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And an explosion of data

Estimates of the number of connected devices
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Demand for Data Analytics Expertise

* Companies are using data to
streamline operations, improve
reliability, optimize processes

* Enabled by huge increases
in data and reductions in
computer costs

* Resulting in high demand 7
for people with expertise
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Some Workshop Goals

* Tools for solving problems based on data

* Ways to choose algorithms for a specific problem
* Numerous application examples

* Tips and tricks of the trade

Workshop Outline

1 - Introduction

1.1 Examples of typical data analytics applications

1.2 Unsupervised, supervised, and partially supervised learning
1.3 Least squares including sparse methods

1.4 Feature engineering

1.5 Kernel methods for nonlinear analytics

1.6 Neural networks and deep learning
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Workshop Outline

2 - Latent Variable Methods and Application Case Studies

2.1 Principal component analysis

2.2 Partial least squares

2.3 Canonical correlation analysis

2.4 Dynamic principal component analysis and canonical variate analysis
2.5 Linear discriminant analysis and support vector machines

2.6 Process monitoring, diagnosis, and troubleshooting

Workshop Outline

3 - Industrial Experience and Tips, Interactive Discussions

3.1 Visualization

3.2 Outlier detection and data preprocessing

3.3 Method selection

3.4 How good is good enough? Industrial tips and tricks of the trade
3.5 Industrial case studies by guest speaker Dr. lvan Castillo (Dow)
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1. Introduction to Process Data Analytics
and Machine Learning

Richard D. Braatz

Part 1 Outline

1 - Introduction
1.1 Examples of typical data analytics applications

1.2 Unsupervised, supervised, and partially supervised learning
1.3 Least squares including sparse methods

1.4 Feature engineering

1.5 Kernel methods for nonlinear analytics

1.6 Neural networks and deep learning

10

8/5/2019



!llil— Objectives: Diagnostics/Prognostics, Continuous Improvement, and Optimal Decision Making

Examples of Typical Data Analytics Applications

U

CHEMICAL PLANT

CHEMICAL PROCESSES

Upstream Downstream

Packaging

Itilize ecosystem data to connect customer
needs to manufacturing data

tilize plant-wide data (numerical, textual) to

optimize operational models

Automated data archiving stores data for

~|vigv
vigv

vigv

process modelling and analysis, for improved
monitoring and contral

-
1. Consistent
™ production of

¥l quality product

)
ll

UIse all available data to ensure product
quality specifications are met

11

scheduling

automated

Examples of Typical Data Analytics Applications

Ontim Plant-level
QW operational
production data

Early,

quality
detection

Predict
machinery

needs

maintenance

Optimize
SN inspection

resource

allocation

Root cause

analysis for
low quality
output

Many companies have built the infrastructure to
bring the data into one database for easy access

Correlate plant data to off-line product quality specs
Connect product quality data to the supply chain

Troubleshoot problems in plant operation, e.g.,
causes of off-spec product (e.g. raw materials,
operator error)

Propose process or control design changes to
reduce operational problems

Optimize operations, e.g., selection of raw
materials or mixtures from multiple suppliers

Design predictive maintenance schedules
Facilitate continuous improvement practices

12
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Hasn’t data analytics been applied to
chemical processes for decades?

* Control charts, principal component analysis (PCA), and partial least
squares (PLS) have been important tools in industry for decades

* New datasets present different attributes and challenges that are not
addressed using classical techniques

i
Examples of Some Modern Datasets
Product  Sample images Comments
Non-seasoned Low-seasoned High-seasoned .
* Example: images - gf'“"ei
of snack foods ‘ samples;
40 for
(US Patent training
and 43 for
7068817 B2) test
On-line;
. . . 180
* Real-time imaging samples:
90 f
used to control the P raining
and 90 for
amount of st
. On-line;
seasoning 110
samples;
C 55 for
training
I EEE  |mages from https://www.youtube.com/watch?v=kvZfE3Ueql4 . AR = = = = BhaSCad S s and 55 for
I I I I http://www.google.tl/patents/US7068817 test
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Examples of Some Modern Datasets

* With cost < $100 for a color CCD camera, imaging is more widely used

* Example: grey-scale video with dimensions x, y, t
(color adds an rgb dimension)

Tubing wall Tubing wall

rl

Tubing wall Tubing wall

I um= M. Jiang, Z. Zhu, E. Jimenez, C.D. Papageorgiou, J. Waetzig, A. Hardy, M. Langston, and R.D. Braatz. Continuous-flow tubular
I crystallization in slugs spontaneously induced by hydrodynamics. Crystal Growth & Design (2014) 14:851-860.

