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Abstract: Stability and performance of a system can be inferred from the evolution of statistical 
characteristic (i.e. mean, variance…) of system states. The polynomial chaos of Wiener provides a 
computationally effective framework for uncertainty quantification of stochastic dynamics in terms of 
statistical characteristic. In this work, polynomial chaos is used for uncertainty quantification of 
fractional order PI control system under the uncertainties both in parameters and additive stochastic 
disturbance. 
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1. INTRODUCTION 

In recent years, increasing attention has been given to 
fractional calculus as a powerful tool for more precise 
modelling of real world phenomena (Chen, 2006; Weron & 
Kotulski, 1996; Baleanu, Guvenc, & Machado 2010). So far, 
fractional order control systems have been studied mostly 
with deterministic setting. In reality, stochastic uncertainty 
may arise in systems when the physics governing the system 
is known and the system parameters are either unknown 
precisely or expected to vary in the operational lifetime. Such 
uncertainty also occurs when system models are built from 
experimental data using system identification techniques, 
where a system plant is represented by its transfer function 
with unknown parameters. As a result, the values of the 
parameters in the transfer function have a range of 
uncertainty. In order to include this uncertainty in the 
mathematical model, probabilistic methods have been 
developed. 

Traditional probabilistic approaches to uncertainty 
quantification include the Monte Carlo (MC) method (Dunn 
& Shultis, 2011; Pupkov & Egupov, 2003) and its variants—
for example, Latin Hypercube Sampling (McKay, Conover, 
& Beckman, 1979), which generate ensembles of random 
realizations for the prescribed random inputs and use 
repetitive deterministic solvers for each realization. Although 
such methods are straightforward to apply, their convergence 
rates can be relatively slow. For example, the mean value of 

MC typically converges as 1 / K , where K is the number of 
realization. The need for a large number of samples for 
accurate results can cause an excessive computational 
burden. 

The recently developed stochastic generalized polynomial 
chaos (gPC) methods (Xiu, 2010; Xiu & Karnidakis 2003; 

Pupkov, Egupov, Makarenkov, & Trofimov, 2003) offer 
faster convergence for problems with relatively large random 
uncertainties. With the gPC approach, stochastic solutions are 
approximated as series of orthogonal polynomial of the 
random uncertainties, and the statistical characteristic of 
solution can be obtained from gPC coefficients expansion. 

This work extended the gPC framework to a fractional order 
model with PI  controller to show how the method can be 
utilized to predict the stochastic performance of a fractional 
order controller with stochastic uncertainties.  

The paper is organized as follows. Section 2 introduces 
fractional linear single input single output system. Section 3 
briefly presents the gPC method for predicting the dynamic 
performance in terms of the mean and variance of output. 
Section 4 considers numerical examples for validating the 
method. Section 5 concludes the result. 

2. FRACTIONAL ORDER DYNAMICS 

Fractional calculus is the generalization of integration and 
differentiation to a fundamental operator of non-integer order 
(Monje , Chen, Vinagre, Xue, & Feliu, 2010  ): 
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where R     is the order of the operator. 
Among the several formulas of the generalized derivative, 
one of most commonly used is the Riemann-Liouville 
definition: 
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The Rieman-Liouville fractional integral of a function, ( )f t , 

is defined by: 
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The Laplace transform for fractional order under zeros initial 
condition is defined as: 

{ ( )} ( )
t

L D f t s F s             (4) 

Thus, a fractional order single input single output (SISO) 
system can be described by the fractional order differential 
equation: 
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 where 
i

  and 
j

  are arbitrary real positive numbers, u(t) 

and y(t) are the system’s input and output, respectively. 
 

3. STATISTICAL ANALYSIS OF CONTROL SYSTEM 
WITH GENERALIZED POLYNOMIAL CHAOS 

3.1 Orthogonal polynomial with given distributions 

Let ( )  be the probability density function (pdf) of a scalar 

random variable , which has finite moments of order up to. 

2 ,m m . Let   denotes the space of real polynomial; 

m
   denotes the space of polynomial with degree up to m. 

The inner product of two polynomials p and q relative to 
measure ( )d d     is defined by: 
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where  is the support domain of random variable. 
Orthonormal polynomials relative to the probability measure 
d are given by three term recurrence (Gautschi, 2003): 
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where the recurrence coefficients are given by: 
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The index range is infinite k   or finite k m , depending 

on whether the inner product is positive definite on   or 
m

 . 

