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= FOPAM process data
analytics workshop

Instructor: Leo Chiang
Guest speaker: lvan Castillo
In collaboration with Richard Braatz and Joe Qin

August 6, 2019

Contributions from team Dow including Bea Braun, Swee-Teng Chin, Lloyd Colegrove, Mark Joswiak, Yoyo Peng,
Ricardo Rendall, Alix Schmidt, Mary Beth Seasholtz, Monica Trevino, James Wade, Zhenyu Wang, and Mark Webb

Dow.com

mm 3 - Industrial Experience and Tips, Interactive Discussions

3.1 Visualization

3.2 Outlier detection and data preprocessing

3.3 Method selection

3.4 How good is good enough? Industrial tips and tricks of the trade

3.5 Industrial case studies

“.0
@ | ANaLycics 2

Daca Driven Decision Masking



Visualization: Data in context

X1 X2
1.76 | 5.14
146 | 5.34
1.63 | 5.47
0.81 | 1.23
1.17 | 545
0.25 | 1.89
1.93 | 5.25
0.02 | 1.40
3.33 | 1.19
0.17 | 1.16
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== Visualization: Data in context

Correlation coefficient = caution
Example: Anscombe’s quartet
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Mean of x
Variance of x
Mean of y
Variance of y

Correlation
between x and y

Linear regression

Coefficient of
determination of
linear regression

9
11
7.50
4.125
0.816

y=3.00 +
0.500%x

0.67

Exact

Exact

To 2 decimal places
+/- 0.003

To 3 decimal places

To 2, 3 decimal
places

To 2 decimal places
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== How to visualize a dataset: Direct method

Dir ect Correlation Parallel coordinates
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== HOW to visualize a dataset: Indirect method

Dimensionality reduction techniques
|ndirect (such as PCA) to preserve
- characteristics of original dataset

tl t2

Principal component analysis is the

industry workhorse

* Linear combinations of original
variables

» Identifies correlations
(structured variation)

* Leaves noise behind
(unstructured variation)

* No parameters to tune

* Fast

Many Variables

Analogy
Interpreting the shadows of a

complicated 3D-geometry after
projection onto a 2D surface...
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- D€sides PCA, what are the other options?
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. G A variety of techniques exist
Manifold lsaming ° Global/local
SVOD

» Linear/non-linear

» Parametric/non-parametric
* Manifold learners

* Tunable parameters
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Ge et al. JEEE Access 2017

== t-SNE is the current gold standard

MNIST dataset (handwritten digits 0-9, colored by number) van der Maaten and Hinton J. MLR 2009

PCA Autoencoder t-SNE
: : & o Identifies natural clusters

Solves crowding problem

How it works:
« Point-point similarity is a probability, which is sought to be preserved in reduction.
» Create latent graph most similar to original graph. Minimize reconstruction error of weights
in graph edges
t-SNE Local focus

get clusters right
. 1%
min

eeq
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== t-SNE is the current gold standard...but here comes UMAP

Uniform Manifold Approximation and Projection

UMAP t-SNE

MNIST
",

.\.\ "
é‘\‘%{i R

McInnes & Healy. ArXiv 1802.0342v2, 2018.

t-SNE Local focus

Balance local and
global focus
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== Case study 1. What occurs prior to an unplanned event?
UMAP and t-SNE immediately provide new insights

| Sl » ’h\ » %
i

What's different?

Normal Stage 1 Stage 2 I

-
plant
down

Normalized Value

3
0 500 JQ00 1500 2000 2500 3000 3500 4000

Relative Time

**Labels from plant engineers** Joswiak et al., Control Engr Practice 2019

@ AnaLycics 10

Daca Driven Decision Masking



8/5/2019

== Dimension reduction quality is a local/global tradeoff

= PCA W Autoencoder

t-SNE (4comp) mmm  Diffusion Map
m=m UMAP (4 comp) LPP
ICA Manifold Charting

mmm NPE
Sammon

Factor Analysis
. Isomap

LLE
= Modified LLE
== MDS

Only 2 dimensions
(others have 4 dim.)

Easiest to see local
and global structure in
2D
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Local Quality

UMAP & t-SNE are the
best for local quality
(even for only 2 dim.)

Global Quality
worse .

