
8/5/2019

1

Dow.com

FOPAM process data 
analytics workshop
Instructor: Leo Chiang
Guest speaker: Ivan Castillo
In collaboration with Richard Braatz and Joe Qin

August 6, 2019 
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Visualization: Data in context 
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Visualization: Data in context 
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How to visualize a dataset: Direct method 

Direct Correlation Parallel coordinates 

5

How to visualize a dataset: Indirect method 

Indirect
Dimensionality reduction techniques 
(such as PCA) to preserve 
characteristics of original dataset

Many Variables

6

Analogy
Interpreting the shadows of a 
complicated 3D-geometry after 
projection onto a 2D surface…

t1 t2

Principal component analysis is the 
industry workhorse
• Linear combinations of original 

variables
• Identifies correlations 

(structured variation)
• Leaves noise behind 

(unstructured variation)
• No parameters to tune
• Fast
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Besides PCA, what are the other options?

A variety of techniques exist
• Global/local
• Linear/non-linear
• Parametric/non-parametric
• Manifold learners
• Tunable parameters

Ge et al. IEEE Access 2017

7

t-SNE is the current gold standard

How it works:
• Point-point similarity is a probability, which is sought to be preserved in reduction.
• Create latent graph most similar to original graph. Minimize reconstruction error of weights 

in graph edges 

Identifies natural clusters
Solves crowding problem

MNIST dataset (handwritten digits 0-9, colored by number)

get clusters right
t-SNE Local focus

 

𝑒∈𝐺

𝑤ℎ log
𝑤ℎ
𝑤𝑙
+ 1 − 𝑤ℎ log

1 − 𝑤ℎ
1 − 𝑤𝑙

van der Maaten and Hinton J. MLR 2009

min

PCA Autoencoder t-SNE
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t-SNE is the current gold standard…but here comes UMAP

get gaps right

UMAP Balance local and 
global focus

Uniform Manifold Approximation and Projection

get clusters right
t-SNE Local focus

 

𝑒∈𝐺

𝑤ℎ log
𝑤ℎ
𝑤𝑙
+ 1 − 𝑤ℎ log

1 − 𝑤ℎ
1 − 𝑤𝑙

min

UMAP t-SNE

McInnes & Healy. ArXiv 1802.0342v2, 2018.

9

Case study 1: What occurs prior to an unplanned event?
UMAP and t-SNE immediately provide new insights

10

Normal Stage 1 Stage 2

**Labels from plant engineers**       Joswiak et al., Control Engr Practice 2019

!

PCA t-SNEUMAP

What’s different?

2 clusters!

plant 
down
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Dimension reduction quality is a local/global tradeoff 

11

Only 2 dimensions 
(others have 4 dim.)

Easiest to see local 
and global structure in 
2D

Global Quality

Global techniques

UMAP outperforms t-SNE, 
especially at 2 dimensions

PCA

Local Quality

better

UMAP & t-SNE are the 
best for local quality
(even for only 2 dim.)

PCA

worse

Case Study 2: Different performance of two identical plants, A and B

t-SNE

UMAP
PCA (and many other techniques) 
shows overlap of A and B

12

• Shows outlier cluster
• Quick visual analysis in just 2D
• Near t-SNE local quality with 

~better than average global 
quality

• Clear (main) cluster separation 
even if data was not labeled

• Comparing UMAP clusters yields 7 
more variables of interest over 
PCA-based analysis

Advantages of UMAP
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Dimension Reduction Quality Is a Local/Global Tradeoff 

Only 2 dimensions 
(others have 4 dim.)

Has my neighborhood changed?

Global Quality

UMAP outperforms t-SNE, 
especially at 2 dimensions

PCA

Has my distance to others changed?
Local Quality

worse

better

UMAP & t-SNE are the 
best for local quality
(even for only 2 dim.)

PCA

13
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Some Opinions on Deep Learning vs Machine Learning
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Some Opinions on Deep Learning vs Machine Learning

Data: Is it any good?  How do you know?

UCL or USL

LCL or LSL

UCL or USL

LCL or LSL

Data must be analyzed in context.