Examples of Some Modern Datasets

* Modern data include 1-way arrays (spectra),
2-way arrays (2D particle size distributions), 3-way arrays
(hyperspectral images), and 4-way arrays (color videos)

* Algorithms are available for handling
these higher order data structures

Furnace Imaging System

» Unispectral and BGN Technologies Ltd.
claim large cost reductions will occur
by exploiting smart phone hardware

-
III I Image from https://www.youtube.com/watch?v=kvZfE3Ueql4
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concentration fields by Raman
imaging

o. mannitol

B mannitol

y mannitol

mannitol
hemihydrate

Examples of Some Modern Datasets

B (blue) and y (red) mannitol concentrations in lyophilized

samples by NIR chemical imaging

5wy

50 100 150 200 250 300

Cao et al, Pharm. Res. 30, 131, 2013; Brouckaert et al, Analyt. Chem. 90, 4354, 2018 17

* Modern data are often “big data”

* Enabled by improvements in sensor
technologies, wireless networks,
and computational power

* Characterized by the 4 Vs:
volume, velocity, variety, veracity

* This workshop covers data more
broadly

WITHIN

== SEARCH INFORMATION

How Modern Data Sets Relate to Big Data
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Which model type to use for a given application?

Higher layers in the pyramid correspond to
greater knowledge, more informed and
better reliability of decision making

First
Principles

Increasing
knowledge Mechanistic

Understanding

MV Data-based Models
Empirical Understanding

Decisions based on
Univariate Analysis

Data Derived from Trial-and-error
Experimentation

19

The Best Model Complexity
Depends on the Purpose i

First
- Principles

Mechanistic
Understanding

MV Data-based Models
Empirical Understanding

* Construct from first principles
where possible

Decisions based on
Univariate Analysis

Data Derived from Trial-and-error
Experimentation

* Highest complexity models used for
the intensification of process designs

* Lower complexity models for process
control design and quality monitoring

Basic Principles of GMP, World Health Organization, May 2008
III- - A.E. Lu et al., IEEE Conf. on Control Appl., 1505-1515, 2015 A.E. Lu et al.,
| | 20

Proc. Am. Contr. Conf., 1741-1746, 2016
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Questions?

21
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1 - Introduction
1.1 Examples of typical data analytics applications

Part 1 Outline

1.2 Unsupervised, supervised, and partially supervised learning

1.3 Least squares including sparse methods
1.4 Feature engineering
1.5 Kernel methods for nonlinear analytics

1.6 Neural networks and deep learning

Unsupervised, Supervised, and Partially Supervised Learning
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Unsupervised, Supervised, and Partially Supervised Learning

Known fault
/"7~ condition
+ \

‘ .

- T operating
' . .
/ conditions

_____

Supervised

Example Method: Linear Discriminant Analysis (LDA)

* Linear discriminant analysis is a type of generative classifier for binary

problems
* Assumes that the data has class-specific means and a shared covariance
matrix
Y~Binomial(m) X|Y =c~N(uc %)
Predict class + when: LDA:
maximizing the component
T axes for class-separation
w'x;+b>0
where Bad projection X
-1 (/ i"?": ...... ».
w=X""(up —p)
b = 1 Ty-—1
= §(u+ —p) I (g —p)
Illil- Image credit: http://sebastianraschka.com/Articles/2014_python_Ida.html GO;)::i projéc;ion 4
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Example Application: Prediction and Classification of
Battery Lifetime from High-throughput Cycling Data

* Predicted battery cycle life from data collected during the first 110 cycles

* Classified batteries into long and short lifetime based on data collected during only
the first 5 cycles, before capacity degradation has occurred

Experimental Cycling Data Feature Engineering & Elastic Net Classification Modeling
=l e s . Graphite/LFP 300 o Y ' '
e - - | 3 S
/_\_ - - 1860 308 =
-~ 3} 2 :
i \ 2 AN b 1420 2 A o6
! \ ) ™~ > £
' ll’ 2 \ glI}; ***************************
S s \\f ST Goa
\ 540 é
\ 1 Bo2
L 8
-% 06 -0.04 -0.02 0 0.02 0.04 1 & L] ‘%
05 ) Qq by DO 500 1000 1500 2000 2500
Observed Cycle Life
I - -
I || | Severson et al., Data-driven prediction of battery cycle life before capacity degradation, Nature Energy, 4, 383-391, 2019