Global techniques

UMAP outperforms t-SNE,
especially at 2 dimensions

11

mm(Case Study 2: Different performance of two identical plants, A and B

PCA (and many other techniques)

shows overlap of A and B

t1
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Advantages of UMAP

» Shows outlier cluster

» Quick visual analysis in just 2D

* Near t-SNE local quality with
~better than average global
quality

» Clear (main) cluster separation
even if data was not labeled

» Comparing UMAP clusters yields 7
more variables of interest over
PCA-based analysis

12
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== Dimension Reduction Quality Is a Local/Global Tradeoff
Local Quality Global Quality

7 Has my distance to others changed?
Has my neighborhood changed? worse Y g

08

== PCA wem Autoencoder 10’
t-SNE (4comp) s Diffusion Map o7 | PCA I

=== UMAP (4comp) LPP
ICA Manifold Charting 06

Factor Analysis W NPE

= |somap :ammon 05 0
LLE e - 10
mmm  Modified LLE 04
= MDS
PCA ‘

Only 2 dimensions
(others have 4 dim.) 02

- better

UMAP & t-SNE are the ;
best for local quality UMAP outperforms t-SNE,

(even for only 2 dim.) especially at 2 dimensions
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mm 3 - Industrial Experience and Tips, Interactive Discussions
3.1 Visualization

3.3 Method selection
3.4 How good is good enough? Industrial tips and tricks of the trade

3.5 Industrial case studies
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== Some Opinions on Deep Learning vs Machine Learning

Machine Learning

O
o — ey — Qo —

Input Feature Extraction Classification Output

Deep Learning

o —F =1 2
'- Not Zebra

Input Feature Extraction + Classification Output
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== Some Opinions on Deep Learning vs Machine Learning

Machine Learning

O
of — g/ — B0 —

Input Feature Extraction Classification Qutput

Deep Learning

of — gy 5% 2 — &

Input Network Engineering + Domain Knowledge + Classification Output
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== Data: Is it any good? How do you know?

* + r + H + + + UCL or USL
+ + } + } LCL or LSL
UCL or USL
¢ ' ' ¢ -
P f
' ‘e
LCL or LSL

Data must be analyzed in context.
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== Do You Know Your Data?

What is accuracy?

What is precision?
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== A Quick Scenario

X
X o .
X { \
A
N /

Imprecise but Accurate
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Precise but Inaccurate

‘-‘/l TN \\.“-‘.
|
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Precise and Accurate
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mm A Quick Scenario
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== A Quick Scenario

Tt
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mm A Quick Scenario
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mm Variable transformation

Raw Y variable Log(Y)

i i

The model is predicting
negative concentration values
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How to incorporate measurement uncertainty ?

Truncation of the interval

“ Trewmamenae * - 1IFSE COMputing expanded

peomtme - uncertainty intervals using the
current statistical methods
(frequencist approach).

e Then, the interval is truncated
in order to cover only the
values in the feasible region.

Relative std. dev.

Proportional uncertainty Uncertainty -
I —

Transition zone
-—

Uncertainty

Constant uncertainty
—

Bayesian intervals
- i Introduces the requirement of
oncentration respecting the feasibility domain,

pdf

. through a prior distribution
Measurement uncertainty near presenting finite density only in
physical limits (absolute std. dev.) the feasible region.

Concentration

M. Reis, R. Rendall, S. Chin, and L. Chiang, Challenges in the specification and integration of measurement uncertainty in the development of data-driven
models for the chemical processing industry, Industrial & Engineering Chemistry Research, 54 (37):9159-9177, 2015.
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== \issing value estimation

Random missing

Missing Value Map

values are Systematic missing
manageable: value are problematic
the NIPALS (PLS) “T7— and there is no one-
algorithm werks well size-fit-all solution:
Start with:
1) Remove these
N variables

2) Use only data points
with non-missing
values
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Outliers

wine.M1 (PCA-X)

8/5/2019
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EE Pop quiz

What is the first thing you do when you see an outlier?
A. Eliminate the point

B. Investigation

C. Assume itis not an issue

D. Correct the number
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Process monitoring workflow

Raw data

|

Preprocess
data

l

: Detect Robust outlier
Off-line Outliers detection algorithms

l
Modeling PCA model
building

|
Fault
detection

Robust scaling

On-line

Fault
@ | AnaLvcics identification
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== Pre-processing methods that are less sensitive to outliers

Auto scaling (gold standard)
» Data are mean centered and then divided by the standard deviation

» With the presence of outliers, mean and standard deviation are biased

Robust scaling
* Replace mean with median
* Replace standard deviation with MAD (median absolute deviation from median)

Dow modified scaling
* For each variable, find the n/2 observations that are closest to the median

» Use these n/2 observations to determine median and standard deviation

L. Chiang, R. Pell, and M.B. Seasholtz, Exploring process data with the use of robust outlier detection
algorithms, Journal of Process Control, 13:437-449, 2003.
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{al Mo Scaling (b} Auto Scaling
| a8 4
45 2
44
]
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40 ] <
a8 .|
] 500 1000 1500 ] s00 1000 1500
(c)] Robust Scaling (d) Modified Scaling
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== RODUSt outlier detection algorithm