18
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Do You Know Your Data?

What is accuracy? 

What is precision? 

19

A Quick Scenario

20
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A Quick Scenario

21

A Quick Scenario

22
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A Quick Scenario

23

Variable transformation 

24

The model is predicting 

negative concentration values

Raw Y variable Log(Y)
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How to incorporate measurement uncertainty ?

25

M. Reis, R. Rendall, S. Chin, and L. Chiang, Challenges in the specification and integration of measurement uncertainty in the development of data-driven 

models for the chemical processing industry, Industrial & Engineering Chemistry Research, 54 (37):9159-9177, 2015. 

Measurement uncertainty near 
physical limits (absolute std. dev.)

?

p
d

f

Concentration

Truncation of the interval
• first computing expanded 

uncertainty intervals using the 
current statistical methods 
(frequencist approach). 

• Then, the interval is truncated 
in order to cover only the 
values in the feasible region. 

Bayesian intervals
Introduces the requirement of 
respecting the feasibility domain, 
through a prior distribution 
presenting finite density only in 
the feasible region. 

Relative std. dev.

Missing value estimation 

Random missing 
values are 
manageable:
the NIPALS (PLS) 
algorithm works well

Systematic missing 
value are problematic 
and there is no one-
size-fit-all solution:  
Start with:
1) Remove these 

variables
2) Use only data points 

with non-missing 
values
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Outliers
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Pop quiz 

What is the first thing you do when you see an outlier?

A. Eliminate the point

B. Investigation

C. Assume it is not an issue

D. Correct the number 

28
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Off-line

On-line

Raw data

Detect
Outliers

Modeling
building

Fault 
detection

Fault 
identification

Robust outlier
detection algorithms

PCA model

Robust scaling
Preprocess
data

Process monitoring workflow

29

Pre-processing methods that are less sensitive to outliers 

30

L. Chiang, R. Pell, and M.B. Seasholtz, Exploring process data with the use of robust outlier detection 

algorithms, Journal of Process Control, 13:437-449, 2003.

Auto scaling (gold standard)

• Data are mean centered and then divided by the standard deviation

• With the presence of outliers, mean and standard deviation are biased

Robust scaling 

• Replace mean with median

• Replace standard deviation with MAD (median absolute deviation from median)

Dow modified scaling

• For each variable, find the n/2 observations that are closest to the median

• Use these n/2 observations to determine median and standard deviation
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Obs. 1-960: good data

Obs. 961-1440: outliers

31

Robust outlier detection algorithm 

32

• RHM (observations with small vector lengths 

after resampling)

• SHV (observations that are close together)

• CDC (observations that are close to the mean)

• MVT (observations with small T2 stat. after 

iterations)

• CDC/MVT (use CDC in the initial step for MVT)
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Outlier detection and data preprocessing summary

Outlier exclusion  invalid values, e.g. clamp 

transform for valid outliers

Missing data  NIPAS (PLS) algorithm works 

well for random missing values

Variable transformation  log 

Normalization  mean centering, variance 

standardization

Robust statistics  less sensitive to outliers

33

Use your domain knowledge 
(e.g., incorporate uncertainty
Into decision making)
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Challenge of method selection? 
That’s why data scientist has a job!

36

X dataRow:
Samples/
Observations

Column:
Variables

Y 

data

Y = f(X)

Outliers identification

Remove irrelevant variables
(variable/feature selection)

Method selection
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Motivation: Why Utilize Feature Selection?

Feature Selection is the elimination of irrelevant variables from the model

1) Feature selection is relevant because it helps us address the “curse of 

dimensionality”: 
• Decreases the risk of overfitting 

• Improves prediction accuracy 

• Eliminates irrelevant and redundant features 

• Improves interpretability 

• Decreases computational time

2) Drastically simplify the complexity of implementation

Image Source: <http://scott.fortmann-roe.com/docs/BiasVariance.html>

Current Feature Selection Approaches

How can these methods be applied in Big Chemical Data?

