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Abstract Overview 

This extended abstract focuses on addressing the computational challenges associated with solving 
numerical optimization problems for online process optimization. In order to address this challenge, we 
propose to use a “surrogate optimizer” to approximate the online optimization problem using artificial  
neural networks. We propose three different surrogate optimization structures and demonstrate the 
performance using a CSTR case example.  
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Introduction

Real-time optimization (RTO) is traditionally based on 
rigorous steady-state process models that are used by a 
numerical optimization solver to compute the optimal 
steady-state inputs and setpoints. The optimization problem 
needs to be re-solved every time a disturbance occurs. This 
step is also known as “data reconciliation”. A schematic 
representation of the RTO structure is shown in Fig.1.  
Since steady-state process models are used, it is necessary 
to wait, so the plant has settled to a new steady-state before 
updating the model parameters and estimating the 
disturbances. It was noted by Darby et al. (2011) that the 
steady-state wait time is one of the fundamental limitations 
of the traditional RTO approach.  

Among others, one of the challenges with online 
process optimization is the computational issues including 
numerical robustness. Despite having a large potential for 
applying optimization-based approaches, solving numerical 
optimization problems can be computationally expensive, 
even with today’s computing power. For example, in many 
large-scale problems, solvers may take a long time to 
converge to the optimal solution or, in some cases, may 
even fail to converge to an optimal solution. Addressing the 
computational bottleneck is therefore an important aspect of 
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addressing the computational issues of solving online 
optimization problems. 

In order to avoid solving numerical optimization 
problem online, we aim to approximate computationally 
intensive optimization problems using machine-learning 
algorithms. Instead of developing surrogate models that will 
be used in the optimizer, we propose to build “surrogate 
optimizers” or “AI optimizers” that approximate the 
numerical optimization solvers. In this extended abstract, 
we present three different kinds of surrogate optimizers, as 
described below. 

 
Figure 1.  Traditional RTO structure 



  
 

 

Open-loop surrogate network based on measured 
disturbances: 

In this approach, the main idea is to solve the numerical 
optimization problems offline and use the trained network 
online to drive the process to its optimal operation. By doing 
so, we effectively move the computationally intensive 
optimization problems offline and the trained network 
approximates the numerical optimization solver and acts as 
the surrogate for online optimization.  

In other words, we train a neural network to map the 
relation between disturbances d to the optimal setpoints, 
such that given the current disturbance, the trained network 
provides the corresponding optimal solution as output as 
shown in Fig.2. This structure approximates the model-
based optimization block from Fig.1. This is analogous to 
multi-parametric programming, where the models are used 
offline to generate an optimal solution space as a function 
of the disturbances/parameters (Pistikopulous, 2009). Here, 
instead of using a pre-computed solution space using first-
principle models, we use a neural network to map the 
relation between the various disturbances to the optimal 
setpoints.  

 
Figure 2. Open-loop surrogate optimization structure 

using neural network that maps measured disturbances to 
optimal setpoint 

Closed-loop surrogate network based on available 
measurements 

Alternatively, models can also be trained to directly 
map the relation between the available measurements to the 
optimal setpoints in the same fashion as training a model 
from the disturbances to the optimal setpoints as shown in 
Fig.3. In this structure, the neural network approximates 
both the model update and the optimization block from 
Fig.1. This approach would be preferred over the open-loop 
approach in Fig.2, since this structure does not require the 
disturbances to be measured, which can be advantageous in 
many systems where disturbance measurements are not 
available. 

Gradient-based approach 

Another approach is to train a network that directly 
maps the measurements to the steady-state cost gradient. 
This approach does not require solving numerical 

optimization problems either offline or online. The process 
measurements y along with the steady state gradient data 
evaluated offline are used to train a neural network to map 
the local steady-state gradient as a function of the current 
measurements. 

 
Figure 3. Closed-loop surrogate optimization structure 

using neural network that maps measurements to optimal 
setpoint 

  

The trained model is then used online to estimate the 
steady-state cost gradient using real-time measurements. 
Optimal operation can then be achieved by simply 
controlling the estimated gradients to a constant setpoint of 
zero using simple feedback controllers, thereby achieving 
the necessary condition of optimality. A schematic 
representation of the proposed surrogate optimization 
approach is shown in Fig.4.  

 
Figure 4. Gradient-based surrogate optimization 

structure using a neural network to estimate the steady-
state cost gradient. 

Simulation results 

The effectiveness of the proposed surrogate 
optimization approach in this section was tested using a 
CSTR case example used in (Economou et al., 1986) and 
(Krishnamoorthy et al., 2019), where the optimization 
problem is given as, 
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The optimization problem was solved offline for 

various realizations of the disturbances to generate the 
training data. As a proof of concept, a shallow neural 
network with 10 neurons was trained and validated using 
this data to approximate the optimization problem from the 
disturbance to the optimal setpoints. The trained neural 
network was then used online to optimize the process using 
the structure in Fig.2. The process was simulated with 
disturbances in the feed concentrations as shown in Fig.5. 
Note that in this simulation, we assume that the disturbances 
are measured. The cost function using the proposed 
approach was compared with the ideal steady-state optimal 
cost (solid black lines) and is shown in Fig. 5 (solid red 
lines).  

We then use the training data to train and validate a 
neural network from the available measurements to the 
optimal setpoints to build a closed-loop surrogate network 
using available measurements as shown in Fig.3. The 
process was simulated for the same disturbances and in this 
case, we assume that the disturbance measurements are not 
available. The simulation results using this approach is also 
shown in Fig.5 (dashed blue lines) to compare the open-
loop and closed-loop surrogate approaches and we see that 
the system is able to reach the optimum despite the 
unmeasured disturbances.  

Figure 5. Cost obtained using the surrogate optimizer 
structure from Fig.2 (solid red) and Fig.3 (dashed blue) 
compared with the ideal optimal cost (solid black) 
 
 

 
Figure 6. Cost obtained using the gradient-based surrogate 
optimizer structure from Fig.4 (solid blue) compared with 
the ideal optimal cost (solid black) 
 

The gradient-based surrogate optimization approach 
was also tested on the same CSTR case example. The 
process was simulated to generate measurement data for 
different disturbance realizations. The measurement data 
along with the corresponding steady-state cost gradient 
evaluated offline was used to train and validate a neural 
network with 10 neurons. The trained model was then used 
to estimate the steady-state gradient, which was controlled 
to a constant setpoint of zero using a PI controller. The cost 
function along with the estimated gradient for the same 
disturbance as in the previous case is shown in Fig.6 (solid 
blue lines) along with the ideal steady-state cost (solid black 
lines).  
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