1 . - . - Bl Auto Scaling
[ Robust Scaling
B todified Scaling
) ) 095+ i
» RHM (observations with small vector lengths CoeAVT
after resampling) coe
«  SHV (observations that are close together) ~ nar T ]
- CDC (observations that are close to the mean) g R BHY
o
«  MVT (observations with small T2 stat. after z DES | ]
iterations) E
« CDC/MVT (use CDC in the initial step for MVT) osp  FCA ]
075 :
07 .
1 2 3 4 5
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== Qutlier detection and data preprocessing summary

Outlier exclusion - invalid values, e.g. clamp
transform for valid outliers

Missing data - NIPAS (PLS) algorithm works
well for random missing values

Variable transformation - log

Normalization - mean centering, variance

standardization Use your domain knowledge
(e.g., incorporate uncertainty

Robust statistics = less sensitive to outliers Into decision making)
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mm 3 - Industrial Experience and Tips, Interactive Discussions

3.1 Visualization

3.2 Outlier detection and data preprocessing

3.3 Method selection

3.4 How good is good enough? Industrial tips and tricks of the trade
3.5 Industrial case studies
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Challenge of method selection?
That’s why data scientist has a job!

Column:
Variables

Remove irrelevant variables
(variable/feature selection)

Row: Y = A ()()
Samples/
Observations
Method selection
“.0
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Motivation: Why Utilize Feature Selection?

8/5/2019

Feature Selection is the elimination of irrelevant variables from the model

1) Feature selection is relevant because it helps us address the “curse of
dimensionality”:

» Decreases the risk of overfitting
 Improves prediction accuracy

* Eliminates irrelevant and redundant features
 Improves interpretability

» Decreases computational time

Error

2) Drastically simplify the complexity of implementation
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Optimum Madel Complexity

Variance

Model Complexity

Image Source: <http://scott.fortmann-roe.com/docs/BiasVariance.htm|>

Current Feature Selection Approaches

Subset generation
Subset evaluation

Stopping criteria

Filter Methods | | Wrapper Methods | | Embedded Methods | | Hybrid Methods | | Other Methods

A\ 4

Use variable ranking
methods. A
threshold is used to
remove variables

\ 4

Subset of variables
is generated before
and selection is
based on the model
performance

A\ 4

A

y

Subset of variables
is proposed and
evaluated during

model development

|

Combination of filter,
wrapper and Unsupervised
embedded approaches
approaches

How can these methods be applied in Big Chemical Data?

“4.0
@ | AnaLstics

Daca Driven Decision Masking

19



Wide spectrum feature selection (WiSe) Approach

1. Remove irrelevant or noisy features

2.  Wrappers and/or embedded methods for further feature selection

All Features

@
2
a0
w
o<
(7]

Selected
Features

Embedded/ Final set of
Wrapper features

R. Rendall, I. Castillo, A. Schmidt, S. Chin, L. Chiang, and M. Reis, Wide spectrum feature selection
(WiSg) for regression model building, Computers and Chemical Engineering, 121:99-110, 2019.

AnaLycics

Daca Driven Decision Masking

Stage 1: Ranking Relevance to Response Variable

Ranking methods are helpful to understand the relevance of a feature

Most utilized filtering methods
are entropy-based and
statistical

—

—

* Information Gain (IG)

* Gain Ratio (GR)

*  Symmetrical Uncertainty (SU)
* Mutual Information (MI)

* Pearson’s correlation
» Chi-square test
* Spearman's Correlation

Filtering methods can be applied without significant computational burden

(Thousands of variables)

“.0
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Stage 1: Selected Filters

Univariate filters to efficiently remove noisy features
» Pearson correlation for linear relationships
« Spearman correlation for monotonic relationships
« Symmetrical Uncertainty (SU) for non-linear relationships
« Combinations of the aforementioned methods
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>

F 3

Linear

______ Monotonic

Non-linear

Stage 1: Determining the Threshold for Removal

Noise levels in the data are estimated utilizing random permutations

« Compute correlation metric for 100 random shuffles, using all features

» Estimate the p-value for each feature

» Select feature if p-value is below 0.2
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Frequency

120 -

100 -

80

60

40

20

> Noise level?