Hence, the first m recursion coefficient pairs 
k

 and
k

   are 

uniquely determined by the first 2m moments of . Classical 

methods such as a Chebyshev method, which are based on 
moments, could be used for obtaining the recurrence 
coefficients. Unfortunately, obtaining these coefficients from 
moments in general becomes severely ill conditioned and 
thus is not useful even for well-behaved measures for which 
there are no classical orthogonal polynomials.  As an 
alternative, approximate methods based on discretization of 
an arbitrary measure can be employed to obtain the recursion 
coefficients for orthogonal polynomial set. The basic idea 
behind the discretization method is to approximate the inner 
product in (7) by a discrete measure: 
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In the discretization method, the number of discrete S  point 
measure increases until the discrete version of recurrence 
coefficients with desired accuracy is achieved. Gaustchi 
(2003) also showed the performance of the discretization 
method can be improved by utilizing the multi-component 
discretization. Note that this discretization procedure is for 
obtaining the polynomial set, which has nothing related to the 
discretized fractional order system.  

3.2 Statistical analysis of fractional order system 

Assume that a control system is governed by (5) with zeros 
initial conditions and subject to independent stochastic 

uncertainties. Let 
1 2

( , , ..., )
N

  ξ  denotes a random vector 

of mutually independent random components of system with 

pdfs of ( ) :
i i i
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   .Thus, the joint probability density of 
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1
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d

i i m
   can be defined in the dimensional 

space 
i

  , with respect to the weight ( )
i

   as in section 3.1. 

Based on the one-dimensional set of polynomials, an N-
variate orthonormal set can be constructed with P total 
degrees in the space Γ by using the tensor product of the one-
dimensional polynomials. Note that the basis polynomial of 
the N-variate also satisfies orthonormal condition: 
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Considering a response function of output ( ( , ))f y t ξ , with 

statistics (e.g., mean, variance) of interest; the N-variate Pth 
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order approximation of this response function can be 
constructed as: 
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where P is the order of polynomial chaos, and 
m

f


the 

coefficient of the gPC expansion that satisfies (13) as: 
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where E[] denotes the expectation operator. 

Since the function ( ( , ))f y t ξ  is not known explicitly in 

general, the coefficients of gPC expansion in (13) have to be 
computed numerically as described below: 

For each random parameter
i
 , construct a uni-variate 

orthonormal polynomial using the algorithm in section 3.1 
with respect to its pdf. Based on the orthogonal polynomial, 

construct the one dimensional quadrature  ( ) ( )

1
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approximated by: 
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Different type of one dimensional quadrature sets with 
respect to arbitrary set of orthogonal functions can be 
obtained using the algorithm and software suite OPQ from 
Gautschi (2003).  

Construct a multi-dimensional quadrature set by tensorizing 
the one-dimensional quadrature set. Hence, the integration 
(13) is approximated by: 
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After obtaining the coefficients of gPC expansions, a post-
processing procedure is carried out to obtain the mean and 
variance. 

The mean of response function is estimated as: 
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Note that the mean is the first coefficient of gPC expansion. 

Next, the variance is obtained as: 
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Thus, the variance is the sum of square of all coefficients in 
gPC expansion except the first. Note that the polynomial set 

starts with
1
( ) 1 ξ and the probability density function is 

equivalent to the weighting function. These properties are 
utilized in deriving (17) and (18). If the response 
function ( ( , )) ( , )f y t y tξ ξ , the mean and variance of 

system output are given by truncated series (17) and (18). 

4. EXAMPLES 

4.1 Example 1 

Consider a closed-loop configuration in Fig.1. The gPC 
method is used to quantify uncertainty in the closed-loop 
configuration in Fig.1 for a fractional order system (Magin, 

2006; Gyochuk & Hanggi 2004) with a PI controller taken 
from Luo, Chen, Wang, & Pi (2010): 
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Fig. 1. A closed-loop control system. 

 
The input R(t) is a band-limited Gaussian white noise process 
with zero mean and covariance function of: 

1 20.25sinc( )
2

RR

t t





                                     (20) 

where the sinc function is defined by: 
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Utilizing the non-canonical decomposition method 
(Chernhecski, 1969), the above band-limited white noise with 
bandwidth 0.5 rad/s is parameterized as 

2
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Since the variance is a measure of variability of random 
process, a large variance implies large deviations from 
nominal response. Hence, in this work the variance is used 
for characterizing the performance of system under the 
stochastic input. The variance estimated by the gPC is shown 
in Fig. 2. For validation, the estimated variance by the MC 
method is also shown in Fig. 2. The gPC method solves (6) 
with the nodes taken from the cubature and obtains statistical 
characteristics using the weight from the cubature set, while 
the MC solves it using random numbers generated from the 
given distributions and estimates statistical characteristics as 
a weighted sum, with equally weights, 1/M. Hence, in the 
gPC method the number of cubature node plays the same role 
as the number of samples M in the MC method. The 
computational time and simulation parameters for both 
methods are given in Table 1. The mean output is zero since 
the mean input is zero. From Fig .2 and Table 1, it is apparent 
that the computational effectiveness of the gPC is far superior 
to the MC. 
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Fig. 2. Variances of system output. 

