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Abstract:  In this paper, a new approach to design a robust gain scheduled linear parameter varying (LPV) PID 
controller with pole placement constraints (through LMI regions) is proposed for LPV systems with second order 
structure and time-varying delay. The controller structure includes a Smith predictor, real time estimated parameters 
that schedule the controller and Smith predictor (using the known part of the delay) and unstructured dynamic 
uncertainty which covers the delay uncertainty. Finally, the proposed control technique is validated in a real case study 
based on a piece of a sewer system. 
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1. INTRODUCTION 

Since the 60’s, the empirical (or classical) gain-scheduling 
(GS) control has been used for controlling non-linear and 
time-varying systems. But, this control methodology achieves 
closed-loop stability, without guarantees, for slowly varying 
parameters. In order to overcome this deficiency, linear 
parameter-varying gain-scheduling (LPV GS) controllers are 
introduced to allow arbitrarily smooth or discontinuous 
variations of plant dynamics. The LPV GS method 
guarantees closed-loop stability based on the concept of 
quadratic stability (QS) (Becker & Packard,1994) for all real 
parameter trajectories inside a given region. This 
methodology allows multi-objective criteria (H, H2, pole-
placement) as well (Apkarian et al., 1995a,b). Under 
additional hypotheses, LPV control problems can be 
transformed to a convex optimisation problem involving 
linear matrix inequalities (LMI’s). This results in a well 
behaved and computationally tractable problem. For analysis, 
when the LMI conditions depend on the system parameter 
vector in a multi-affine way, it suffices to verify these 
conditions only at the vertices of the parameter polytope.   
Usually for time invariant systems with long time delays, a 
Smith predictor is an effective method to control the process, 
because the time delay is fixed. Nevertheless, the Smith 
predictor has the inherent drawback that its performance is 
sensitive to the process model uncertainty, especially to the 
time delay. If a process model deviates from the process 
dynamics the system performance deteriorates. Applications 
of the Smith predictor are, therefore, often limited in 
industrial processes. To alleviate this limitation, it is 
necessary to find a mechanism to compensate or take into 
account model errors. 
 
The main contribution of this paper is to design a Linear 
Parameter Varying PID Smith Predictor controller (LPV 
PID+SP) for second order plus time delay linear parameter 
varying systems, taking into account robust stability, 
performance, closed-loop pole constraints and essentially the 

time varying nature of the plant. The varying parameters are 
measured (estimated) in real time and used to schedule PID 
parameters. A “delay scheduling” Smith predictor scheme is 
used to compensate most of the estimated delay. However, 
there is still a remaining delay due to the inaccuracy in its 
estimation that it will be represented as unstructured dynamic 
uncertainty in a robust control framework. For a general LPV 
system case, the design of a LPV PID controller should be 
formulated as an output feedback control that usually derives 
in solving a non-convex optimization problem based on 
BMI’s (Mattei, 2003). But, because of the special structure of 
the plant model considered (second order plus delay), the 
basic idea in our approach is to tune the PID controller 
reformulating it as a convex state-feedback problem. Finally, 
the proposed control technique is validated in a real case 
study based on a piece of a sewer system. 
 
The structure of the paper is the following: In Section 2, the 
statement of the gain scheduled Smith PID controller for 
second order plus time delay is presented. The formulation, 
synthesis and implementation of this controller in the 
framework of the LPV control theory recalled in Appendix is 
introduced in Section 3. To validate the proposed 
methodology, it is applied to a case study based on the 
control of a sewer system in Section 4. In Section 5, final 
conclusions are drawn. 

2. PROBLEM STATEMENT 

2.1  Problem statement 

Let us consider the following second order LPV system plust 
time delay 
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whose parameters a0(), a1() and b0() are varying-
parameters functions of some scheduling variable (t) that 
can be measured on-line. The parameter range  is a box 
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defined by  max0min0 bb  for the gain )(b , and  max0min0 aa  

 max1min1 aa ,  for denominator coefficients )(0 a , a1() and 

 maxmin   for the time delay )( .  