Unsupervised, Supervised, and Partially Supervised Learning

RNy Years of historical data
I (N
\ SN
\ \
\ j P ar=aaiN Some abnormal
\ 4 ™ .
N \  operations must have
P \
! i occurred, but
1 o
\ /uncharacterized
\\ II
\\\ ’,/
Unsupervised
i E’

8/5/2019



Example Application: Scatter Plot of Bioreactor Data
Projected onto Two Principal Components

Data are within 95% confidence ellipse, but clearly show different behavior

12

. ...
h h b AN S o0 aNow a
—t—tt —t r—tr—t + + + + L2

- -
IIII | Kirdar et al., Biotechnology Progress, 23(1), 61-67, 2007

Unsupervised, Supervised, and Partially Supervised Learning

Years of historical data

/4
I
LN
‘\ \ -
. \ + )"— =~q
Some past data are associated \. ¥ R
. 7 \
with faults (+), e.g., stuck valves \r'-/ \
a ,=
Probably some other abnormal N\ /
. N,
operations occurred, but are SSael L i

uncharacterized Partially supervised
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Example Application: Scatter Plot of Bioreactor Data
Projected onto Two Principal Components

* Can have more input process data than
output quality data

* Applied to a sulfur recover unit and a
debutanizer column

* Soft sensors had similar prediction
error when 50% of the output values
were unknown

-
III il *Ge and Song, AIChE Journal, 57(8), 2109-2119, 2011 [
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Part 1 Outline

1 - Introduction

1.1 Examples of typical data analytics applications

1.2 Unsupervised, supervised, and partially supervised learning
1.3 Least squares including sparse methods

1.4 Feature engineering
1.5 Kernel methods for nonlinear analytics
1.6 Neural networks and deep learning

Linear Regression

Models that are linear functions of the parameters

n
Yy = E Oia;, +e=ab +e=y+e
i=1 K AN
n sensor signals measurement noise

calibration parameters (zero mean, independent)

a: row vector @ : column vector

N samples — stack the variables into vectors and matrices:

,yl al 61

Y — : — : 0 + : = A0 + F




Least-Squares Estimation of Model Parameters

If the variance of each measurement noise is equal for all measurements, then the calibration
parameters should minimize the sum of squared deviations between ¥ and vy

N
. 2 _ Ty s _ Ty _
min Z B = melnE FE = m@ln(Y A0) (Y — A0)
=1 pseudo-inverse
0 =[ATA] " ATY =(Ahy

If Ais square and invertible, 9 = A~ 'Y

For the covariance matrix of the measurement noise cov { £} = V1,

the best estimate of the parameters is

0 — (AT‘/;_lA)_lAT‘/;_ly }

8/5/2019

Example: Concentration of a Hydrocarbon in the Distillate

1

absorbance at 2000 cm ™
1

ol — as - absorbance at 3000 cm™
as temperature
ay 1

4
¢y = hydrocarbon concentration = af = E 0;a; = 01 (absorbance at 2000 cm ™ 1)
i=1

+ 03 (absorbance at 3000 cm ™ ') + 03 (temperature) + 64

The stochastic fluctuations in the sensor signals can be estimated by measuring the same sample many

times; for the variances of the sensor signals a%, SR UZ :
o3 o0 o0 0
. 0 o3 0 0
Ve = 0 0 o3 0]
0 o0 0 o3
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Example: Concentration of a Hydrocarbon in the Distillate

Given the known hydrocarbon concentrations of the 10 samples

1 1 1 1
Yl ay as as ay
a2 a2 a2 a2
. 1 2 3 4
Y — - A _— A
y'o L 10 10 :10 :10 J
ay as as ay
known hydrocarbon concentrations sensor signals

|:> 0 = (AT‘/E_lA)_lATV;_lY (weighted least squares)

This method produces good calibration models when the number of calibration parameters is low,
but performs poorly when the number of calibration parameters is high, due to high correlations
between the sensor signals

Ridge Regression

Simplest method for producing accurate models for highly correlated data

N n
mein jE_l EJ2 + « iE_l 07 = mein ETE + ab%0

:Emein(y — AT (Y — AO) + 076

a positive small number

> o=[ATA+al] " ATY
More sophisticated methods covered in Part 2




Sparse Models

Models with higher predictive capability are often obtained by assuming that the model is sparse,
that is, the most elements of the vector 6 are equal to zero.