Feature Selection Methods 

Use variable ranking 

methods. A 

threshold is used to 

remove variables

Filter Methods Wrapper Methods Embedded Methods Other Methods 

Subset of variables 

is generated before 

and selection is  

based on the model 

performance

Unsupervised 

approaches

Hybrid Methods 

Combination of filter, 

wrapper and 

embedded 

approaches

Subset generation
Subset evaluation
Stopping criteria

Subset of variables 

is proposed and 

evaluated during 

model development
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Wide spectrum feature selection (WiSe) Approach

1. Remove irrelevant or noisy features

2. Wrappers and/or embedded methods for further feature selection

N
o

isy 
Fe

atu
re

s

Selected 
Features

Filter
Final set of 

features

Embedded/ 
Wrapper

Stage 1 Stage 2

R. Rendall, I. Castillo, A. Schmidt, S. Chin, L. Chiang, and M. Reis, Wide spectrum feature selection 
(WiSe) for regression model building, Computers and Chemical Engineering, 121:99-110, 2019.

Stage 1: Ranking Relevance to Response Variable

Ranking methods are helpful to understand the relevance of a feature

• Pearson’s correlation

• Chi-square test

• Spearman's  Correlation

Most utilized filtering methods 

are entropy-based and 

statistical

• Information Gain (IG) 

• Gain Ratio (GR) 

• Symmetrical Uncertainty (SU)

• Mutual Information (MI) 

Filtering methods can be applied without significant computational burden 
(Thousands of variables)
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Stage 1: Selected Filters

Univariate filters to efficiently remove noisy features

• Pearson correlation for linear relationships

• Spearman correlation for monotonic relationships

• Symmetrical Uncertainty (SU) for non-linear relationships

• Combinations of the aforementioned methods

Stage 1: Determining the Threshold for Removal

Noise levels in the data are estimated utilizing random permutations

• Compute correlation metric for 100 random shuffles, using all features

• Estimate the p-value for each feature

• Select feature if p-value is below 0.2 

Correlation Metric 0.133

F
re

q
u
e
n
cy

> Noise level?
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Stage 2: Model Building

The second step of feature selection is based on wrapper and embedded methods

• Forward Stepwise Regression

• LASSO

• Partial Least Squares

Latent Variable Methods
(PCR, PLS)

Variable Selection Methods
(FSR, GA, BS)

Penalized Methods
(RR, LASSO, EN)

Dow data set 

Industrial batch process of a functionalized silicone polymer

• Continuous quality parameter as a Y variable

• 29 batch conditions, 7 un-aligned batch trajectories of ~100 points

• >600 batches
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Our classic data-driven analysis problems

Z X Y

Initial Conditions Variable Trajectories

End Properties

variables

b
a
tc

h
e
s

X y

Continuous Process Batch Process

- Steady-state continuous processes
- Dynamic behavior 
- Correlated variables
- Usually for quality prediction

- Usually transient and dynamic
- Data variety / volume challenge, 

need to match context, multi-
dimensional data

- High frequency, large volume 
datasets

M
a
n
y
 S

a
m

p
le

s,
 n

, 
 (

ti
m

e
)

Variables, p

n>>p

45

R. Rendall, B. Lu, I. Castillo, S. Chin, L. Chiang, and M. Reis, A Unifying and Integrated Framework 
for Feature Oriented Analysis of Batch Processes, Ind. Eng. Chem. Res., 56: 8590−8605, 2017.

Generated Features for industrial data set

Features: 29 batch conditions + SPA features for 7 trajectories

The following features are computed usng Statistical Pattern 

Analysis (SPA):

• Means of all process variables

• Variance of all process variables

• Skewness 

• Kurtosis

• Covariance between variables

J. Wang and QP. He, Multivariate Statistical Process Monitoring Based on Statistics Pattern 

Analysis, Ind. Eng. Chem. Res., 49: 7858-7869, 2010.
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Results for Case 2 – Industrial Dataset

In this data, the filter combinations eliminated the most features and also resulted 

in the best model performance on test data

Conclusions

1. Filters efficiently reduced dimensionality in the first stage

• Although performance is dependent on the dataset, most of the important predictors 

were selected

• Many irrelevant variables were removed

2. Usefulness of eliminating features was demonstrated on an industrial dataset

• The adoption of filters led to improved prediction performance across the three 

regression methods

• Interpretation of which features are selected can bring insights
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PCA

PLS

Linear regression

Lasso; Ridge reg.