The objective is to design a gain-scheduling PID controller 
with the following structure 
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
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using LPV theory for the plant model described by (1). 
Model (1) is an usual representation of many industrial and 
environmental processes. By including the parameter 
measurements/estimations, this controller adjusts to the 
variations in the plant dynamics in order to maintain stability 
and high performance along all trajectories (t). In other 
words, the controller is ‘self-scheduled’, that is automatically 
gain-scheduled with respect to (t).  
The variable delay in (1) can be handled in two different 
ways: (a) As an LTI dynamic uncertainty covered 
conveniently by a weight ΔW  as in (Skogestad et al., 1997) 

(b) As a time-varying parameter which updates a Smith 
Predictor. The first approach could be conservative, and 
unnecessarily decrease the overall performance. On the other 
hand, the second approach could provide a far better 
performance, but it does not take into account the 
measurement error of the time-varying delay )( . In this 

paper, it is proposed to combine both approaches by 
assuming that a real time estimation )(ˆ   of the delay is 

available, which will be used to update a Smith Predictor 
(Fig. 1). The difference between the actual and the estimated 
delay is considered as global dynamic uncertainty as in 
(Skogestad et al., 1997) (Sánchez-Peña et al., 1998) (Morari 
& Zafiriou, 1989) and is used in the design and robustness 
conditions. Therefore, we assume that the time delay 
dynamics has a time varying nature although its estimation 
error dynamics is time invariant, with a constant bound. The 
latter can be explained as follows: sensors are usually 
modeled as time invariant systems, with a bounded error 
provided by the manufacturer, as we have assumed here. The 
dependence of the delay with the operating point can be 
determined by physical modeling or identification and is 
measured (estimated) in real time. Proceeding in such a way, 
most of the delay is compensated and the remaining portion, 
denoted as 

)(ˆ)()(                                  (3) 

can be covered by LTI unstructured uncertainty. This 
measurement error is always smaller that the actual delay, 
therefore the uncertainty is less conservative, which in turn 
has a lower impact on performance. This uncertainty is 
handled here as multiplicative output uncertainty and the 
following weight “covers” the delay measurement error 
frequency response as tightly as possible (see Chapter 11, 
(Sánchez-Peña et al., 1998).): 

1+

05.2
=),(

max

max

sτΔ

sτΔ
τΔsWΔ       with  max  )( .       (4) 

Although the delay is time varying, by assuming that the 
delay measurement error is time invariant, the same robust 
stability analysis of the Smith predictor can be performed, 
following the approach proposed in (Sánchez-Peña et al., 

1998) (Morari & Zafiriou, 1989) for the LTI case. This is due 
to the fact that the remaining system, after the cancellation of 
delay with the use of its estimation, can be considered as 
finite dimensional LTI, according to this assumption. 
Therefore, the delay scheduled Smith Predictor eliminates the 
infinite dimensional as well as the time varying nature of the 
delay, reducing it to a LTI dynamic uncertainty. This is one 
of the main contributions of this work as compared to 
previous approaches (Ge et al., 2002). 
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Fig.1. “Delay scheduling” Smith Predictor scheme. 

2.2  Control specifications 

The control design specifications that will be considered are a 
mixture of performance and robustness objectives arranged as 
a mixed sensitivity problem (MSP) (Skogestad et al., 1997) 
(see Fig.2), as follows:  

  1


T
Δue TWKSWSW                       (5) 