Lasso (least absolute shrinkage and selection operator):

N n n
meinZEgz —|—a; 10, = meinETE—l—aZWH

=1 =1

_ : _ T _ .
=min(Y — A0)T(Y — A0) —|—oz;|6’z

The selection of nonzero elements for lasso can be sensitive to small perturbations in the data
Elastic net combines ridge regression and lasso to generate sparse models with higher robustness

Example Application: Prediction and Classification of
Battery Lifetime from High-throughput Cycling Data

* Predicted battery cycle life from data collected during the first 110 cycles

* Classified batteries into long and short lifetime based on data collected during
only the first 5 cycles, before capacity degradation has occurred

* Elastic net identifies one feature that gives ~90% of the prediction accuracy

Experimental Cycling Data Feature Engineering & Elastic Net Classification Modeling
— ey e Graphite/LFP ! - i B
3 « 35( 2300 P el @
"’:\-" = B % N -J ’
E\# I — b . - . 1860 308 -5
if Rty o2 2 :
: = 3 - 1) 8
i \ - 2 N i 1420 £ 0.6
5 & N > 2
: 7 g \ B 3
>551 VU = So4
"w\ 540 %
2 1 ‘ 100 goz
-0.08 -0.04 -0.02 0 0.02 0.04 & L

Qg -Q, (An)

o

o
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Observed Cycle Life

Severson et al., Data-driven prediction of battery cycle life before capacity degradation, Nature Energy, 4, 383-391, 2019
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Example Application: mAb manufacturing modeling

* Application: model critical quality attributes in a monoclonal antibody
manufacturing (mAb) process at Biogen

* Modeling goal: understand the parameters that affect production

* Elastic net outperformed the methods commonly applied in biopharma

Production-Scale Data for a mAb

Vial thaw and inoculum Seed
expansion

1
Filter Chromatography] =7 = Fitear Chromatography | S2ITE. her
skid o skid
—"— 2888 T% = 888 7
= t i -
.2 s o
ara

Cotumn

Ehromatoarapty - (- [T
G e

c-:lumn

Polishing Viral filtration Final fill
chromatography #2

I I I I I Shukla and Thommes, Recent advances in large-scale production of monoclonal antibodies and related proteins, Trends in Biotechnology, 2010.
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Non-factorial, Normalized, Small Data

2.5
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N IOLA A 9 T AT ST
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!|||| 11
Prediction of Titer Exiting the Bioreactor
: Cation Anion
Output of 3 Protein A
. Bioreactor . Coluran . Eég:\jnrj‘ie . Eég?:rr:‘ie
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o 20001 x ‘ ( . | | | T % [ T >|< £ |
2 ! S |
1500 - il
1000 - x % Measurement
Prediction
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Experiment
i 12
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Prediction Error Using All Upstream Inputs
Variance of the Prediction Using ...

Unit Operation Output Variable PCR PLS ENwMC
Bioreactor GO product quality 0.146 (4) 0.148 (1) 0.087 (3)
Final titer 0.281 4) 0.287 (2) 0.178 (3)

DNA 0.209 (4) 0.201 (1) 0.223 (4)

HCP 0.258 (6) 0.210 (2) 0.150 (6)

Protein A Column DNA 0.151 (@) 0.143 (D 0.095 (4)
HCP 0.268 (6) 0.202 (3) 0.080 (4)

Total impurity 0.286 (4) 0.256 (1) 0.164 (5)

HMW 0.117 (&) 0.092 (1) 0.045 (4)

Cation Exchange HCP 0.226 (9) 0.132 (2) 0.083 (4)
Column Total impurity 0323 (5  0.348 (2)  0.226 (2)
HMW 0.058 (3) 0.063 (1) 0.010 (3)

Anion Exchange HCP 0.189 (7) 0.140 (2) 0.048 (3)
Column Total impurity 0.228 (4) 0.227 (3) 0.115 (4)
!Ilil- HMW 0.067 (9) 0.050 4) 0.007 (2)