0
007 008 0.9

Correlation Metric

0.1 011 012 013 ¥ _014 015

0.133
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Stage 2: Model Building

The second step of feature selection is based on wrapper and embedded methods

* Forward Stepwise Regression

¢ LASSO
* Partial Least Squares Variable Selection Methods
(FSR, GA, BS)
<
Latent Variable Methods Penalized Methods
(PCR, PLS) (RR, LASSO, EN)
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Dow data set

Industrial batch process of a functionalized silicone polymer

« Continuous quality parameter as a Y variable

« 29 batch conditions, 7 un-aligned batch trajectories of ~100 points
* >600 batches
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== Qur classic data-driven analysis problems -

Continuous Process
Variables, p

o
£ P
e
g X y
£
3
z
[i°)
=

n>>p

- Steady-state continuous processes
- Dynamic behavior

- Correlated variables

- Usually for quality prediction

Batch Process

End Properties

/

Initial Conditions  Variable Trajectories

Usually transient and dynamic
Data variety / volume challenge,
need to match context, multi-
dimensional data

High frequency, large volume
datasets

R. Rendall, B. Lu, I. Castillo, S. Chin, L. Chiang, and M. Reis, A Unifying and Integrated Framework
for Feature Oriented Analysis of Batch Processes, Ind. Eng. Chem. Res., 56: 8590—8605, 2017.
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Generated Features for industrial data set

Features: 29 batch conditions + SPA features for 7 trajectories

The following features are computed usng Statistical Pattern

Analysis (SPA):

* Means of all process variables
Variance of all process variables

Skewness
» Kurtosis

* Covariance between variables

J. Wang and QP. He, Multivariate Statistical Process Monitoring Based on Statistics Pattern
Analysis, Ind. Eng. Chem. Res., 49: 7858-7869, 2010.

4.0
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Results for Case 2 — Industrial Dataset

In this data, the filter combinations eliminated the most features and also resulted
in the best model performance on test data

Filter

WNo Filter
MlPearson
WSpearman

su

MlPearson + Spearman
MsU + Pearson

SU + Spearman

Fitler

IINo Filter

MlPearson
lSpearman

sy

lPearson + Spearman
IisU + Pearson

lsU + Spearman

=
S

Eliminated Features (%)
8

LASSO
Regression Method
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Conclusions

1. Filters efficiently reduced dimensionality in the first stage

» Although performance is dependent on the dataset, most of the important predictors
were selected

» Many irrelevant variables were removed

2. Usefulness of eliminating features was demonstrated on an industrial dataset

» The adoption of filters led to improved prediction performance across the three
regression methods

 Interpretation of which features are selected can bring insights
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Label data
Output
Supervising

- Input data —{nearegressin f——®
Machine Learning Reduced : :
. rank regression
Algorithms ek regression [ cep |

| | Monitoring;

PLS

- PCA
Collinear Dj Visualization

®

Dynamic DiCCA, DiPCA

Dynamic

components

DiPLS

B

Dynamic @

-means; HC :

@‘ Clustering K
Clustered |

DA, SVM, LR |,

Nonlinear

Deep

learning

:! [0 svm. LR]
Classification Categorical @

Nonlinear ®

SJ. Qin and L. Chiang, Advances and opportunities in machine learning for process data

analytics, Computers and Chemical Engineering, 126:465-473, 2019.
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mm 3 - Industrial Experience and Tips, Interactive Discussions

3.1 Visualization
3.2 Outlier detection and data preprocessing
3.3 Method selection

3.5 Industrial case studies
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== How to avoid overfitting

Tune Tune True
model parameters hyper-parameters ~ Evaluation
Training Validation Testing

*Do not use the testing data AT ALL when you are developing the model

£

esting Error

Validation Error

Training Iterations
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== Bias / Variance

Low Variance

Low Bias

High Bias
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F

Trade-Off

 Include more variables

High Variance

L)

Error

Optimum Model Complexity

 Transform/generate variables

« Add more components

« Remove outliers / ill-fitting data
 Use nonlinear techniques

Variance

Model Complexity

53

54
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== Another Dow example
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== New data
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== New data means new insight

"y
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== One of the worst models I’'ve seen at Dow

Model prediction
Actual value

ol b (Ut L
ol h ll M H‘wt

measurement per
supersack

Impurity
—

1 One analytical

L N A s M S B S A A e S S S E B S S S
mmmmmmmmmmmmmmmmmmmmmm
mmmmmmmmmmmmmmmmmmmm
ﬁﬁﬁﬁﬁﬁﬁﬁﬁ
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.0
@ | AnaLscics ss

Daca Driven Decision Masking

29



8/5/2019

== Traditional Approach

Who contributes more

08 A to the variability?
0.7

06

05 hd

Impurity

04- . .
° L]

Y L

03

TOP
SIDE
TOP
SIDE
TOP
SIDE
TOP
SIDE
TOP
SIDE
TOP
SIDE
TOP
SIDE

% Location
=

-
N
w
IS
[0}
o
~
o

Bag

Lab Process
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== How to Improve Data Quality?