Here S is the sensitivity and T is the complementary 
sensitivity functions. These transfer functions represent 
weighted tracking error (or disturbance rejection), weighted 
control action and robust stability, respectively. In order to 
limit the control energy and bandwidth of the controller, a 
weight Wu is included in the design. Such weight is a transfer 
function with a crossover frequency approximately equal to 
that of the desired closed-loop bandwidth. The weight for the 
complementary sensitivity, W, captures the uncertainty of 
the plant model (in this case coming from the delay 
measurement error) and also limits the closed-loop 
bandwidth. Typically, a disturbance in the system output is a 
low frequency signal, and therefore it will be successfully 
rejected if the minimum value of S is achieved over the same 
frequency band. This is performed by selecting a weight We, 
with a bandwidth equal to that of the disturbance in the 
controller design specifications. Robustness is presented as 
an H bound and is related with the dynamic uncertainty 
coming from the real time delay estimation error. 
Performance is a combination of weighted error and control 
action minimization measured in terms of the energy 
integrals of the input and output signals involved. A PID 
controller is a good approximation of a robust high order 
controller at low frequencies, especially because of the 
inclusion of the integral action. Then, the resulting PID 
controller is expected to preserve the disturbance rejection 
performance of a high-order controller. Furthermore, the time 
response is tuned via a selected closed-loop pole placement 
LMI region (Chilali et al., 1999). This control design 
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problem will be solved using the notion of QS and closed-
loop pole placement applied to an MSP, considering the 
delay measurement error as multiplicative dynamic 
uncertainty (see Section 2.1). An MSP can always be 
formulated as a Linear Fractional Transformation (LFT), and 
solved recasting two previous theoretical results (see 
Appendix): 1) Quadratic H performance. 2) Robust and 
Quadratic D–Stability. 
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Fig.2. Proposed LPV feedback system scheme (MSP scheme). 

 
The problem statement is as follows: 
 
Problem 1. Given the LPV system in Eq. (1), find a gain-
scheduling PID controller combined with the delay scheduled 
Smith Predictor presented in Fig. 1, that guarantees QS and 
an H norm bound less than a positive number   on the w-z 
input-output channel , and pole placement 
requirements applied to the MSP in Eq. (5). 
 

3. PROBLEM SOLUTION 

3.1  Preliminary considerations 

The LPV PID controller design of the system described in 
Problem 1 will now be formulated and embedded in a self-
scheduled LPV control framework developed by (Apkarian, 
1995a) (Becker&Packard, 1994) briefly summarised in 
Appendix.  For a general LPV system case, the design of a 
LPV PID controller in (2), should be formulated as an output 
feedback control that usually derives in solving a non-convex 
optimisation problem based on BMI’s. However if the system 
to be controlled has the second order structure in (1), a 
convex state feedback problem can be formulated (see (Ge et 
al.,2002) (Zheng et al., 2002) for details), leading to the 
following state space description: 
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where y is the system output,  Txxxx 321  the state 

with variables defined by 121 =,= xxyx  , 

  yreedtx ,3 , r the reference input, and  
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In this state-space model, the PID controller design becomes 
a static state feedback controller, and the static feedback gain 

K() simply contains all the PID controller parameters. Note 
also that there are three varying parameters in (1)  (Ge et al., 
2002). The control design scheme proposed for Problem 1, 
which combines measured (estimated) LPV parameters and 
unstructured output uncertainties is presented in Fig.2, and  it 
is represented as an LFT. In such an LFT representation, the 
second order LPV model (1) is formulated as in (7) to 
achieve a PID controller as a state feedback. Moreover, it is 
necessary to consider the following issues: 
1. The performance and control effort weight functions 

need to be constants ( ee DW  , uu DW  ), so that the 

order of the augmented model does not increase the one 
of model (1).  

2. Additionally, in order to not increase the augmented 
model’s order, the uncertainty weight in (4) is modified 
as follows: 

sΔΔsW maxΔ  05.2),(
~

 ,                            (8) 

so that fΔΔ GWW
~

 . 

