
On the Convergence of the Dynamic Inner PCA Algorithm

Sungho Shin†, Alexander D. Smith†, S. Joe Qin‡, and Victor Zavala†∗
†University of Wisconsin-Madison Madison, WI 53705, USA.

‡University of Southern California, Los Angeles, CA 90089, USA.

Abstract overview

Dynamic inner principal component analysis (DiPCA) is a powerful method for the analysis of
time-dependent multivariate data. DiPCA extracts dynamic latent variables that capture the most
dominant temporal trends by solving a large-scale, dense, and nonconvex nonlinear program (NLP).
A scalable decomposition algorithm has been recently proposed in the literature to solve these
challenging NLPs. The decomposition algorithm performs well in practice but its convergence
properties are not well understood. In this work, we show that this algorithm is a specialized
variant of a coordinate maximization algorithm. This observation allows us to explain why the
decomposition algorithm might work (or not) in practice and can guide improvements. We compare
the performance of the decomposition strategies with that of the off-the-shelf solver Ipopt. The
results show that decomposition is more scalable and, suprisingly, delivers higher quality solutions.

Keywords

PCA, dynamic data modeling, time series analysis, scalable

Motivation and Setting

Principal component analysis (PCA) is a widely used
method for dimensionality reduction of static multivariate
data. PCA identifies latent variables that capture most in-
formation (variance) of the original data set. Dynamic inner
PCA (DiPCA) is a recently proposed generalization of PCA
that is used for dimensionality reduction of time-dependent
data (Dong and Qin, 2018). DiPCA extracts time series for
latent variables that contain most information of the original
data set. DiPCA has a key advantage over augmented lagged
data-based techniques, such as dynamic PCA and canonical
variate analysis (Chiang et al., 2000), in that the extracted
dynamic latent variables are easy to interpret (Dong and
Qin, 2018). The technique can be used in diverse appli-
cation areas such as feature extraction, process monitoring,
and fault detection.

DiPCA Formulation

We consider time-series data x1,x2, · · · ,xn+s ∈ Rm

(where m is the feature dimension). The data is collected
in the matrix X ∈ R(n+s)×m. We consider dynamic la-
tent variables given by ti = w>xi for i ∈ I1:n+s, where
w ∈ Rm is a weight vector for the latent variable subspace
and I1:n+s := {1, · · · , n+ s} is a time index set. The latent
variables are collected in the vector t ∈ Rn+s. We assume
that the latent variables follow an autoregressive (AR) pro-

∗To whom all correspondence should be addressed

cess of the form:

ti = β1ti−1 + · · ·βsti−s + ri, i ∈ Is+1:n+s, (1)

where β ∈ Rs is the coefficient vector for the autoregres-
sive model, and ri ∈ R is the residual at time i. We
consider all vectors as column vectors and use convention
v := (v1, · · · , vnv

).
In DiPCA, one aims to find the weights w and AR co-

efficients β of the autoregressive latent variable model (1)
that maximize the covariance between the latent variables
ts+1, · · · , tn+s and their corresponding latent model predic-
tions t̂s+1, · · · , t̂n+s, where t̂i := β1ti−1+ · · ·+βsti−s for
i ∈ Is+1:n+s. The weights and AR coefficients are found
by solving an optimization problem of the form:

max
w,β

n+s∑
i=s+1

tit̂i, s.t. ‖w‖22 ≤ 1, ‖β‖22 ≤ 1. (2)

Here, the norm constraints on w and β are used to avoid
arbitrary scaling of the objective. The solution of problem
(2) extracts the latent variable space w that capture the most
dynamic variation in the data. With w, a subspace of latent
time series that are most predictable from their past data
can be obtained. One can extract all the latent time series
by deflating the data matrix as X ← X − tp> with p :=
X>t/t>t and by re-solving (2). The last latent time series
is the one that contains the least information. The whole
set of latent time series can be used to reconstruct the data
matrix and a subset can be used to approximate it.

DiPCA Algorithm

The DiPCA problem (2) is a nonconvex nonlinear pro-
gram (NLP). We now analyze a decomposition algorithm
(that we refer to as DiPCA algorithm I) that seeks to find
solutions for this NLP. DiPCA algorithm I was proposed by
Dong and Qin (2018). We first note that (2) can be expressed
in the following equivalent form:

max
w,β

w>Yβw s.t. ‖w‖22 ≤ 1, ‖β‖22 ≤ 1, (3)

where Yβ :=
∑s

i=1 βiYi and

Yi :=
1

2

(
X>s+1Xs+1−i +X>s+1−iXs+1

)
, i ∈ I1:s

Xi := [xi · · · xi+n−1]
>, i ∈ I1:s+1.

