
State-feedback control algorithms for a CNC
machine

Dora Sabau, Petru Dobra
Automation Department

Technical University of Cluj Napoca
Cluj-Napoca, Romania

Abstract—The controller of a small size Computer Numerical
Controlled (CNC) system is designed and tested. The system is
considered to have a Multi Input Multi Output(MIMO) model
and two control design techniques are presented for it: Pole-
placement and Linear Quadratic Regulator(LQR). The LQR
problem is proposed to be solved by choosing the weights matrices
using the total energy of the system. The simulation results are
evaluated and the controller that meets the desired behavior is
implemented on the real machine.

Index Terms—LQR, Pole-placement, energy, MIMO, CNC,
control

I. INTRODUCTION

Numerical control machines started to be used since 1950s.
Because of the rapid development of the industry, these ma-
chines were improved annually. Currently, Computer Numeri-
cal Control(CNC) machines are very popular in the industrial
field in domains such as: aeronautical industry, energy and
power technology and manufacturing industry. These machines
provide a high level of automation and consistent motion
control, accuracy, high precision and power, fast machining in
accordance with modern tools [1]. CNC systems are, regularly,
compound of: the machine itself and the command system.
The control system incorporates new techniques which reduce
the allocated time to a project and allow a complex control
of the process. The requirements these control systems have
nowadays are: precise control of the position, with safe veloc-
ity control and good acceleration and deceleration properties
[2]. In order to meet these requirements, the controller that is
used has to give good precision and to have high resolution
[3], [4].

As shown in literature [5], [6], conventional Proportional-
Integrative-Derivative(PID) controller, State-Feedback con-
trol, Feed-Forward control, Linear Quadratic Regulator(LQR),
Fuzzy Logic Control or even more advanced control tech-
niques such as optimized PD control using genetic algorithms
or adaptive control, are used to control CNC machines.

In order to obtain the control law for positioning systems
with translation axes, it is important to have a mathematical
model for the process [7]. For this, two particular directions
are taken into consideration. The first one is to consider the
system as a decoupled one, which means each axis is handled
as an independent process. The second approach takes into
consideration the coupled-axis, so the process is treated in
terms of Multi-Input-Multi-Output(MIMO) model [8].

In this paper, a MIMO model with two inputs and two
outputs is taken into consideration. In chapter 2, based on
the acquired data consisting on the input and the output
signals from the machine, a mathematical model is obtained.
The parameter identification results, obtained using System
Identification ToolBox from Matlab, are presented in chapter
3. Chapter 4 focuses on designing and simulating two state-
feedback control techniques: pole-placement method and Lin-
ear Quadratic Regulator(LQR) and chapter 5 and 6 show the
experimental results and the conclusions.

II. MATHEMATICAL MODEL FOR CNC

The workstation in the laboratory, which represents a small-
size CNC machine is shown in Fig.1.

Fig. 1: CNC machine

The positioning system compounds of three axes of trans-
lation: X, Y and Z. Z-axis is driven by a stepper motor
and has the role to place the tool at the right distance on
the vertical direction. X and Y-axis are driven by BrushLess
Direct Current(BLDC) motors which receive commands from
MC206X controller. The controller is connected to the PC via
an USB link, as shown in Fig.2 and can be programmed using
TrioBasic programming Language, which gives the possibility
to develop control commands fast and easy.
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Fig. 2: Controller connections

The purpose of this paper is to consider a mathematical
model for 2D positioning system(taking into consideration X
and Y-axis) in order to design a control law for it.

Fig. 3: Block diagram representation for the model used for
parameters estimation

The system can be represented, as shown in Fig.3, by a
Multi-Input-Multi-Output process with two inputs and two
outputs, as it follows:
• Inputs: ux, uy -represent the drive command, where index

x or y suggest the corresponding axis.
• Outputs: θx, θy -represent the position of rotors of the

motors that drive each axis.
Also, we have the designations that suggest the type of the

signal or the relationship between signals:
• ωx, ωy: angular velocity;
• Hωxux

, Hωyuy
, Hθxωx

,Hθyωy
the transfer functions from

u to ω and from ω to θ, for each axis
• Hωxuy , Hωyux the mutual effect between the two axes
The block diagram represented in Fig.3 illustrates the

simplified scheme that represents the dependency between
electrical and mechanical part of the system. The whole system
can be represented by two coupled subsystems, each one
corresponding to one axis. The mutual effect between the axes
appears because of the mechanical connection between the
two.