Design of Experiments

factor A
[ ]
‘J
(3]

factor B
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mm Design Of Experiments (DOE)

PROCESS

“4.0
@ | AnaLstics

Daca pDriven Decision MmasinGg

61

mm Systematic Statistical Approach

Historical data @

a5

035

Impurity

DOE plant data

Model prediction
Actual value

Model prediction
Actual value

nnnnnnn

TTRRATEELRITRSELEEEYE LS8

e D

Correlation Analysis
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Obs ID (Primary)

Correlation Analysis
+
DOE
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B® Results: Process Variables that cause the difference
performances in one major unit

Speed of propeller in Unit

Unit A
Unit B

Speed

Time in the step (min)
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== |mage Classification at Dow

Good vs Bad

The shape of plastic pellets
. . . is @ major quality factor

R. Rendall, M. Broadway B. Lu, . Castillo, L. Chiang, B. Colegrove, and M. Reis, Image-based Manufacturing Analytics: Improving the Accuracy
of an Industrial Pellet Classification System using Deep Neural Networks, Chemometrics and Intelligent Laboratory Systems, 180: 26-35, 2018
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== Deep Neural Networks for Image Classification

A deep neural network contains many layers:
» Multiple layers allow the learning of high level features

» Each layer computes a specific function
Interesting Points of DNN:

224 x224x3 224 x 224 %64

VGG-16 [1] + Convolutional layers and other
type of layers

DY axas s 7X7x512 * Better optimization tools and
( W Lalz 00 Lxixioo0 other developments (ReLU
activation, batch normalization,
(5 convolution+ ReLU transfer learning, dropout,
= etc.)

[1] - Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition (2015)
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== Deep Neural Networks for Image Classification

Convolutional layers:
* Contain filters that convolve with the input, outputting a matrix
» The parameters of the filter are optimized with training data

| ©

L 1 T

2D EEEE 1 11
EEEN

convolution
Filter Output
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== Deep Neural Networks for Image Classification

Transfer Learning:

* A pre-trained network is modified to a different classification task
* Relevant features in the original domain tend to be useful in the target

domain

VGG-16 (original)

2% 2043 2Ux2Ux 64

Bx512 TXTx312
G i |

7 g,
fully connected el
softmax
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VGG-16 (Transfer Learning)

224% 2243 224X 2464

5 X 28512 Iy 24 2

x7x512
i b2 | 10
s e -

fon+ReLU Trainable

) fully connected+ReLU

softmax

Fixed 67

== Deep Neural Networks for Image Classification

Two deep neural networks were tested

Simpler Deep Neural Network (SDNN)

VGG-16 with Transfer Learning

Layer (type) Output Shape Param # Layer (type) Cutput Shape Param #
conv2d 1 (Cenv2D) (None, 46, 46, 32) 320 nput_ 1 (Impusiayer) (Neme, 06, 96, 3) a
conv2d 2 (Conv2D) (None, 44, 44, &4) 18488 blockl_convl (ConvaD) (None, 96, 96, &4) 1792
max_pooling2d 1 (MaxPoolingZ (Neme, 22, 22, 64) 0 lookl senva (Convan) Neme, 96, 9%, &4) T2038
dropeut 1 (Dropeut) (None, 22, 22, &4) @ blockl pool (MaxPooling2D)  (Nome, 48, 48, 64) )
Flatten 1 (Flaccem) (None, 30978) 0
- blockz_convl (ConvaD) (Nome, 28, 48, 128) 73856
dense_1 (Dense) (Nome, 128) 3965056
- block2_conv2 (ConvaD) (Nome, 28, 48, 128) 127584
dropout_2 (Dropout) (Nome, 128) E]
- block2 pool (MaxPooling2D)  (Nome, 24, 28, 128) 0
Qenss 2z (Depae) (Wens, 2) 258
Ttal params: 3,984,130
Trainable params: 3,984,130
on_trainable parame: 0 dense_1 (Demse) (None, 1024) 525312
d% u (None, 2) 2050

“.0
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Total params: 15,242,050.0
Trainable params: 527,362.0
=frainable params: 14,714
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mm Cl|assification Methods Tested

Process experts manually labelled ~6000 images:
* These were split in training, validation and test sets
« Different classifiers were tested

— PSSD
— Random Forests )
— Deep Neural Networks PSSD PSSD
. — features — Classifier
l (2)
Random
(3) Forests
Deep
Learning

.0
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mm Classification Results B
/oy

)

Good vs Bad Pellets
* Training: 2961 samples
* Validation: 1777 samples

» Test: 1185 samples . . .