Then, using a Smith Predictor scheme (Fig. 1) and the 
uncertainty weight introduced in (8) bounding the delay 
measurement error in (3), the following LFT LPV system 
representation is obtained: 

)()()()()()()( tuBtuBtxAtx u 
 

)()()()()()()( tuDtuDtxCtz zuzuz 
              (9) 

)()()()()()()( tuDtuDtxCtq ququq 
   

with      TI
T

IΔ
T xxyxxyxxxx  321 ,  Tu u u

 Teuyz ~~
 , and 

0 1

0 1 0

( ) ( ) ( ) 0

1 0 0

A a a  
 
    
  

,   0( ) 0 ( ) 0
T

B b  , 

  ,000)( T
uB 






















00

000

0

)(

e

ΔΔ

z

D

CD

C  ,

 001)( qC ,  Tuzu DD 00)(  ,   

 Tezu DD 


00 , 1
quD , 0quD .                    (10) 

3.2 Problem solution 

Since the gain, b0() of the LPV system (1) varies with 
parameter , to fulfill hypothesis (ii) associated to Remark 1 
in Appendix, the time varying gain of the system can be 
compensated in the following way. First, the LPV gain-
scheduling PID controller ( , )PIDG s   is designed taking into 

account only the variation of the parameters a0() and a1() , 
and assuming that the parameter b0() has a nominal value 
b0nom. Finally, keeping the same inner loop through equation  

( , ) ( , )
( )

0nom
PID PID

0

b
G s G s

b
 


                     (11) 

the variation of parameter b0() is considered in the design of 
the controller. Due to the fact that the time varying 
parameters enter affinely in the augmented model equations 
(see (9) and (10)), the parameter region is polytopic and since 

IFAC Conference on Advances in PID Control 
PID'12 
Brescia (Italy), March 28-30, 2012 WeC1.6



 
 

     

 

condition (ii) is fulfilled through the transformation 
introduced by (11), the model of the LPV system can be 
represented by: 
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The delay )(  has already been considered as a scheduled 

(time varying) parameter in the Smith Predictor 
implementation, and the delay estimation error bounded by a 
multiplicative uncertainty in the design process, as explained 
in Section 3.1. Next, a static time varying state feedback 
controller is computed, which satisfies QS and the quadratic 
H performance specifications. Such a controller can be 
transformed by the equivalence introduced in (6), in a PID 
controller as in (2). This controller schedules the parameters 
a0(), a1() and by means of the transformation in (11), the 
scheduling of parameter b0() is added. This controller 
guarantees QS and Quadratic H Performance, as well as 
(“frozen”) closed-loop pole location inside the desired LMI 
region. Since the plant is polytopic, the controller K(s,) = 
K() is designed as a polytopic model and implemented 
according to: 
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This technique is known as a convex decomposition 
technique, and Co is the function that generates the convex 
hull of the polytope vertices. The polytopic coordinates are 
calculated by fast algorithms in such a way that each vertex 
vi, i=1,...,r has coordinates: 
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and l fulfils that r=2l. Finally, the closed-loop system is 
wBxAx wclclcl  )( , with matrices Acl() and Ccl() that 

depend on the parameter vector   described as follows: 
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4. APPLICATION TO A SEWER SYSTEM 

4.1  Description and  LPV Model  

The case study to illustrate the proposed LPV PID design 
method is a piece of a sewer system of Barcelona city (see 
Fig. 3). It is composed of a real detention tank (Fig. 4) and a 

single pool sewer equipped with an upstream sluice gate and 
a downstream spillway. An electromotor is driving gate 
position and two sensors located upstream and downstream 
of the gate are measuring the flows. The total length of the 
sewer is L=2km, a gate discharge coefficient Cdg= 0.6, a 
Manning roughness coefficient n=0.014, gate width and 
sewer width B=2.5m, a downstream spillway of height ys = 
0.7m, a spillway coefficient Cds= 2.66, and a bottom slope I0= 
5.10-4.  

 
Fig.3. Sewer system scheme. (Left) Longitudinal and (right) cross section. 

 
The dynamics of a single sewer is classically modelled with 
the Saint-Venant equations since it behaves as a single reach 
open-flow canal. However such set of partial differential 
equations are too complex for control design. According to 
(Litrico et al., 1999), the following transfer function, known 
as Hayami model, linking the upstream flow upsQ and 

downstream flow dnsQ  for a single reach canal of length X 

can be derived  
( )
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               (14) 

where the scheduling parameter dnsQ  .  In the considered 

case study,  the time varying parameters of the model (14) 
can be bounded taking into account that operating range of 
the scheduling variable is [0, 5]: k1()[495.82, 875.90], 
k2()[61459.86,  191799.32] and the time delay                
 () [ 341.94, 604.06] (s).   