CCA

YX

Regularized

Reduced

rank regression

Y

X
Collinear

Monitoring;

Visualization

DiCCA, DiPCA

DiPLS Y

X
Dynamic

Dynamic 

components

Dynamic

Clustering

Classification Y

X
Clustered

K-means; HC

Categorical

Neural nets

Y

X
Nonlinear

Deep 

learning

NonlinearNeural nets

LDA, SVM, LR

Input data 

Massive 

Label data 

Output

Supervising

Machine Learning 
Algorithms

49
SJ. Qin and L. Chiang, Advances and opportunities in machine learning for process data 
analytics, Computers and Chemical Engineering, 126:465-473, 2019.
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So, how good is good enough?

52

“All Models are wrong, but some are useful”

George Box
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How to avoid overfitting

53

Validation Error

Training Error

Testing Error

Training Iterations

Training Validation Testing

*Do not use the testing data AT ALL when you are developing the model

Tune
model parameters

Tune 
hyper-parameters

True
Evaluation

Bias / Variance Trade-Off

• Include more variables
• Transform/generate variables
• Add more components
• Remove outliers / ill-fitting data
• Use nonlinear techniques

54
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Another Dow example 

55

New data

Z

56
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New data means new insight 

57

Im
p
u
ri
ty

Model prediction
Actual value

58

One of the worst models I’ve seen at Dow

58

Unit A Unit B

One analytical 

measurement per 

supersack
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Traditional Approach

ProcessLab

Who contributes more 
to the variability?

Im
p
u
ri
ty

59

How to Improve Data Quality?

Design of Experiments

60
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Design Of Experiments (DOE)  

Batches

Top-center Middle-side

1 2Sample

Location

Unit Batch
1

1 6

Unit A B

2

1 2Operator

1 2Analyzer 1 2

1 2

1 2

1 2 1 2

…..

…..

Top-center Middle-side

1 2

1 2

1 2 1 2

1 2

1 2

1 2 1 2

…..

…..

…..

…..

PROCESS

LAB 
61

Systematic Statistical Approach

Historical data DOE plant data 

Correlation Analysis Correlation Analysis 
+

DOE 

Im
p
u
ri
ty

Im
p
u
ri
ty

62

Model prediction
Actual value

Model prediction
Actual value
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Results: Process Variables that cause the difference 
performances in one major unit 

Speed of propeller in Unit

Unit A
Unit B

S
p
e
e
d

Time in the step (min)

63

Image Classification at Dow  

R. Rendall, M. Broadway B. Lu, I. Castillo, L. Chiang, B. Colegrove, and M. Reis, Image-based Manufacturing Analytics: Improving the Accuracy 

of an Industrial Pellet Classification System using Deep Neural Networks, Chemometrics and Intelligent Laboratory Systems, 180: 26-35, 2018.

Good vs Bad 

The shape of plastic pellets 
is a major quality factor

64
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Deep Neural Networks for Image Classification

A deep neural network contains many layers:

• Multiple layers allow the learning of high level features

• Each layer computes a specific function

VGG-16 [1]

[1] - Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition (2015)

• Convolutional layers and other 
type of layers

Interesting Points of DNN:

• Better optimization tools and 
other developments (ReLU
activation, batch normalization, 
transfer learning, dropout, 
etc.)