/\ Accuracy /-\

Set / PSSD! \ Random SDNN SDNN? /Transfer
(

Forests? Learning
VGG-16) 2
Training 0.816 1 0.98 0.964 0.971
Validation 0.817 0.941 0.913 0.956 0.966
Test 0.805 0.937 0.917 0.957 0.967
\./1 Approaches based on features \_/
@ | ﬁnal_s!:lcsq'o 2 Uses sample augmentation techniques o

Daca Driven Decision Masking
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mm Complex interaction between analytics and expert knowledge

Current Model Residuals

KPI 1

el target

Neither one alone is
sufficient
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Analytics culture change

¢ Innovation
¢ Advanced analytics and programming tools

Chemometric
modelers

¢ Collaboration
i e Data acumen

Data (Special analytics and programming tools)
scientists

¢ Foundation

¢ Data literacy/acuity

35,000+|Dow (Practitioner analytics tools)
people

¢ Art of the possible
o Integrate data analytics into ChE curriculum

500,000+ US
STEM graduates Qin and Chiang, 2019
Chiang et al., 2017
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mm 3 - Industrial Experience and Tips, Interactive Discussions

3.1 Visualization

3.2 Outlier detection and data preprocessing

3.3 Method selection

3.4 How good is good enough? Industrial tips and tricks of the trade
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Impurity Estimation

Impurity levels are constantly increasing, affecting production rate and the catalyst life of the
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mm 35 [ndustrial Case Studies

== Case Study 1
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mm Case Study 1: Block Diagram

Estimating impurity levels at the
outlet of the column

Objective: Identify key
variables that affect impurity
levels

Column

Reflux Drum

s
¥

Column2

s

A4
-~

Condenser

Column1

Column1
Tails
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Column Variables Columnl Variables = Column2 Variables
x1:Column Reflux Flow x22: Column1 Base Concentration x36: Column2 Recycle Flow
x2:Column Tails Flow x23: Flow from Input to Columnl x37: Column2 Tails Flow to Column
x3:Input to Column Bed 3 Flow x24: Column1 Tails Flow x38: Column2 Calculated DP
x4:Input to Column Bed 2 Flow x25: Column1 Tray DP x39: Column2 Steam Flow
x5:Column Feed Flow from Column2 x26: Column1 Head Pressure x40: Column2 Tails Flow
x6:Column Make Flow x27: Column1 Base Pressure
x7:Column Base Level x28: Column1 Base Temperature
x8:Column Reflux Drum Pressure x29: Column1 Tray 3 Temperature
x9:Column Condenser Reflux Drum Level x30: Column1 Bed 1 Temperature
x10:Column Bed1 DP x31: Column1 Bed 2 Temperature
x11:Column Bed2 DP x32: Column1 Tray 2 Temperature
x12:Column Bed3 DP x33: Column1 Tray 1 Temperature H .
x13:Column Bed4 DP x34: Column1 Tails Temperature Data aVa||ab|e.
x14:Column Base Pressure x35: Column1 Tails Concentration
X15:Column Head Pressure ImpurityDataset_Validation.xIsx

x16:Column Tails Temperature

x17:Column Tails Temperature 1

x18:Column Bed 4 Temperature . .
x19:Column Bed 3 Temperature Im pu rItyDataset_Tra ning Xlsx
x20:Column Bed 2 Temperature

x21:Column Bed 1 Temperature

Avg_Outlet_Impurity

Avg_Delta_composition column

y:Impurity

Column reflux/feed

Column make/reflux
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== \\/orkflow

Outlier detection and
data preprocessing

Visualizing data

Model development:
Variable selection

Model Validation: Is the
model good enough?

.0
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Missing (%) ..
2.719
0.906
0.280
0.280
0.280
0.215
0.206
0.196
0.196
0.196
0.196
0.196
0.196
0.196
0.196
0.196
0.196
0.196
0.187
0.187
0.187
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0178
0.178
0178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.178
0.000

== \issing values

[ e e

g T

Sy 030
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izing PCA)

Data Ut

izing

Scores - ImpurityEstimation (M1, PCA-X)

== Qutlier Detection (Visual

[
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By Applying PCA, outliers
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== \/isualizing Data After Eliminating Outliers

Scores - ImpurityEstimation (M3, PCA-X)

124
10 Are these clusters — ‘ .

g representing changes in

¢ operating conditions?

4A

& 2: S o .o

Oj L. oo
-21 )
_4: ‘

-6 !