 

 
 

Fig.4. Detention tank construction (left). Detention tank inside (right)  

4.3  Controller Design and Results1 

Comparing (14) with (1), the following relations follow: 
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control methodology presented in Section 3 can be applied. 
Additionally, the delay estimation error is considered to be  

                                                 
1 The real sewer behavior is accurately reproduced by Saint-Venant’s 
equations using a simulator developed by the group of “Modeling and 
Control of Hydraulic Systems” at the UPC. 
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bounded ˆ( ) [0, 5]    and comes from the experimental 

identification of model (14). The error in the time delay is 
taken into account in the control design as an LTI 
unstructured multiplicative uncertainty ˆ( , ) 10.25W s s   . 

Once the main time varying delay has been compensated by 
the Smith Predictor (Fig. 1) and the remaining delay error 
considered as the weight )ˆ,( ΔΔ sW  of a multiplicative 

dynamic uncertainty (see Section 3.1), a PID controller is 
designed as a state feedback. This controller should guarantee 
closed-loop stability and the following (step response) 
performance specifications: 1) tracking error of 0.1, 2) 
control signal within [0, 5] and 3) closed-loop damping of 

5.0  and settling time in tss  230 s, for any arbitrarily fast 

parameter variation. The tracking error and the bounded 
control signal are represented by performance weights We = 1 
and Wu = 0.4, respectively. Furthermore, to achieve this 
desired transient behaviour and prevent controller fast 
dynamics, a pole clustering constraint is added. To this end, a 
LMI region ),,( 21 hhS  is defined as a combination of three 

subregions: 1) a conic sector with apex at x = 0 and angle  
= 3/4, which captures the closed-loop damping constraint 

5.0 ; 2) a left half plane that guarantees the maximum 

settling time (h1 = -0.016). 3) Left half plane that guarantees 
the minimum settling time (h2 = -0.0018). Once formulated 
the MSP with pole placement constraint problem (see 
Problem 1), the gains of LPV PID controller are obtained by 
solving LMI’s coming from Theorem 1 and 2 recalled in 
Appendix at each vertex of the interval box of 0 ( )b  , 1( )a   

and   0 ( )a   as indicated in Theorem 3 (also in the Appendix). 

Fig. 4 presents graphically the gains of the LPV PID 
controller obtained at the different vertices and their 
interpolation using (13).  
 

 
Fig. 4  Controller gains of the LPV PID controller. 

 
The obtained closed-loop responses in simulation using the 
LPV PID+SP design are shown in Fig. 5. Fig. 6 presents the 
evolution of the model parameters.  It can be observed that 
the performance specifications are achieved for the whole 
admissible operating range. On the other hand, if a robust 
LTI H PID controller with a standard LTI Smith Predictor 
designed for the worst case set of parameters is used, the time 

response is slower than the one obtained by its LPV 
counterpart and do not satisfy the performance specifications 
for the whole admissible operating range.  

 
Fig. 5 Closed-loop response for different operating points.  

 

 
Fig.6 Evolution of the model parameters corresponding to the 

operating point changes presented in Fig. 5. 
 

5. CONCLUSIONS 

The main contribution of this paper is the development of a 
new approach to design a gain-scheduled Smith PID 
controller for  LPV second order systems plus delay solving a 
MSP problem with closed-loop pole placement constraints. 
The time varying delay is handled by a “delay-scheduling” 
Smith predictor and the estimated delay error is treated as an 
unstructured dynamic uncertainty. Thanks to the second order 
system structure, the PID controller design can be viewed as 
an state-feedback controller whose design can be transformed 
to a convex optimisation problem involving LMI’s. This 
approach has successfully been applied to a real case study 
based on the control of a piece of a sewer system with 
satisfactory results. 