The algorithm aims to find a solution of the NLP by solving
its first-order optimality conditions. To derive these, we note
that the Lagrangian of (3) is:

L(w,β) :=w>Yβw − λw(‖w‖22 − 1)− λβ
2
(‖β‖22 − 1),

where λβ and λw are Lagrange multipliers. The first-order
conditions are:

2Yβw − 2λww = 0, ‖w‖22 = 1 (4a)

w>Yiw − λββi = 0, i ∈ I1:s, ‖β‖22 = 1. (4b)

Here, ‖w‖22, ‖β‖22 = 1 follow from the observation that the
inequality constraints are always active. Due to nonconvex-
ity, solving (4) as nonlinear equations (e.g., using Newton’s
method) is computationally challenging. To avoid this, the
DiPCA algorithm I uses the iterative scheme:

w(`+1) = d(`)/‖d(`)‖2 (5a)

β(`+1) = c(`+1)/‖c(`+1)‖2, (5b)

where ` is the iteration counter and

d(`) := Yβ(`)w(`), c
(`)
i := (w(`))>Yiw

(`), i ∈ I1:s.

We observe that (4a) is an eigenvalue problem and that (5a)
attempts to approximately solve this (with fixed β(`)). We
will see in the next section that (5a) is an iteration of the so-
called power method (widely used for the solution of eigen-
value problems and static PCA). We also observe that (5b)
exactly solves (4b) (for fixed w(`)).

The DiPCA algorithm I has shown to be rather effective
at solving the first-order conditions of the NLP but no con-
vergence guarantees have been established. Moreover, it is
clear that, due to nonconvexity, the solution of the first-order
conditions does not guarantee that a solution is a maximum.

Main Results

We now propose a coordinate maximization algorithm for
solving the NLP (3) and show that a simplified variant of

Algorithm 1 Pseudocode for the DiPCA algorithms

1: `← 0 and ε← +∞
2: Yi ← (1/2)

(
X>s+1Xs+1−i +X>s+1−iXs+1

)
3: yi ← Yiw

(0) for i ∈ I1:s and d(0) ←
∑s

i=1 β
(0)
i yi

4: while ε > εtol do
5: w(`+1) ← d(`)/‖d(`)‖2
6: yi ← Yiw

(`+1)

7: c
(`+1)
i ← (w(`+1))>yi for i ∈ I1:s

8: λ(`+1) ← ‖c(`+1)‖2
9: ∗β(`+1) ← c(`+1)/λ(`+1)

10: d(`+1) ←
∑s

i=1 β
(`+1)
i yi

11: ε← ‖d(`+1) − λ(`+1)w(`+1)‖∞ and `← `+ 1
12: end while
∗ In DiPCA algorithm II, only performed if λ(`+1)/λ(`) − 1 < εtol.

this approach is equivalent to the DiPCA algorithm. In coor-
dinate maximization, one partitions the set of decision vari-
ables and solves the optimization problem over a subset of
variables while fixing the rest, and repeat the procedure for
each subset. This approach can be interpreted as a block
Gauss-Seidel or alternating maximization scheme. Coordi-
nate maximization is not guaranteed to converge to a local
solution but is often used in applications since fixing a set
of variables often reduces complexity and enables deriving
closed-form solutions over the complementary variable set.
To see this, we partition the decision variables into β and
w. We consider solving for w while fixing β:

w(`+1) = argmax
w

w>Yβ(`)w s.t. ‖w‖22 ≤ 1. (6a)

It is obvious that (6a) is an eigenvalue problem, and such an
observaion was also made in (Dong and Qin, 2018, Theorem
1). Next, we consider solving for β while fixing w:

β(`+1) = argmax
β

(c(`+1))>β s.t. ‖β‖22 ≤ 1. (6b)

We observe that (6b) has a closed-form solution, which is
equivalent to (5b). We denote (6) as DiPCA algorithm II.
The DiPCA algorithms I and II are summarized in Algo-
rithm 1.

Solving (6a) is equivalent to finding the dominant eigen-
vector of Yβ(`) . Solving (6a) via an eigenvalue decomposi-
tion is computationally inefficient if the feature space m is
large. A more scalable approach to find the dominant eigen-
vector is known as the power method. The power iteration
for finding the dominant eigenvalue of matrix A is given by:

b(k+1) = Ab(k)/‖Ab(k)‖2, k = 1, 2, · · · , (7)

where k is the iteration counter. With (7), b(k) geo-
metrically converges to the dominant eigenvector of A if
|λ1(A)| > |λ2(A)| and b(0) has a nonzero component of
the dominant eigenvector, where λ1(·) and λ2(·) denote the
largest and the second largest eigenvalues.

