

REAL-TIME OPTIMIZATION STRATEGIES USING
SURROGATE OPTIMIZERS

Dinesh Krishnamoorthy*and Sigurd Skogestad
Department of Chemical Engineering

Norwegian University of Science and Technology (NTNU), Trondheim, Norway

Abstract Overview

This extended abstract focuses on addressing the computational challenges associated with solving
numerical optimization problems for online process optimization. In order to address this challenge, we
propose to use a “surrogate optimizer” to approximate the online optimization problem using artificial
neural networks. We propose three different surrogate optimization structures and demonstrate the
performance using a CSTR case example.

Keywords

Neural Network, Real time optimization, surrogate optimization, explicit optimization

Introduction

Real-time optimization (RTO) is traditionally based on
rigorous steady-state process models that are used by a
numerical optimization solver to compute the optimal
steady-state inputs and setpoints. The optimization problem
needs to be re-solved every time a disturbance occurs. This
step is also known as “data reconciliation”. A schematic
representation of the RTO structure is shown in Fig.1.
Since steady-state process models are used, it is necessary
to wait, so the plant has settled to a new steady-state before
updating the model parameters and estimating the
disturbances. It was noted by Darby et al. (2011) that the
steady-state wait time is one of the fundamental limitations
of the traditional RTO approach.

Among others, one of the challenges with online
process optimization is the computational issues including
numerical robustness. Despite having a large potential for
applying optimization-based approaches, solving numerical
optimization problems can be computationally expensive,
even with today’s computing power. For example, in many
large-scale problems, solvers may take a long time to
converge to the optimal solution or, in some cases, may
even fail to converge to an optimal solution. Addressing the
computational bottleneck is therefore an important aspect of

* To whom all correspondence should be addressed

addressing the computational issues of solving online
optimization problems.

In order to avoid solving numerical optimization
problem online, we aim to approximate computationally
intensive optimization problems using machine-learning
algorithms. Instead of developing surrogate models that will
be used in the optimizer, we propose to build “surrogate
optimizers” or “AI optimizers” that approximate the
numerical optimization solvers. In this extended abstract,
we present three different kinds of surrogate optimizers, as
described below.

Figure 1. Traditional RTO structure

Open-loop surrogate network based on measured
disturbances:

In this approach, the main idea is to solve the numerical
optimization problems offline and use the trained network
online to drive the process to its optimal operation. By doing
so, we effectively move the computationally intensive
optimization problems offline and the trained network
approximates the numerical optimization solver and acts as
the surrogate for online optimization.

In other words, we train a neural network to map the
relation between disturbances d to the optimal setpoints,
such that given the current disturbance, the trained network
provides the corresponding optimal solution as output as
shown in Fig.2. This structure approximates the model-
based optimization block from Fig.1. This is analogous to
multi-parametric programming, where the models are used
offline to generate an optimal solution space as a function
of the disturbances/parameters (Pistikopulous, 2009). Here,
instead of using a pre-computed solution space using first-
principle models, we use a neural network to map the
relation between the various disturbances to the optimal
setpoints.

Figure 2. Open-loop surrogate optimization structure

using neural network that maps measured disturbances to
optimal setpoint

Closed-loop surrogate network based on available
measurements

Alternatively, models can also be trained to directly
map the relation between the available measurements to the
optimal setpoints in the same fashion as training a model
from the disturbances to the optimal setpoints as shown in
Fig.3. In this structure, the neural network approximates
both the model update and the optimization block from
Fig.1. This approach would be preferred over the open-loop
approach in Fig.2, since this structure does not require the
disturbances to be measured, which can be advantageous in
many systems where disturbance measurements are not
available.

Gradient-based approach

Another approach is to train a network that directly
maps the measurements to the steady-state cost gradient.
This approach does not require solving numerical

optimization problems either offline or online. The process
measurements y along with the steady state gradient data
evaluated offline are used to train a neural network to map
the local steady-state gradient as a function of the current
measurements.

Figure 3. Closed-loop surrogate optimization structure

using neural network that maps measurements to optimal
setpoint

The trained model is then used online to estimate the
steady-state cost gradient using real-time measurements.
Optimal operation can then be achieved by simply
controlling the estimated gradients to a constant setpoint of
zero using simple feedback controllers, thereby achieving
the necessary condition of optimality. A schematic
representation of the proposed surrogate optimization
approach is shown in Fig.4.

Figure 4. Gradient-based surrogate optimization

structure using a neural network to estimate the steady-
state cost gradient.

Simulation results

The effectiveness of the proposed surrogate
optimization approach in this section was tested using a
CSTR case example used in (Economou et al., 1986) and
(Krishnamoorthy et al., 2019), where the optimization
problem is given as,

(1)

The optimization problem was solved offline for

various realizations of the disturbances to generate the
training data. As a proof of concept, a shallow neural
network with 10 neurons was trained and validated using
this data to approximate the optimization problem from the
disturbance to the optimal setpoints. The trained neural
network was then used online to optimize the process using
the structure in Fig.2. The process was simulated with
disturbances in the feed concentrations as shown in Fig.5.
Note that in this simulation, we assume that the disturbances
are measured. The cost function using the proposed
approach was compared with the ideal steady-state optimal
cost (solid black lines) and is shown in Fig. 5 (solid red
lines).

We then use the training data to train and validate a
neural network from the available measurements to the
optimal setpoints to build a closed-loop surrogate network
using available measurements as shown in Fig.3. The
process was simulated for the same disturbances and in this
case, we assume that the disturbance measurements are not
available. The simulation results using this approach is also
shown in Fig.5 (dashed blue lines) to compare the open-
loop and closed-loop surrogate approaches and we see that
the system is able to reach the optimum despite the
unmeasured disturbances.

Figure 5. Cost obtained using the surrogate optimizer
structure from Fig.2 (solid red) and Fig.3 (dashed blue)
compared with the ideal optimal cost (solid black)

Figure 6. Cost obtained using the gradient-based surrogate
optimizer structure from Fig.4 (solid blue) compared with
the ideal optimal cost (solid black)

The gradient-based surrogate optimization approach
was also tested on the same CSTR case example. The
process was simulated to generate measurement data for
different disturbance realizations. The measurement data
along with the corresponding steady-state cost gradient
evaluated offline was used to train and validate a neural
network with 10 neurons. The trained model was then used
to estimate the steady-state gradient, which was controlled
to a constant setpoint of zero using a PI controller. The cost
function along with the estimated gradient for the same
disturbance as in the previous case is shown in Fig.6 (solid
blue lines) along with the ideal steady-state cost (solid black
lines).

Acknowledgments

The authors gratefully acknowledge the financial
support from SUBPRO, which is financed by the Research
Council of Norway, major industry partners and NTNU.

References
Pistikopoulos, E. N. Perspectives in multiparametric programming

and explicit model predictive control. AIChE
Journal 2009, 55 (8), 1918-1925.

Krishnamoorthy, D., Jahanshahi, E. and Skogestad, S., 2018.
Feedback Real-Time Optimization Strategy Using a
Novel Steady-state Gradient Estimate and Transient
Measurements. Ind. & Eng. Chem. Res., 58(1), pp.207-
216.

Economou, C. G.; Morari, M.; Palsson, B. O. Internal model
control: Extension to nonlinear system. Industrial &
Engineering Chemistry Process Design and
Development 1986, 25, 403–411.