Side Comment on Quality of Fit

SSE = Z:(yZ — Qi)Q <« Use validation set
The coefficient of determination (R-squared)
SSE _ _
2 =1 == ’ SST = ; — )2 —
r SST ;(y v) g

An R-squared value of 1 is considered good, but can be
a misleading indicator of the predictive value of the model

8/5/2019
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Nonlinear regression

* Refers to models that are nonlinear functions of the parameters

* Linear and nonlinear regression are often referred to as parameter estimation

in chemical engineering and related branches of engineering
* For example, kinetic parameters are identified from experimental data

* The next slides discuss how to estimate parameters from dynamic data and

to quantify the accuracy of the parameters

Parameter Estimation as an Optimization

# of measured variables \‘ / # of sampling instances

Nm Nd
. ~ 2
meln E E Wi (yq;j — Yiy (0)) (€1)
i=1 j=1
For the best estimates,wz-j should be set as(O';-z ) 1

The optimization (C1) is more general than used for sensor calibration, since (C1) can be applied to
experimental data from dynamic processes and the model in (C1) can be nonlinear in parameters

min (Y — 17(9))T w (Y — ?(9))
= mein(Y — AT W (Y — A0)




Quantifying Uncertainties in the Parameters

Due to stochastic fluctuations associated with measurements, the parameter estimates are also

stochastic variables with probability distributions
® | inearize the model near the vicinity of the estimate:
95(0) = y;(07) + F;(07)(0 — 67)

~ T
YN, ,j] : vector of model predictions at sampling instance j

Ui =115, -+,
O
e I, = 8‘@/9]  sensitivity matrix (N, x N,,)
6*

® Assuming that the measurement errors are normally distributed and independent of each other

Ng
Vi = of [:{> ‘ vl = E FIVoE
j=1

8/5/2019

Quantifying Uncertainties in the Parameters

The approximate 100(1 — a)% confidence region is the hyperellipsoid

[ 0~ 0V (0 - 00 < 3R, (@)

Confidence intervals

0 —tn_nN,(a)\/Vo,is < 0; <07 +tn_n,(x)\/Vo,ii

Numerical chemical engineering applications that stretch back to Gary E. Blau
at Dow Chemical in the 1970s, e.g., Can. J. Chem. Eng., 52(3), 289-299, 1974




Questions?
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Part 1 Outline

1 - Introduction

1.1 Examples of typical data analytics applications

1.2 Unsupervised, supervised, and partially supervised learning
1.3 Least squares including sparse methods

1.4 Feature engineering

1.5 Kernel methods for nonlinear analytics
1.6 Neural networks and deep learning

Feature Engineering

* Transforming the raw data to concentration information content
* Some examples are using the coefficients of linear, quadratic, or cubic fits
* Apply sparse methods to remove features of low value in modeling

2 2 2
—M=0 —M=1 —M=3
1 o <= T o ° e 1 /{'s\o\
© T \\\\o ~Q °© o o (;)
0 0 ~_ ) /
° ° o
1 = -1 = 1
o 0.5 1 0 0.5 1 o) 0.5 1
X X X X
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Example Application: Prediction and Classification of
Battery Lifetime from High-throughput Cycling Data

* Predicted battery cycle life from data collected during the first 110 cycles

* Classified batteries into long and short lifetime based on data collected during
only the first 5 cycles, before capacity degradation has occurred

Experimental Cycling Data Feature Engineering & Elastic Net Classification Modeling

. 1
I = Graphite/LFP o
™~ iy 357 d | 2300 P el
P 2 e - © -
r~ , = st
o |- — — ; — 1860 fsha -
' T 3 H
U | < 3 & 0
T E ‘*\\ i 1420 % A 06 L
| i o
& @ ™\ = T O
‘ j \ 980 5 # 3 [
251 S04t
\l | %
%‘ 540 = .
{1 Qo2
So.
2 L 100 2 § )
-0.06 0.04 0.02 0 0.02 0.04 " o
05 -Q, (Ah) oLt L L
‘ 0 500 1000 1500 2000 2500

Observed Cycle Life

Severson et al., Data-driven prediction of battery cycle life before capacity degradation, Nature Energy, 4, 383-391, 2019

Example Application: Prediction and Classification of
Battery Lifetime from High-throughput Cycling Data

Experimental Cycling Data Feature Engineering & Elastic Net

P = Graphite/LFP
N ‘ 35 P , 2300
5 ,'fﬁ.\ — : ™ i ' 1860
N = ] : B
L ~ 3 - 4/ )
- S I# 1420
L g f
| x —" g | g
A 5 - 90 3
‘ Z25¢ \
‘ 0 il 540
’ \ ' . 9 ‘ : \ 100

006 004 002 0 002 004
Q, - Q, (Ah)

Severson et al., Data-driven prediction of battery cycle life before capacity degradation, Nature Energy, 4, 383-391, 2019
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Example Application: Process structural information

* Process modelers have prior information that can improve performance

* Causal features can be calculated
using the process flow diagram

* Let’s demonstrate on the
Tennessee Eastman plant with
21 sets of anomalous conditions

......

