controller of PiMira, which did not 

control the unstable plant and did not test in the heat 

conduction problem, the PPID controller stabilized all plant 

models from Table 1 (simulation results are not shown). 

 

2.2 Numerical Results with a Reactor Model 

 

Another case study of numerical simulation, in order to 

illustrate the implementation feasibility of the PPID 

controller, is performed in a continuous stirring reactor 

(CSTR). The following discrete nonlinear equations describe 

the dynamic of the reactor (Chen and Peng, 1997): 

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 FrA1.3



 

 

     

 

2

2

1 1

x ( t )

1 x ( t ) /

s 1 a 1

x (t 1) x (t)

T x (t) D (1 x (t))e  
 

  

   
 
 
 

        (7) 

2

2

2 2 s 2

x ( t )

1 x ( t ) /

s a 1

x (t 1) x (t) T x (t)(1 )

T BD (1 x (t))e u(t)
 

     

   
 
 
 

        (8) 

where x1(t) and x2(t) represent the concentration of reactants 

(dimensionless) and reactor temperature, respectively. The 

control input u(t) is the dimensionless cooling jacket 

temperature. Physical parameters of the reactor model are 

given by: Da = 0.072 (Damköhler number), γ = 0.072 

(activation energy), B = 8 (heat of reaction),  = 0.3 

(coefficient of heat transfer), Ts = 0.2 s. Figure 1 shows the 

phase plane of the CSTR, where there are two stable points 

and an unstable central point. Thus, this type of dynamic 

behavior is a good challenge for evaluating the performance 

and efficiency of the proposed PPID control strategy. 
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Fig. 1. Phase plane of the reactor. 

To analyze the servo dynamic three reference changes are 

used: yr(t) = 1 (sample 1 to 200), yr(t) = 3 (sample 201 to 

400) and yr(t) = 6 (sample 401 to 600). Figure 2 illustrates 

the output and control of the CSTR system with the PPID 

controller, with the calibration being Kc = 3.5 (adjusted by 

trial and error). The closed-loop response shows a good servo 

dynamic behavior in three different operating points with a 

small control variance. 

 

 
 

Fig. 2. Servo response of the reactor with PPID controller. 

 

3. TUNING OF PPID CONTROLLER 

 

To avoid the trial and error tuning procedure for Kc and to 

make the PPID design flexible and automatic, in terms of 

calibration, operator intervention and dynamic performance, 

three effective and in evidence control approaches in 

products already industrially manufactured are derived. 

 

3.1 Tuning for Kc with Self-Tuning Approach 

 

In this proposal, the PPID controller is implemented using a 

direct adaptive control algorithm (self-tuning strategy). To 

calibrate Kc the recursive least-squares estimator is used 

(Kirecci et al., 2003). In this way, (2) can be rewritten as 

Tu(t) (t) (t)        (9) 
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that represents the recursive tuning. Measurement and 

estimated parameters vectors, for the scalar case, are given by 

the following equations: 

r(t) 0.1y (t) 3.6y(t) 6y(t 1) 2.5y(t 2)           (14) 

c(t) K                                   (15) 

The recursive least-squares algorithm with forgetting factor 

can be directly used when the measurements u(t) and (t) 

are available at time t. Thus, the update of (t), which is the 

estimative of Kc, can be expressed as 
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The constant  is called forgetting factor (0 <  < 1). For the 

initialization of P(0) and (0) is useful to consider, in the 

absence of prior knowledge about the plant dynamic, the 

following values: P(0) = α, with α of magnitude [10 ... 106] 

and (0) calibrated with [0.1 … 0.001] (Kirecci et al., 2003; 

Bobal et al., 2005). The factor λe weights the dynamic 

behavior of the closed-loop system in terms of reference 

tracking and u regulates the control energy. 
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3.2 Tuning for Kc with IMC Approach 

 

To evaluate the calibration of PPID controller, which reflects 

the performance of the closed-loop system, a standard tuning 

and of interest to the industry is used to derive the fixed gain 

for the PPID controller. In Morari and Zafiriou (1989) a 

design methodology for the internal model control has the 

PID gains based on the following typical models of industrial 

plants: FOPDT (First-Order Plus Dead-Time), SOPDT 

(Second-Order Plus Dead-Time) and IPDT (Integral Plus 

Dead-Time), as shown in Table 2. The design parameter MF 

adjusts the response speed of the closed-loop system 

(Ravichandran and Karray, 2001; Li et al., 2009). These 

models can be used to represent a variety of real situations. 

Using equations of Table 2, the respective IMC for PPID 

tuning is obtained and the PPID controller gain, for each 

model, is adjusted in Table 3. 

 

Table 2. IMC Tuning for PID 
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Table 3. IMC Tuning for PPID 

Model Tuning 
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In this way, this tuning set avoids a calibration for Kc, in 

practical applications, by the trial and error procedure. 

Additionally, the settings of Table 3 can give a pre-tuning in 

self-tuning implementations or start-up commissioning of 

other industrial loops. 