65

Deep Neural Networks for Image Classification

Convolutional layers:

• Contain filters that convolve with the input, outputting a matrix

• The parameters of the filter are optimized with training data

2D 
convolution

w1 w2

w3 w4

Input

Filter Output

x

66
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Deep Neural Networks for Image Classification

Transfer Learning:

• A pre-trained network is modified to a different classification task

• Relevant features in the original domain tend to be useful in the target 

domain 

VGG-16 (original) VGG-16 (Transfer Learning)

Fixed

1024

Trainable

2

67

Deep Neural Networks for Image Classification

Two deep neural networks were tested

Simpler Deep Neural Network (SDNN) VGG-16 with Transfer Learning

…

68
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Classification Methods Tested

Process experts manually labelled ~6000 images:

• These were split in training, validation and test sets

• Different classifiers were tested 
– PSSD

– Random Forests

– Deep Neural Networks PSSD 
features

PSSD 

Classifier

(1)

Random 

Forests

(2)

Deep 

Learning

(3)

69

Classification Results

Good vs Bad Pellets

• Training: 2961 samples

• Validation: 1777 samples

• Test: 1185 samples

Set PSSD1 Random
Forests1

SDNN SDNN2 Transfer 
Learning

(VGG-16) 2

Training 0.816 1 0.98 0.964 0.971

Validation 0.817 0.941 0.913 0.956 0.966

Test 0.805 0.937 0.917 0.957 0.967

1 Approaches based on features
2 Uses sample augmentation techniques

Accuracy

70
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Complex interaction between analytics and expert knowledge

71

Analytics Model

Expert Domain 

Knowledge

Both components are 
needed to improve 

model quality

N
e
it
h
e
r 

o
n
e
 a

lo
n
e
 i
s 

su
ff
ic

ie
n
t

72

Analytics culture change

Chemometric

modelers

• Innovation 

• Advanced analytics and programming tools

400+ 
Data 

scientists

• Collaboration

• Data acumen 
(Special analytics and programming tools)

35,000+ Dow 
people

• Foundation

• Data literacy/acuity
(Practitioner analytics tools)

500,000+ US 
STEM graduates

• Art of the possible

• Integrate data analytics into ChE curriculum

Qin and Chiang, 2019
Chiang et al., 2017
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3.5 Industrial Case Studies

• Case Study 1:  Impurity Estimation

• Case Study 2:  Quality Classification

75

Case Study 1: Impurity Estimation

76

Impurity levels are constantly increasing, affecting production rate and the catalyst life of the 
reactor
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Case Study 1: Block Diagram

77

Objective:  Identify key 
variables that affect impurity 
levelsInput

Column 
Reflux Drum

Column 
Condenser 

Drum

Column1 
Tails

Column

Column1

Column2

Input

Estimating impurity levels at the 

outlet of the column 

Case Study Variables

78

Column Variables Column1 Variables Column2 Variables
x1:Column Reflux Flow x22: Column1 Base Concentration x36: Column2 Recycle Flow

x2:Column Tails Flow x23: Flow from Input to Column1 x37: Column2 Tails Flow to Column

x3:Input to Column Bed 3 Flow x24: Column1 Tails Flow x38: Column2 Calculated DP

x4:Input to Column Bed 2 Flow x25: Column1 Tray DP x39: Column2 Steam Flow

x5:Column Feed Flow from Column2 x26: Column1 Head Pressure x40: Column2 Tails Flow

x6:Column Make Flow x27: Column1 Base Pressure

x7:Column Base Level x28: Column1 Base Temperature

x8:Column Reflux Drum Pressure x29: Column1 Tray 3 Temperature

x9:Column Condenser Reflux Drum Level x30: Column1 Bed 1 Temperature

x10:Column Bed1 DP x31: Column1 Bed 2 Temperature

x11:Column Bed2 DP x32: Column1 Tray 2 Temperature

x12:Column Bed3 DP x33: Column1 Tray 1 Temperature

x13:Column Bed4 DP x34: Column1 Tails Temperature

x14:Column Base Pressure x35: Column1 Tails Concentration

x15:Column Head Pressure

x16:Column Tails Temperature

x17:Column Tails Temperature 1

x18:Column Bed 4 Temperature

x19:Column Bed 3 Temperature

x20:Column Bed 2 Temperature

x21:Column Bed 1 Temperature

Avg_Outlet_Impurity

Avg_Delta_composition column

y:Impurity

Column reflux/feed

Column make/reflux

ImpurityDataset_Validation.xlsx

ImpurityDataset_Traning.xlsx

Data available:
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Workflow

Outlier detection and 
data preprocessing

Visualizing data

Model development: 
Variable selection

Model Validation: Is the 
model good enough? 