APPENDIX: BACKGROUND ON LPV CONTROL 
THEORY 

Given an LPV system described by state-space equations of 
the form 
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)()()()()()()( twBtuBtxAtx w    
)()()()()()()( twDtuDtxCtz zwzuz           (15)  

)()()()()()()( twDtuDtxCtq qwquq    

where xn is the state vector, um1 and wm2 are the 
control and disturbance input vectors, respectively, zp1 
and qp2 are the measured and controlled output vectors, 
respectively. A(), B(), Bw(), Cz(), Cq(), Dqu(), Dzu(), Dzw(), 
Dqw() are continuous matrix valued functions of the time 
varying parameter vector (t)    l ,  being a polytope 
with r vertices. We assume the time varying parameters (t) 
can be measured (or estimated in the case of quasi-LPV 
models) in real time as in (Apkarian et al., 1995b) (Becker 
and Packard, 1994). Performance is defined as requiring a 
bounded output q(t) for any bounded external signal w(t), 
both measured by their energy integral. The synthesis 
technique for LPV systems is based on the following results:  
 
Theorem 1. (Quadratic H  Performance) (see Apkarian et 
al., 1995b). The LPV system given by Eq.(1) is QS and has 
quadratic H performance if  there exists a positive definite 
matrix X>0 such that 
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for all admissible values of the parameter .  
 
Remark 1. According to the self-scheduled H control 
synthesis problem for LPV systems developed by (Apkarian 
et al., 1995a), a control design which guarantees the 
Quadratic H performance for the closed-loop system, should 
fulfill the following necessary and sufficient conditions: 
(i) 0)( quD  or equivalently 0

iquD  for i=1,2,..,r. 

(ii) )(),(),(),(  qwzuq DDCB  are parameter 

independent or equivalently 

qwqwzuzuqi DDDDCCBB
iii
 ,,,  for i=1,2,..,r. 

(iii) The pairs )),(( BA   and )),(( qCA   are quadratically 

stabilizable and detectable over , respectively. 
 
Theorem 2 (Quadratic  D stability) (see Chilali et al., 1999). 
Consider the LPV system xAx )(  with parameter  , 

when   is a fixed value (“frozen” time). Its pole location in 
the LMI-Region2 D at each time t (“frozen” time) can be 
described by: 

MD=   mlk
T

lkklkl XAXAX  ,1)()(   , where X is 

a positive definite matrix, and MD[A(),X] and fD(z) can be 
related by the following substitution, 

 ),,1()(,)(, zzXAXAX T  . Then, the matrix A() is 

                                                 
2 A subset D of the complex plane is called an LMI-Region if there exists a 

symmetric matrix   mm
kl

   and a matrix   mm
kl

   such that: 

D  0)(:  zfCz D
,   mlkklklkl

T
D zzzzzf  ,1:)(   

quadratic D stable if and only if there exists a symmetric 
positive definite matrix X such that MD[A(),X]<0 for all 
admissible values of the parameter  . 
 
Based on the fact that a finite set of LMI can be solved in the 
multi-affine case when the parameters vary in a polytope, a 
computationally feasible solution to the problem exists, first 
formulated in (Becker and Packard, 1994), as follows. 
 
Theorem 3. (Vertex Property) (see Apkarian et al., 1995b). 
Consider a polytopic linear parameter-varying plant as in Eq. 
(1), where 
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and assume A,B,C,D are affine functions of , then the 
following items are equivalent: 
i. The system is quadratic D–stable with Quadratic H 

performance . 
ii. There exists a positive definite matrix X>0, which 

satisfies the following LMI’s: 

  riXB

XAM

iiii DCBA

iD

,...,2,1,0),(

0),(
0

,,, 




 

If Theorem 3 is fulfilled, Theorem 1 and 2 only should be 
verified on the vertices of the parameter polytope . This 
implies that the number of inequalities needed to test the 
analysis conditions of these theorems can be reduced to a 
finite one, which makes such an approach appealing. 
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