 

3.3 Tuning for Kc with Small Gain Theorem Approach 

 

In order to ensure stability for the closed-loop system, it is 

possible to analyze the effect of the tuning parameter Kc in 

the frequency domain. In this way, the robust stability under 

the presence of model plant mismatch with the small gain 

theorem can be analyzed (Banerjee and Shah, 1992). Using 

the digital equation of the pseudo-PID control, then (6) can 

be rewritten in the RST canonic structure as follows: 

1 1 1

rR(z )u(t) T(z )y (t) S(z )y(t)                   (20) 
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c
1 K1.0)z(T   

where Kc is the parameter to be tuned that not only penalizes 

the control effort but also adjusts the closed-loop system 

performance. To evaluate the stability and robustness of the 

pseudo-PID controller, the RST loop structure, with additive 

uncertainty, is utilized as shown in Figure 3. 

 

 
Fig. 3. RST control system with additive uncertainty. 

 

The transfer function )z(Ĝ 1  is the plant model and )z(G
~ 1  

is the model uncertainty. The small gain theorem applied to 

Figure (3) leads to the following sufficient condition for 

stability: 

)e(S

)e(S)e(Ĝ)e(R
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1
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~
j

jjj

j
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
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 
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where M(z-1) includes the plant and controller models (  

[0, ]). By using the criterion of (22), the system stability can 

be evaluated by observing if the curve that represents the 

uncertainty (MPM – Model Plant Mismatch) is below from 

the curve that represents 1/M(z-1). Therefore, the robustness 

of the system increases as the spectrum of 1/M(z-1) moves 

away and up from the spectrum of uncertainty, and 

consequently, a stable control action for the controlled plant 

is obtained (detuned behavior). 
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4. PRACTICAL AND NUMERICAL APPLICATIONS 

 

4.1 Air Flow Control of a Small Wind Tunnel 

 

The first experimental essay covers a process with 

overdamped behavior and varying loop gain, called wind 

tunnel (WT), as shown in Figure 4. 

 

 

Fig. 4. Air flow experimental plant: WT. 

 

Figure 5 shows the input and output responses when the plant 

is subjected to two reference changes and a load disturbance 

at 60 s. Using IMC-PPID tuning of Table 3, for Kp = 1.21,  

= 1.07,  = 1.006,  = 0, Ts = 0.1 s, MF = 3.5 s, the gain of 

PPID is Kc = 0.9 (SOPDT model of Table 2 is obtained by 

the reaction curve at the operating point of 3 V). It can be 

observed that the PPID control system can stabilize the 

nonlinear loop in different points with good dynamic for 

setpoint tracking and disturbance rejection. 

 

 

Fig. 5. WT behavior with PPID controller. 

 

4.2 Position Control of a Damped Pendulum 

 

The second experiment uses a nonlinear underdamped plant, 

called damped pendulum, as shown in Figure 6. 

 

 

Fig. 6. Position experimental plant: PAM. 

 

 

The process contains a vertical bar where there is a 

potentiometer at the pivot point for measuring the angular 

position. In the extreme of the bar there is a propulsion 

system consisting of a DC motor and a propeller. When an 

input voltage is applied, the angular position of the bar is 

changed. The goal is to position the bar to a specified angle 

with a desired dynamic. Figure 7 shows the simulation results 

for the self-tuning PPID controller. The automatic tuning 

structure uses a conservative initial value for the PPID gain, 

which varies smoothly, ensuring stability and smooth loop 

response. The adaptation of the PPID gain can be observed 

and also the small variance control signal. 

 

 

Fig. 7. PAM behavior with PPID controller. 

 

4.3 Linear Plant Control with Robustness Approach 

 

The third simulation considers a continuous stable process 

given by 

)1s)(1s)(1s(

K
)s(G

321

p


                  (23) 

with Kp = 1, 1 = 1 s, 2 = 3 s, 3 = 5 s and Ts = 1 s. A discrete 

first-order model is employed as 

1

1
1

z9163.01

z0854.0
)z(Ĝ







                         (24) 

in order to assess the robust stability of the PPID controller in 

the presence of a model uncertainty. 

 

Figures 8 and 9 illustrate the frequency response and closed-

loop dynamic behavior of the plant with the PPID controller 

tuned with the following parameters: Kc = 3 and Kc = 13. As 

shown in Figure 8, the spectrum of 1/M(z-1) does not touches 

the MPM spectrum and a good control performance is 

obtained. It is possible to observe that the stability criterion is 

violated for Kc = 13 (plotted in Figure 9), given an instability 

for the closed-loop plant. 
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Fig. 8. Stable behavior for PPID with Kc = 3. 
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Fig. 9. Unstable behavior for PPID with Kc = 13. 

 

5. CONCLUSIONS 

 

The tuning and digital structure to implement PID controllers 

is a challenge for process control engineers, since there is a 

dependence on the complexity of the plant and control goals. 

 

In this paper we have proposed a pseudo PID controller 

design that can be interesting from several viewpoints: as a 

general purpose device, it provides a good dynamic loop 

performance, presents one calibration parameter, is simple to 

implement, easy to use and maintain, is applicable in a 

variety of plant classes. So, the programming code of the 

PPID control law, in digital technologies, is easy to perform. 

 

To avoid the trial and error task, automatic tuning procedures, 

including self-tuning, IMC and frequency criterion, were 

used for adjusting a single design parameter, in other words, 

tuning the digital controller and ensuring closed-loop 

stability. 

 

Future work will include the PPID implementation in 

multivariable applications in order to verify its suitability in 

coupled and decoupled systems as a good field device in 

process control scenarios. 
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