Next, the gPC is used to analyze the effect of the bandwidth 
of limited bandwidth white noise on the variance of system 
output. Fig. 3 presents the variance of the above system 
output under excitation of band-limited white noises: 
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The fractional order was integrated using the code fodesol 
(Monje et.al, 2010). From the figure, it can be seen that as the 
bandwidth increases, the steady state variance increases while 
the maximum variance at transient response decreases.      
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Fig. 3. Variances of system output with different bandwidth 
of the stochastic inputs. 
 
Table 1. Simulation parameters and computational time for 
obtaining statistical characteristics by the MC and the gPC. 
 

 

 

Example 

 

Simulation parameters Computational 

time (s) 

MC 

(Samples) 

gPC( 

cubature 

nodes) 

MC gPC 

1 6400  36  2823.5

2  

2.14  

2 7225  

 

225 

 

2915.3 8.9 

3 900 

 

36  549.3 1.9 

4.2 Example 2 

The gPC is applied to quantify the uncertainties for the same 
system above where the input is zero mean and covariance 
functions: 
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The above first order Markov noise can be parameterized by  

non-canonical decomposition as: 
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The variance of system output by the gPC and the MC are 
presented in Fig.4. Since this signal can be interpreted as 

steady state output of a filter
1

( )
2

F s
s 

  under excitation 

of ideal white noise with covariance
1 2

( )t t  , the exact 

steady state output can be easily calculated by frequency 

method as
2

2
/ (1 )FCG CG  , where 

2
denote the H2 

norm of the system. The H2 norm for a fractional order 
system was calculated using numerical integration approach 
(Monje et.al, 2010). It can be seen that the variance estimated 
by the gPC method almost coincides with the exact value at 
steady state while the MC method not. This is because the 
MC method cannot give accurate results when the number of 
samples is not enough. The computational times for obtaining 
the system variances are given in Table 1. Since no 
orthogonal sets can be constructed with respect to the weight 

function for 
2
 , the Legendre polynomial has to be first used 

for constructing the Legendre quadrature set for uniform 

random component on 2 [0,1]  . Then, the iso-

probabilistic transform (Lemaitre & Knio, 2010) is used to 
transform a quadrature set with respect to uniform 

distribution to a quadrature set for
2
 .  
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Fig. 4. Variance of output 

Next, the system is driven by different random inputs with 
zero means and covariance functions: 

1 2
( | |)0.25e 1, 2, 3, 4,t t

RR

             (26) 

with parameterization: 
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Fig. 5. Variances of system output under excitation of 
Markov process with different correlation length 

Fig.5 demonstrates how the reciprocal correlation length   
of the Markov process affects the variance of system output. 

4.3 Example 3 

In this example, the gPC methodology is applied for 
uncertainty quantifications of fractional order system with the 
same fractional PI controller as in the first two examples: 
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k
G s

k s
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where
1

k and
2

k are random variables with triangular 

distributions Tr(0.5,1,1.5). The triangular distributions 
Tr(a,c,b) is defined by a cumulative distribution function 
(Forbes, Evans, Hating , & Peacock , 2011 ) : 
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The output means and variances for this example under unit 
step input are shown in Fig. 6. Computational time for this 
example is also given in Table 1. In contrast to the stochastic 
input case, the variance of the system output goes to zero as 
time increases because all output trajectories go to the same 
setpoint value at steady state. 
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Fig. 6. Means  and variances of system output under the 
stochastic parameter perturbations. 

5.  CONCLUSIONS 

Variance is one of the mostly used indices for evaluating 
stochastic performance of system under stochastic 
perturbations. In this work, the stochastic performance of 
fractional order system measured by output variance was 
studied. The considered examples demonstrated the proposed 
method’s accuracy and computational efficiency of the gPC 
method over the existing MC. The gPC method can give 
variance in both transient and steady state of system instead 
of steady state only as in the frequency method. From the 
advantages of the gPC method, it is suggested for 
performance analysis of stochastic fractional order system. 
The gPC was then utilized for analysing the stochastic 
performance of fractional order systems under different types 
of stochastic perturbation. Although the method was 
considered for a simple fractional order system with a 

PI  controller, the method can be easily extended to more 
complex type controllers and systems.  
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