The above derivations reveal connections between
DiPCA algorithm I (5) and II (6). One can see that (5b)

and (6b) are identical, but (5a) and (6a) are not. Rather,
(5a) performs one iteration of the power method (7) with
matrix A = Yβ(`+1) . We can also interpret (5a) as solv-
ing (6a) with a linearized objective function. This approach
is advantageous in computational efficiency since it avoids
performing multiple power iterations to solve the eigenvalue
problem. On the other hand, performing one iteration of (7)
may not guarantee the improvement of the objective value
and thus DiPCA algorithm I might face convergence issues,
especially when the dominant eigenvalue is negative. Note
that DiPCA algorithm I and II do not require performing
matrix factorizations.

The above derivations also reveal metrics for monitor-
ing convergence. By evaluating the residual s(`) of (4a)
at iteration ` with λ(`) := (w(`))>Yβ(`)w(`), we obtain
s(`) := d(`) − λ(`)w(`). We also note that (4b) is automat-
ically satisfied. Consequently, one can stop the algorithm if
‖s(`)‖∞ < εtol, for user-defined tolerance εtol.

At a fixed point (w,β) of iteration (5), one can show
that the first-order conditions (4) hold with λw = λβ =
w>Yβw. The second-order conditions hold (the fixed
point is a maximum point) if the reduced Hessian Z>HZ
is negative definite; this is equivalent to the condition that
the inertia of K is (n+, n−, n0) = (2,m+ s, 0), where

K :=

[
H G>

G

]
, G :=

[
w>

β>

]
, λ := w>Yβw

H :=


Yβ − λI Y1w · · · Ysw
w>Y1 − 1

2λ
...

. . .
w>Ys − 1

2λ

 ,
and Z is a null-space basis matrix of G.

Numerical Experiments

We compare the performance of the DiPCA algorithm I
and II with that of the off-the-shelf nonlinear programming
solver Ipopt (Wächter and Biegler, 2006). Our benchmarks
consist of 20 time series obtained from data for a chemical
sensor with m = 5106, n = 71, s = 4 (Cao et al., 2018).
We add artificial noise to the data with iid Gaussian ran-
dom variables N(0, σ2) and use εtol = 10−6. The code is
implemented in Julia and run on a Intel(R) Xeon(R) CPU
E5-2698 v3 @ 2.30GHz. For Ipopt, we solve the NLP (2)
in the space of t,β,w.

The results are shown in the form of cumulative plots
for objective value, computational time, and the fraction
of negative eigenvalues among the eigenvalues of the re-
duced Hessian (Figure 1-2). One can see that the perfor-
mance of DiPCA algorithm I and II is similar. When the
noise is small (σ = 1), we can see that the DiPCA algo-
rithms significantly outperform Ipopt in terms of computa-
tion time, but their performance is very similar in terms of
objective values. When the noise is large (σ = 10), the
computation time drastically increases for both approaches

Figure 1: Benchmark results with σ = 1.

Figure 2: Benchmark results with σ = 10 (right).

(DiPCA and Ipopt), but DiPCA is significantly faster. The
superior efficiency of DiPCA is due to the fact that Ipopt
needs to perform matrix factorizations (while DiPCA algo-
rithms does not). We have found that high noise adversely
affects the conditioning of the problem (matrix Yβ) and this
slows down the convergence (the power iteration becomes
less efficient). In the high noise case, we also found that the
DiPCA algorithms find better solutions (compared to Ipopt)
in terms of objective values. This seems to indicate that co-
ordinate maximization handles nonconvexity better.

References

Cao, Y., Yu, H., Abbott, N. L., and Zavala, V. M. (2018). Ma-
chine learning algorithms for liquid crystal-based sensors. ACS
sensors, 3(11):2237–2245.

Chiang, L. H., Russell, E. L., and Braatz, R. D. (2000). Fault
detection and diagnosis in industrial systems. Springer Science
& Business Media.

Dong, Y. and Qin, S. J. (2018). A novel dynamic pca algorithm
for dynamic data modeling and process monitoring. Journal of
Process Control, 67:1–11.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an
interior-point filter line-search algorithm for large-scale nonlin-
ear programming. Mathematical programming, 106(1):25–57.