The transfer function from the command u to the speed ω,
for each axis, can be approximated by a first order term, taking

into consideration only the time constant Tm, representing the
mechanical part of the drive:

Hωxux
=

KMx

TMxs+ 1
;Hωyuy

=
KMy

TMys+ 1
(1)

The second transfer function shows the relationship between
the speed and the position and is represented by an integrator:

Hθxωx
=

1

s
;Hθyωy

=
1

s
; (2)

The mutual effect between the two axes can be approxi-
mated with proportional gains:

Hωyux
= Kωyux

;Hωxuy
= Kωxuy

(3)

The behavior analysis and the control design algorithm will
be made using state space model:{

ẋ = Ax+Bu

y = Cx+Du
(4)

The notations used are as follows:
• x-state vector
• A-the state matrix
• B-the input matrix
• u-the vector of the input signals
• C-the output matrix
• y-the vector of the output signals
• D-the direct transfer
The state space variables are considered the measured

variables: the rotor speed and position for each axis. The input
signals vector is represented by the command signal ’u’ for
each axis. The outputs are considered only the variables that
need to be controlled: the position of each axis.

x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

 =


ωx(t)
θx(t)
ωy(t)
θy(t)

 (5)

u(t) =

(
ux(t)
uy(t)

)
(6)

y(t) =

(
θx(t)
θy(t)

)
(7)

Transforming the transfer function model represented in
Fig.3 into a state space model with the previous notations and
considerations, we obtain:

A =


− 1
TMx

0 0 0

1 0 0 0
0 0 − 1

TMy
0

0 0 1 0

 (8)

B =


KMx

TMx
Kωxuy

0 0

Kωyux

KMy

TMy

0 0

 (9)
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C =

(
0 1 0 0
0 0 0 1

)
(10)

D =

(
0 0
0 0

)
(11)

III. PARAMETER IDENTIFICATION

Using TrioBasic commands, we have the measured signal
obtained by following a path at the maximum speed of the
rotor of each axis. The acquired data signals are represented
in Fig.4, with the mention that the signals are scaled for a
good representation of all the signals in the same figure.

Fig. 4: Acquired data for each X and Y-axis

Using the models described above and applying the iden-
tification methods [9] based on minimization of prediction
error and the least squares algorithm, the model parameters
are obtained using System Identification Toolbox in Matlab
[10].

Once the fitting, autocorrelation and cross-correlation tests
are passed, the estimated model is obtained and transformed
into transfer functions using ’Zero Order Hold’ discretisation
method. So, we have:
• For X-axis:

Hωxux =
1054

s+ 40.85
(12)

Hθxωx
=

1

s
(13)

• For Y-axis:

Hωyuy =
2188

s+ 87.81
(14)

Hθyωy
=

1

s
(15)

• Mutual effect:

Hωyux
= Kωyux

= 24.46;Hωxuy
= Kωxuy

= 26.65
(16)

The state space model will have:

A =


−40.85 0 0 0

1 0 0 0
0 0 −87.81 0
0 0 1 0

 ;

B = 103 ∗


1.05 0.267
0 0

0.0245 2.188
0 0

 ;

C =

(
0 1 0 0
0 0 0 1

)
;

D =

(
0 0
0 0

)
;

(17)

IV. CONTROLLER DESIGN

A. Pole Placement

Closed-loop pole assignment is a common technique used to
design controllers for MIMO processes. Specifying the closed
loop eigenvalues, a state-feedback matrix K is computed, so
that the closed loop system satisfies the condition [11]:

(A−BK)x = λiIx (18)

where λi are the desired eigenvalues.
Also, to eliminate the stationary heading error when tracking

a reference signal, a pre-filter matrix F is calculated using the
following equation:

F = −(C(A−BK)−1B)−1 (19)

To allocate the eigenvalues [-80 -80 -120 -120], the matrices
K and F have the following values:

K =

(
0.1510 9.1107 −0.0013 −0.1110
−0.0017 −0.1019 0.513 4.388

)
(20)

F =

(
9.1107 −0.1110
−0.1019 4.388

)
(21)

The step response is simulated and represented in Fig.5.