FEN<rrzs oo

[

MMMMMMMM

________ [a] H
ab-GEy:
r-Ger
[B2;
zl.
‘&9

,,,,,,,,,,,,,,,, e W)
@ m & ' Product )
Ghiamg and R.D. Braatz. Process monitoring using causal map and multivariate statistics: Fauit ... Fooommmomsssossosooos @'
'iln and identification. Chemometrics & Intelligent Laboratory Systems, 65:159-178, 2003 5
. .
Example Application: Data = Causal Features
.
A feed valve | A feed COMPRESSOR PURGE

* Causal map can be constructed
automatically from process flow
diagram or P&ID

* Two distances: modified distance
index and causal dependency

* Uses graphs & information theory

Ghimmg and R.D. Braatz. Process monitoring using causal map and multivariate statistics: Fault
'iln and identification. Chemometrics & Intelligent Laboratory Systems, 65:159-178, 2003

27: Xe feed

28: Xf feed

‘ =()20: Work
S —

SICW flow

7: Pressure

REACTOR

s
45 ,-\Akaccd\'am T, AKC fecd

h valve
| —

FEED

aE
17: Underflow_| l

' © 49: Liquid flow
STRIPPER

14: Underflow

SEPARATOR

1
) 1
OO |stre.m\Flo\\] -

() 47: Purge valve

=0 40:Xg PRODUCT

Y 41:Xh
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Example Application: Data = Causal Features

* Causal features characterize changes in single variables & variance relationships

44: A feed valve  |: A feed
O o]

42: D feed valve  2:D feed
O e}

COMPRESSOR

5: Recycle flow O

O 46: Recycle valve

@20: Work

PURGE
QO 47: Purge valve

43: Efeed valve  3:E feed © 10: Purge rate
O [e]
CONDENSER & 25%a
O 23:Xafeed S2:CW flow O 03030
ll'T:mp.T 5 CwO - )
:CW outlet temp. ¥
ok 8:Level 21: CW outlet a2 O3t:Xe
OI. e 13: Pressure S, Level O 32:Xd
O 25:Xc feed O 6
OéFeed L 0 o) O 33:Xe
O 26:Xdfeed O Ostcwhow [ PRIV 14 Underflow P—
SEPARATOR
O 27: Xe feed REACTOR 035:Xg
O 36: Xh
O 28:Xffeed
16: Pressure @ O 18:Temp. o¥x
QO 38: Xe
15:Level O O 19:Steam Flow
45: ARC feedvalvel 4.2 8C feed 30: Secam Talvs O30 x¢
s Py
[ 1 3
1 17: Underflow O ©49; Liquid flow © «:xg PRODUCT
Q 4.
FEED STRIPPER 4: 3

lvln and R.D. Braatz. Process monitoring using causal map and multivariate statistics: Fault detection and identification. Chemometrics & Intelli;ent Laboratorz sttems, 65:159-178, 2003

&

Example Application: Data = Causal Features

* Simple statistics applied to causal features defined by the process flow diagram had
lower misclassification rates than more powerful methods applied to the raw data

Fault

Method

4

5

6

11

21

FDA1

0.196

0.034

1

0.331

0.815

FDA2

0.196

0.020

1

0.339

0.815

FDA3

0.176

0.020

0.941

0.290

0.980

PCA/FDA

0.176

0.024

0.993

0.316

0.830

FDA/PCA

0.208

0.034

1

0.335

0.726

DI/CD

0.084

0.055

0.036

0.036

0.056

llwlng and R.D. Braatz. Process monitoring using causal map and multivariate statistics: Fault detection and identification. Chemometrics & Intelligent Laboratory Systems, 65:159-178, 2003
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Example Application: Nanofiber Manufacturing via
Free Surface Electrospinning

N . . . _  h .
* Application: nanofiber production via ]
free surface electrospinning [ g— —_—
* Goal: define features that will help =
better predict quality and understand
the parameters that affect production relem
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Example Application: Nanofiber Manufacturing via
Free Surface Electrospinning

* Features: number of jets and positions of transitions in each jet
(X2, ¥2)

(X1, ¥4) ?