8! . . , | . | , | . |
-15 -10 -5 0 5 10
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== \/isualizing Data After Eliminating Outliers

Significant changes in operating conditions from 8/22/2016 to 12/16/2016

ImpuriyEstimation (M3, PCA )

2w, v

%

. ‘
2 2
1)
2 T
Fos i
§ L.l
£
i ey T e ‘
s gw
i £
L | LI O EF 8 0§ oz Fo%oF ot 7
i 3 T of : o3 3% %
I I B g I
T - | 5ok g 2 SRR fiiiiiiiiiisiziizkis
STt %% ot A 5 % E 3 zziszzizzizissssssssfezieiieiiiizeisoigis:
g ¥ E 3 % § P oz B s i & 3 3 / g 3
I A T P s o ¢ g F ¢ :
- -1 H &
LI R 8 F 3 3 LI H
. § CIE T - H
g 3 i 8 % 53 1 §

Business reduced column head
pressure
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== Model Development

The model prediction when applying

The model is predicting negative ’
a log transformation of the Y

values in the impurity value

ly = 1x - 0.002436
6R2 = 0.7302

Oborvest v Preiciod - ylmguty
Impurtssmanon M4 PLS)

61y = 0.9595x + 0.1607,
|R2 = 07374

5 >
Sa
Sa 3¢
2 ee* E
& =3 .
= . 5 .
25 =2 i
o
1
‘ . L]
0 ® e w@eowmon T s 3 : < ;
3 2 1 YPred(4](y:Impurity)

1
YPred|[4](y:Impurity)

Accuracy can be improved by applying a nonlinear transformation to the
output variable
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== \/ariable Selection

ImpurityEstimation (M5, PLS)

Column make/reflux

Process knowledge is critical to select

015 :
key variables
01 @:x5:Column Feed Flow from Column2
—
> 40: Column2 Tails Flow
= x6:Column Make Flow
5 x24; Column1 Tails Flow@ @Avg_Outlet Impurityavg_Delta_composition column
o | @x10:Column Bed1 DP
_§ 0.05 X28 cUluvv“é‘%sS‘?’Mﬁ‘évEﬁﬂJ TemperatusRimn2 Tails Flow to Column (ZTCOKmATREL T amberny
] @:x13:Column Bed4 DP
> x38: C@Imn2 Calculated MlG,QmemﬂJﬂ“piﬁ‘}‘_”é&amnmcm;mnommuon @x1:Column Refiux F
=) x17Column Tails Terligyen 1 o EHRNIREEHTARRA O ol
x olu 3RS Faturg. 1 2. con Bedd DB
x32: Columnl Tray g3k s Temperaturc@® mn1 Base Pressure o
O CoRgh P RS A
&= ] %23: Flow from Input to Columnl
8 x36: C"‘”’“"‘“*‘W‘e Flow @>4nput to Column Bed 2 Flow
U -0.05- x7:Column Ba@Leve! @ @x2:Column Tails Flow
x9:Column Condenser Reflux Drum Level
01 @:39: Column2 Steam Flow @25: Column1 Tray DP
0.4 0.6 0.8 1 12 14 1.6 18

4.0 ) S
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Daca Driven Decision Masking

43



== \odel Results

12/1/2015 00000 AM 7

Model Results Utilizing Training
Dataset Dataset R2-0.6979

Impuntyéstimation (M24, PLS) —VPred[2ylmpurty) ImpusityEstmation (M24, PLS) PS-Dataset Validato
—WWarlylmpurity)

Is the model good enough? Best practice is to verify model accuracy by
utilizing a validation dataset.
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== \odel Results

VP - ImpurityEstimation (M4, PLS)

CoatiCsizityimpurity)
= £ 2 E

-
g
H
£
i

524 Coburmenl Tt Flowr
Celuree matarefi:
40 Columa2 Tait Flow
25 Calumal Tray OF
24 Columal Taik Flow

-
2% Coamn. Ty D
XELColum Bed 1 Tompurature
37 Coburn2 Tl ow o Colurer

21 Column Badl 1 Tamperature

Is the model good enough? Are the selected variables in correspondence
with first principles knowledge and plant operation?
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Model Results Utilizing Validation

—YPredPsi2iyimpuriy)
—YVarPStyImpurity)

87

37 Caluenei2 T Flow 1o Coumn

88
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== Comparing Performance Utilizing Lasso (Penalized

Methods)

Model Development Results

Afy=1x-0.068
L Re=0.7176

Yvar(y:lmpuri}y)

YPred(y:Impurity)

Similar performance than PLS. More variables
selected by this method, requiring further
elimination of variables.
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)
Date

_ Coefﬁcient _PIo_t

0t 2016
Jan 2017

g g
8 3

Selected
by PLS
model

ABCamn2CaliintedDe

AIrputaCalmaDeaZr s

23FowfreminpulieColumn

89

mm Comparing Performance with Lasso (Model Validation

Results)