Fig. 5: Closed-loop step response using pole-placement
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B. LQR Problem

Another way to design a controller for a MIMO process is
using LQR problem. This problem is based on optimal control,
which is concerned with operating a system at minimum cost.
In this case, the system dynamics is described using linear
differential equations (state space model) and the cost function
is represented by a quadratic function as the following one:

J =

∫ ∞
0

(xT (t)Qx(t) + uT (t)Ru(t))dt (22)

where Q defines the weights on the state and is a semi-defined
symmetric matrix and R defines the weights on the control
input.

The aim is to minimize the cost function J and to find the
optimal control law u* that should be used [12].

Based on the scientific articles in the literature, it turns out
that regardless of the matrix Q and matrix R, the minimum
cost function is obtained by solving a Ricatti equation [13]:

−Ṗ (t) = Q− PTBR−1BTP +ATP + PA (23)

This equation is obtained by solving the Hamilton-Jacobi-
Bellman (HJB) equation (23) with the boundary condition in
(24).

∂J∗(x(t), t)

∂t
+minuH = 0 (24)

J∗(x(tf ), tf ) = 0,where tf is the final time. (25)

The optimal cost function J* is quadratic:

J∗(x, t) = xTP (t)x (26)

So,

∂J∗(x(t), t)

∂t
= J∗t = xT Ṗ (t)x

∂J∗(x(t), t)

∂x
= J∗x = 2P (t)x

(27)

The Hamiltonian:

H = xTQx+ uTRu+ J∗Tx (Ax+Bu) (28)

To solve the problem, we have to minimize the Hamiltonian
with respect to u:

∂H

∂u
= 2Ru+ (J∗Tx B)T = 2Ru+BTJ∗x = 0 (29)

which gives

u = −1

2
R−1BTJ∗x (30)

After calculations and replacements, the HJB equation be-
comes:

xT Ṗ (t)x+XTQx+ (−R−1BTPx)TR(−R−1BTPx)

+2xTPT (Ax+B(−R−1BTPx)) = 0 (31)

which gives the Ricatti equation mentioned above.
Since we have the Ricatti equation, we have solved the

optimal control problem. The feedback control law is:

u = −1

2
R−1BT (2P (t)x) = −R−1BTP (t)x = −Kx (32)

where K is the gain matrix.
Like in the pole-placement case, if we want to implement a

tracking controller, it is necessary to compute a matrix N the
reference signals is multiplied by, so that the stationary error
is null.

N = −(C(A−BK)−1B)−1 (33)

In many cases, the weight matrix Q or R is chosen through
successive attempts, so that the results fulfill the requirements.

This paper propose a method to chose the weights of matrix
Q using the energy of the system [8], [14].

Having:
• the general differential equation of a motor, correspond-

ing to each axis:

J
∂2θ

∂t2
+D

∂θ

∂t
+Kθ = u (34)

• the energy of the subsystem, consisting of each axis
separately:

E = Ek + Ep; Ek =
1

2
Jω2; Ep =

1

2
Kθ2 (35)

where Ek is the kinetic energy and Ep is the potential
energy,

We can write the cost function J in LQR problem as the
total energy of the system.

That means that Q will be:

Q =
1

2


Jx 0 0 0
0 Kx 0 0
0 0 Jy 0
0 0 0 Ky

 (36)

For our system, we set:

Q = 1
103


0.4744 0 0 0

0 0.05 0 0
0 0 0.2285 0
0 0 0 0.05

,

R =

(
1 0
0 1

)
and we obtain:

K =

(
0.0059 0.0071 0 −0.0001
0.0001 0.0001 0.0028 0.0071

)
(37)

N =

(
0.0071 −0.0001
0.0001 0.0071

)
(38)

The simulink model shown in Fig.6 is used to simulate the
behavior of the closed loop system.
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Fig. 6: Simulink Model for feedback control

The step response can be visualized in Fig. 7 where it can
be observed that the settling time is much bigger than the one
obtained with the pole-placement method.