@

Current J; (UA)

(X, 0) (xp+c, 0)

time t (s)

g 1. Bhattacharayy, M.C. Molaro, R.D. Braatz, G.C. Rutledge, Free surface electrospinning of aqueous
!II I I polymer solution from a wire electrode, Chemical Engineering Journal, 289:203-211, 2016 11

Example Application: Nanofiber Manufacturing via
Free Surface Electrospinning

T
1
min 5 > (V(6) = Jeora (t16))” ~ 10g P(6)
t=1

Njets

subject to f;(0) < b; Vi, Jeotar = z Ji(t)
i=1
( 0, t < xg
yl (t - xO)l x() S t S x1
X1 — X
]i(t)=<y2_y1(t_x1)+y1’ Y <t<
X2 — X1
\ %?(V—%)+Ym Xy st

f— I. Bhattacharayy, M.C. Molaro, R.D. Braatz, G.C. Rutledge, Free surface electrospinning of aqueous
III I I polymer solution from a wire electrode, Chemical Engineering Journal, 289:203-211, 2016 12
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Example Application: Nanofiber Manufacturing via

Free Surface Electrospinning
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-> can use features to
predict product quality
and improve
understanding
(see paper for details)
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1. Bhattacharayy, M.C. Molaro, R.D. Braatz, G.C. Rutledge, Free surface electrospinning of aqueous
polymer solution from a wire electrode, Chemical Engineering Journal, 289:203-211, 2016

Questions?
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Part 1 Outline

1 - Introduction

1.1 Examples of typical data analytics applications

1.2 Unsupervised, supervised, and partially supervised learning
1.3 Least squares including sparse methods

1.4 Feature engineering

1.5 Kernel methods for nonlinear analytics

1.6 Neural networks and deep learning

The Kernel Trick

* Feature spaces can be computationally expensive to calculate, however,
many algorithms only depend on the inner product of the feature vectors

* The ‘kernel trick’ replaces the inner product with a call to the kernel function

* This changes the computational cost from O(d3) to O(n?) where d is the
dimension of the feature space and n is the number of training points

i z




Examples of Kernels

* A kernel matrix must be positive semidefinite

* Examples
* Gaussian (radial basis function) kernel:

k(x,z) = exp(—Bllx — z||*)
* Polynomial kernel:

kK(x,z) = (x-z+c)P

Kernel Methods in More Detail

* Nonlinear data is more likely to show linear pattern when mapped into a higher dimensional space
(Cover’s theorem), but high-dimensional mapping increases computational time

* The kernel trick gets around this while still having the benefit of high dimension
k(x,p) = (P(x),D(p))

* This idea applies to any method that can be expressed solely in terms of dot products

xry

Examples of kernels: . - [l
Polynomial

k(x,y)= ((x,y) +c)d
Hyperbolic tangent

k(x,y)= tanh(ﬁ0 (x, y) + /31) ,: : : —

Gaussian

_ 2
k(x,y)=exp(——”x 2 J
2c

* Will be discussed in more detail in part 2.4
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Neural Networks and Deep Learning

Encoder Decoder

* Explored by Mark Kramer in
the early 1990s as
“autoassociative networks”

* More generally outputs can
be different from the inputs

* Use of many layers is known
as deep learning

* Will be discussed in more
detail in part 2.5

G() H ()
G()={G,(),...G, ()} HQE={H,(),.... H, ()}
Mapping De-mapping

Example Application: Buffer Creation Process for a
Continuous Biopharmaceutical Plant

* Fluid dynamics of a static mixer modeled at 7 tanks in series
* 16 state variables, 20 faults, and very nonlinear

vs kernel polynomial vs NN PCA s W ) O3 bl

* PCA vs kernel radial basis function @

62.6 27.3 285 43.7 mixer

Illil- Sun, Lu, and Braatz, AIChE Meeting, 2018

NaOH L '
Average missed detection rates
PCA NN Ker Kooy H 3p04_@_,Q_, In-line
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Questions?
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