Yvar(y:Impurity)

—Yvarly Impuriy)
— YPred(yImpurity)

05 1 15 2 25

YPred(y:Impurity)

Between March and April 2017, the model is not capable to predict fast changes in
the impurity. The PLS model has a better performance during the same time frame
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mm Case Study 2: Quality Classification-- Evaluating the
Performance of Multiple Reactors

Batch operation (10 reactors, multiple catalyst, 38 variables per reactor)
Testing multiple catalyst families

Goal: Identify root cause of
underperformance

Westricn
Woooion

Effluent

R6 R7 R8 R9 R10
Bank2
GC2
Features:

T“"V + Mean, Stdev, Skewness, Kurtosis, Pairwise

Y Correlation

Batmesl ’ B + Max, Min, Range, Medium, Slope, Area
under the curve, Begin/End Delta

_— « Autocorrelation (lag=1)
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mm Supervised Case Study: Evaluating the Performance of
Multiple Reactors

=:22$|go:‘v =1 , o bad
$ e 204 ® goad
15 ° ‘
10 [ ] L]
- 104
E v *° S °
L}
° e .’f P . ® -
(] -5
® . ~10 “ ‘*
. e P S e
i
t1, umar

When applying PLS-DA and UMAP, the separation of classes is unclear
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mm Separation Between Classes Can Be Improved by
Performing Feature Selection

” o x| X: (2828 (observations) , 1832 (features))
15 - L ]
$ . ’ ’
: : .;' - S -
- PLS-DA:
Mutual Information: WL -
Top 10 variables S Top 10 variables

Objective: Find variables that separate
classes and minimize number of clusters

= L] bad . .
e based on the following metric: }
1 Metric: J=mjn maxM “_——
g U leil n
% s cirefers to clusteri (| ci| is the cardinality) ST
o . nj refers to given class/label H
- I{x) is the indicator function where I{x)=1if x is true else I(x) = 0 S
. N . - :
¥ . B
a
0 pry o T ) i Objective: max | ol ¢ bad
ta, umap nizd « goad gl -
40 k refers to the number of features T
AnhaLyYcics n refers to the number of neighbors (hyper-parameter used for UMAP)
@ @ is a constrainton the number of clusters
Datca Driven becision viaking
mm Selecting Relevant Features
Feature selection utilizing Feature selection
Mutual Information (MI) utilizing PLS-DA VIP
. \Weights . Weights
0.25 35
3.0
0.20
2.5
0.15 20
0.10 1.5
1.0
0.05
0.5
0.00
By rinnnaAE EEERRAS PR EEERRS BT ES OO P mmEMt ot mmm@arrrcmmo z ez
S e i R I5R2255E5 EESESSSRTaRRsEREgnan
P rma e NN AR AR NEON S ek s B A oS na it R e ' T T T e T
FEEEEEETCEg REEEE 2 ZBE ZRP B R SR T b B e B
...... o IS o I Lo 5555l L 555
war ——— —_—
ver

The selected features for each method are not consistent and are located in
different order. Which classifier model is better?
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mm Classifier Performance (Validating with new data)

Performance classifiers utilizing full feature space

Accuracy | Random Forest | PLS-DA NN
Good 99.4% 98.0% | 93.7%
[ Bad 54.2% 32.2% | 49.2%

)

Performance classifiers built upon selected features

Bad class performance is not ideal

Accuracyﬂ Top 10 Features (MI) ﬂTop 10 Features (VIP) | Top 10 Features (RF) | Top 5 Features (RF)
Good || 98.8% I 96.1% 98.8% 99.2%
Bad |l 89.8% ] 39.0% 79.8% 86.4%

RF=Random Forest; MI=Mutual Information and VIP=Variable Influence of Projection based on PLS-DA

Model validation is very helpful to identify best classifier model
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== Summary — Case Studies

» Two supervised case studies were illustrated by utilizing industrial cases studies.
Feature selection and model validation are key steps to evaluate model performance.

» Process knowledge is key for generating best models. Dimensionality reduction

techniques are helpful to visualize high dimensional data and bring process

understanding
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mm Package Resources

Visualization: Tableau, PowerBi, Python-plotly, seaborn and matplotlib
Design of Experiment: JMP
Random Forest: Python- sklearn

Dimensionality Reduction: Python-sklearn, Matlab-toolbox by Laurens
van der Maaten

PLS/PLS-DA: Sartorius-Stedim/Umetrics SIMCA, Python-
pychemometrics

Deep Neural Networks: Python-keras (tensorflow)

.0
@ | ANaLYcics 9

Daca Driven Decision Masking

49