Fig. 7: Closed-loop step response using LQR

In order to obtain some results that are closer to the one
obtained with the first method, several testes were made and
some conclusions can be mentioned: in order to improve
the response of the closed loop system using the energy
LQR method presented above, it is necessary to change both
R matrix and the weights that correspond to the position
variable. The best results,which are almost the same as the one
obtained with pole placement method, were obtained using the
following matrices:

Q =


0.0005 0 0 0

0 0.85 0 0
0 0 0.0002 0
0 0 0 0.25

,

R =

(
0.01 0
0 0.01

)
The simulated step response using the following control

matrices:

K =

(
0.0059 0.0071 0 −0.0001
0.0001 0.0001 0.0028 0.0071

)
(39)

N =

(
0.0071 −0.0001
0.0001 0.0071

)
(40)

Fig. 8: Closed-loop step response using modified LQR
weight matrices

V. EXPERIMENTAL RESULTS

Based on the scenarios simulated and presented in the
previous chapter, for experimental test (39) and (40) are used.
As presented in the first chapter, the motors that drive the axes
are controlled with MC206X Motion Coordinator. This have
five servo gains [15]: Proportional gain: P Gain, Integral
gain: I Gain, Derivative gain: D Gain, Output velocity gain:
OV Gain, Velocity Feed-Forward Gain: V FF Gain. The
block diagram that represents the closed loop control system
that can be implemented is represented in Fig. 9.

Fig. 9: Servo loop diagram

For implementation, we take into consideration the first two
elements from matrix K for X-axis and last two elements for Y-
axis, because those are the one that correspond to the velocity
and position gain for each axis.

So, we set: For X-axis: P Gain = 9.21, OV Gain = 0.21,
and for Y-axis: P Gain = 4.55, OV Gain = 0.13;

During the experimental tests, several cases were taken into
consideration: following a circle path with different radius
or squares paths with different size. The resultant path was
reproduced based on the signals and was represented, in each
case, compared to the ones that were obtained using PGains
set after several tries. [16]
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Fig. 10: Results with and without using the designed
controller-squares drawn

Fig. 11: Results with and without using the designed
controller-circles drawn

In the figures above, it can be seen that in each case a small
error exists. For each case, a fit performance parameter was
calculated and the result were represented in Table.1.

Using designed controller No designed controller
X Axis Y Axis X Axis Y Axis

Circle R=1cm 93.2% 96% 92% 92.7%
R=2cm 95% 98% 93% 97%

Square L=3cm 80% 80% 79% 76%
L=5cm 84.5% 86% 82% 84.1%

TABLE I: Fit parameter calculated for each case

VI. CONCLUSION

As a conclusion, based on the latest results presented in
the end of the previous chapter, we can say that the designed
controller gives a better precision in terms of following a path.
However, we also observed that the error is bigger in case
of square path and that could be because at the corners of
the square the acceleration and deceleration are big. Also, a

reason for the error occurrence is the ball screw translational
axis construction and the friction that appears.

In this paper, two methods for designing a controller for an
small size CNC system are presented. Both of the methods
are good for a MIMO system and both of them are easy to
implement. For the LQR problem, an energy based algorithm
of choosing the weight matrices was proposed. At the first
simulation, the controller seemed to work good but slower
than the one obtained with pole placement algorithm. Starting
from the parameters obtained using energy based matrix, the
weights were modified in order to obtain almost the same
result as in the first method. So, the energy based LQR seems
to be a good technique in terms of control and stability, but if
more precise performances is needed, several tests are needed.
So, based on this, we can emphasis that choosing Q and R is
part art, part science.

As a future development, other tests and control algorithms
have to be tried in order to obtain a better fitting. Also,
friction models and compensation should be done for the same
purpose.

REFERENCES
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