79

Missing values

80
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Outlier Detection (Visualizing Data Utilizing PCA)

81

By Applying PCA, outliers 
can be detected and 
removed

Are These Outliers?

82
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Visualizing Data After Eliminating Outliers

83

Are these clusters 
representing changes in 
operating conditions?

Visualizing Data After Eliminating Outliers

84

Significant changes in operating conditions from 8/22/2016 to 12/16/2016

Business reduced column head 
pressure
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Model Development

85

The model is predicting negative 

values in the impurity value

The model prediction when applying 

a log transformation of the Y

Accuracy can be improved by applying a nonlinear transformation to the 
output variable

Variable Selection

86

Process knowledge is critical to select 
key variables
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Model Results

87

Model Results Utilizing Training 
Dataset

Model Results Utilizing Validation 
Dataset

Is the model good enough?  Best practice is to verify model accuracy by 
utilizing a validation dataset.  

R2=0.6979

Model Results

88

Is the model good enough?  Are the selected variables in correspondence 
with first principles knowledge and plant operation?
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Comparing Performance Utilizing Lasso (Penalized 
Methods)

89

R2= 0.7176

Model Development Results

Similar performance than PLS.  More variables 
selected by this method, requiring further 
elimination of variables.

Coefficient Plot

Selected 
by PLS 
model

Comparing Performance with Lasso (Model Validation 
Results)

90

R2= 0.5741 

Between March and April 2017, the model is not capable to predict fast changes in 
the impurity.  The PLS model has a better performance during the same time frame
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Case Study 2: Quality Classification-- Evaluating the 
Performance of Multiple Reactors

Batch operation (10 reactors, multiple catalyst, 38 variables per reactor)

Feed 
Gas

R1

R6

R2

R7

R3

R8

R4

R9

R5

R10

Bank1

Bank2

GC1

GC2

Effluent

Batches

Time
Features:

• Mean, Stdev, Skewness, Kurtosis, Pairwise 
Correlation

• Max, Min, Range, Medium, Slope, Area 
under the curve, Begin/End Delta

• Autocorrelation (lag=1)

Feature 
Extraction

Testing multiple catalyst families 

D
e
vi

a
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V
a
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b
le

Goal: Identify root cause of 
underperformance

Supervised Case Study: Evaluating the Performance of 
Multiple Reactors

UMAPPLS-DA

When applying PLS-DA and UMAP,  the separation of classes is unclear
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Separation Between Classes Can Be Improved by 
Performing Feature Selection

X: (2828 (observations) , 1832 (features))

Mutual Information:
Top 10 variables

PLS-DA: 
Top 10 variables

Objective:  Find variables that separate 
classes and minimize number of clusters 
based on the following metric: 

Selecting Relevant Features

Feature selection utilizing 
Mutual Information (MI)

Feature selection 
utilizing PLS-DA VIP

The selected features for each method are not consistent and are located in 
different order.  Which classifier model is better?  
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Classifier Performance (Validating with new data)

95

Performance classifiers built upon selected features  

Performance classifiers utilizing full feature space

Bad class performance is not ideal 

RF=Random Forest; MI=Mutual Information and VIP=Variable Influence of Projection based on PLS-DA

Model validation is very helpful to identify best classifier model  

Summary – Case Studies

• Two supervised case studies were illustrated by utilizing industrial cases studies. 
Feature selection and model validation are key steps to evaluate model performance.

• Process knowledge is key for generating best models.  Dimensionality reduction 
techniques are helpful to visualize high dimensional data and bring process 
understanding
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Package Resources 

Visualization:  Tableau, PowerBi, Python-plotly, seaborn and matplotlib

Design of Experiment: JMP 

Random Forest: Python- sklearn

Dimensionality Reduction: Python-sklearn, Matlab-toolbox by Laurens 

van der Maaten

PLS/PLS-DA: Sartorius-Stedim/Umetrics SIMCA, Python-

pychemometrics

Deep Neural Networks: Python-keras (tensorflow)
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